Кровавый коктейль. Из чего состоит и как функционирует ваша кровь бесплатное чтение

Андрей Леонидович Звонков
Кровавый коктейль
Из чего состоит и как функционирует ваша кровь

© Звонков А.Л., текст, 2023

© Шварц Е.Д., иллюстрации, 2023

© Оформление. ООО «Издательство «Эксмо», 2023

О, как я поздно понял,
Зачем я существую,
Зачем гоняет сердце
По жилам кровь живую,
И что порой напрасно
Давал страстям улечься,
И что нельзя беречься,
И что нельзя беречься…
1963 г. Д. Самойлов

От автора

Если бы мне, когда я был студентом, сказали, что половину своей медицинской карьеры я буду заниматься переливанием крови, я покрутил бы пальцем у виска. Вы с ума сошли? Я скоропомощник! Я кардиолог! Какая кровь?

Не знаю почему, но как-то само собой в атмосфере медицины 70–80-х годов ХХ века витало… даже не мнение, а туман или флер ощущения, что Служба переливания крови – это что-то близкое к аптеке, пиявкам, дело не для настоящих медиков, а для тех, кто не смог пойти в хирургию или реаниматологию[1]. Какие врачи этим занимались? Да кто угодно! Даже специальности еще такой не было – трансфузиолог[2]. Кто это вообще такой? Переливатель? Из пустого в порожнее? Работа для медсестер, ну, в крайнем случае для врачей-лаборантов, которым и лечить-то людей не позволяется.

Нет, заниматься переливанием крови? Ни за что! Но у Создателя на наш счет свои планы.

В середине 80-х я работал выездным фельдшером и поневоле оказался участником большой операции в роддоме: речь шла о жизни и смерти. Дежурный анестезиолог примчался к нам, на подстанцию скорой, и попросил помощи – срочно сдать кровь. От кровопотери умирала женщина. Дежурный врач «дал SOS» по каналам скорой, милиции и пожарной службы. Собирались люди со всего города, но мы находились ближе всего: от приемного покоя роддома до подстанции было метров 50.

Я оказался в числе первых доноров. Сдал 400 миллилитров крови и продолжил дежурство. Спустя несколько дней узнал, что женщина, несмотря на заготовленные для нее порядка 40 литров донорской крови от более ста человек (медиков, милиционеров и пожарных), все равно скончалась. Удалось спасти только ребенка.

Позже я встретился с тем самым анестезиологом и расспросил его: что же случилось? Он объяснил, что у женщины произошла преждевременная отслойка плаценты, случилась огромная и очень быстрая кровопотеря, а затем развилось неуправляемое нарушение свертывания крови, остановить которое не удалось, несмотря ни на удаление матки, ни на влитые десятки литров донорской крови. «Чего-то мы еще не знаем и не понимаем», – добавил он. А в конце нашей беседы сказал: «Давай заканчивай институт, становись врачом, займись кровью и раскрой эту загадку ДВС-синдрома».

«Тьфу на тебя, – подумал я, – заниматься кровью? Да ни за какие коврижки!» Помню, что совершенно серьезно ответил: «Не дай Бог мне когда-нибудь связаться с переливанием крови!» Мне это дело представлялось совершенно неинтересным в плане медицинской практики. То ли дело кардиология! Мечта моя! В то время.

Через несколько лет, уже став врачом, в только-только созданной частной клинике я оказался единственным специалистом-медиком, способным взять на себя создание Службы крови. Это были годы перестройки и развала СССР. После окончания мединститута, имея в кармане диплом врача и свидетельство об окончании интернатуры по анестезиологии и реанимации, в частной клинике я был вынужден год заниматься рекламой, делопроизводством и курьерской работой. Очевидно, что, когда понадобилось закрыть «дыру» переливания крови, я не особенно кочевряжился, а сразу сказал: «Согласен!» Конечно, мог отказаться. Но я так хотел заняться хоть чем-то медицинским, в любом качестве, лишь бы вернуться к врачебной работе и, главное, продолжать свое участие в создании клиники совершенно нового направления: малоинвазивной, бескровной медицины.

Служба крови в такой клинике представлялась мне чистой формальностью. Зачем переливать кровь там, где операции бескровны? Я подписал приказ руководства, назначивший меня «заведующим службой крови» клиники[3].

Как мы все тогда ошибались по поводу бескровности!

За 20 с лишним лет отношение к крови и переливанию в медицине СССР и России сильно изменилось. Специальность отнесли к хирургии и реаниматологии, а отнюдь не к лабораторному делу. Я со своим дипломом анестезиолога (который нужен был для работы в кардиореанимации) и диким желанием непременно вернуться в медицину идеально подошел для организации Службы крови.

Жалел ли я о том, что так получилось? Бывало. Но сейчас, вспоминая 90-е годы, на которые и пришлась моя работа трансфузиологом, я совершенно не жалею об этом. Так было нужно. И нужно было главным образом мне – для осознания верности Божьих заповедей: «не клянитесь» и «не спорьте с судьбой» – она сильнее.

НАСТАЛО ВРЕМЯ РАССКАЗАТЬ ВАМ О КРОВИ, О ТОМ, ЧТО ЭТО ЗА ЖИДКОСТЬ И ПОЧЕМУ ОНА АССОЦИИРУЕТСЯ С ЖИЗНЬЮ (ВЕДЬ ВСЕМ ИЗВЕСТНО, ЧТО БЕЗ КРОВИ ЖИЗНЬ НЕВОЗМОЖНА). ЗАОДНО РАССКАЖУ О ТОМ, ПОЧЕМУ КЛЕТКИ НАШЕГО ОРГАНИЗМА ПОХОЖИ НА НАС И ЧЕМ МЫ ОТЛИЧАЕМСЯ ДРУГ ОТ ДРУГА – КОНЕЧНО, НЕ ВНЕШНЕ, А ПО ОБРАЗУ ЖИЗНИ, ЗАБОТАМ И СКЛАДУ МЫШЛЕНИЯ.

Поговорим о разных болезнях и методах лечения. А также о том, почему врачи-трансфузиологи не любят переливать кровь[4] и постоянно спорят об этом с лечащими врачами – хирургами или анестезиологами, требуя обоснования необходимости этого.

За 20 лет «кровавой службы» мне не раз приходилось решать настоящие загадки, связанные с кровью.

Одна из них возникла, когда кардиологического пациента готовили к большой и очень сложной операции по лечению угрозы инфаркта миокарда с помощью аортокоронарного шунтирования – когда в обход забитым холестерином артериям накладывают шунты из собственной вены больного. Операция выполняется с помощью аппарата искусственного кровообращения и в самом лучшем случае требует не меньше 2–2,5 литра донорской крови.

Больной готовился к операции, мы ждали со станции переливания крови два литра подобранной персонально для него эритроцитной массы. И вдруг получили ответ: «В результате проверки эритроцитной массы более чем от ста доноров совместимость не обнаружена».

Как так? Из ста человек ни один не подошел? Как это возможно?

Мы попросили проверить еще. И снова приходит ответ: «Еще сто доноров не подошли».

Это был удар ниже пояса. У нас все готово: операционная сестра в маске и перчатках разложила инструменты, мониторы пищат, анестезиолог выпил кофе – можно приступать, – а крови нет?! Сейчас шутить легко, а тогда у нас была, честно скажу, паника.

Посовещавшись, мы приняли единственное возможное решение: заготавливать собственную кровь от больного, несмотря на то что для него это было опасно. А главное – операция откладывалась почти на два месяца. Ведь брать кровь каждый день нельзя. В лучшем случае раз в неделю, а то и в две, каждый раз забирая не больше 200–250 миллилитров собственной эритроцитной массы.

Поверьте, это тоже операция, все равно как если бы каждые две недели отрезали кусок тела, каждый раз больший, чем прежде, и пришивали обратно взятое две недели назад. Представили? Может такая манипуляция пройти бесследно для организма? Естественно, нет.

Сам пациент, конечно, должен жить эти месяцы «шепотом», не нервничать, регулярно сдавать анализы крови, главный из которых – анализ на свертываемость, потому что постоянными заборами крови мы невольно влияем на это ее свойство, а значит, риск возникновения тромбов увеличивается. Пациенту приходится принимать увеличенные дозы специальных препаратов, регулирующих свертывающую систему, чтобы нам не потерять его еще до операции.

НО МЕНЯ МУЧИЛ ТОГДА ГЛАВНЫЙ ВОПРОС: ПОЧЕМУ ПАЦИЕНТ ОКАЗАЛСЯ АБСОЛЮТНО НЕСОВМЕСТИМ С ДОНОРСКОЙ КРОВЬЮ?

Я позвонил своему учителю в НИИ переливания крови, где проходил повышение квалификации, и спросил, с чем может быть связана такая невосприимчивость. Ответ не удивил, подсознательно я был готов к такому варианту. «Он когда-то давно перенес массивное переливание крови, – сказал учитель. – Если хочешь, узнай, когда и сколько было влито. Но если двести доз от разных людей ему не подошли, видимо, ему перелили несколько литров донорской крови. Флаг тебе в руки и успешного расследования».

Пациент вспомнил, что в начале 60-х годов он с семьей попал в автокатастрофу по дороге в Крым, был сильно травмирован, и его даже перевозили из одной больницы в другую. Из Мелитополя то ли в Ростов-на-Дону, то ли в Краснодар, он не помнил, ему было тогда лет 13–14. И вроде бы ему переливали кровь. Но сколько? Как она тогда прижилась?

Видимо, раз он дожил почти до 70, кровь прижилась. Его в том возрасте больше волновало, что каникулы пошли прахом, все лето на больничных койках и потом еще почти полгода – на костылях. А какую кровь влили, от кого и сколько – какая разница?

Могли по таблице совместимости[5] влить и кровь другой группы. Сейчас так делать нельзя, а в те годы – запросто. Тем более что практики разделять донорскую кровь на плазму и клетки в то время еще не было. Взяли от донора бутылку цельной крови, проверили группу и совместимость: не склеиваются клетки? Нет! Ну и влили, а могли вообще сделать прямое переливание из вены донора в вену больного с помощью специального насоса, который в те времена находился в операционных в каждой больнице. Сейчас это оборудование убрали, а прямое переливание запретили, но тогда оно было очень популярно.

По нашему запросу из Краснодарского архива пришел ответ: «Да, больному такому-то было перелито цельной донорской консервированной крови двадцать доз[6] от различных доноров. Реакции несовместимости не отмечалось». Вот так.

А теперь эта реакция не дает ему сделать операцию на сердце.

Чем закончилась история? Для пациента, в общем, хорошо. Пока он к нам ходил на заготовку его собственной эритроцитной массы, насмотрелся, как ангиохирурги делают новую в то время операцию – стентирование. В забитые артерии сердца устанавливается специальный протез – сетчатая металлическая трубочка. А главное, нет необходимости ни в какой крови, не нужно до двух недель выхаживать пациента в реанимации после операции, риск, что сердце после остановки не заведется, отсутствует, потому что стент устанавливают в артерию прямо на работающем сердце.

Так, когда мы, довольные, предъявили кардиохирургу десять контейнеров с эритроцитной массой больного и отрапортовали, что того «можно брать!», наш пациент самостоятельно лег на операцию стентирования и через трое суток пришел к нам счастливый и практически здоровый.

Спросите, куда делась добытая с такими приключениями подходящая кровь? Частично вернули, а частично уничтожили: она не годилась в качестве донорской. И хотя плазму мы отделили, эритроциты этого человека нельзя было перелить другому пациенту и по закону о донорстве, запрещающему использовать кровь больного человека как донорскую (она может быть перелита только самому пациенту во время операции или после нее), и потому еще, что они могут мгновенно разрушиться у любого реципиента в организме, а это смертельно опасно.

Уже сейчас в этом небольшом вступлении вы увидели массу различных специальных терминов: эритроцитная масса (не эритроцитарная), донор и реципиент, стентирование и прочее… В конце книги вы найдете «Комментарии и словарь медицинских терминов», где я постараюсь доступно объяснить значение некоторых названий (см. стр. 401).

Книга написана с небольшой долей иронии, чтобы вам было не скучно. Я шучу, даже когда рассказываю о важных вещах. Так их легче воспринимать. Только все-таки не забывайте, что кровь – это явление серьезное. Как и вся наша жизнь, в которой чувство юмора помогает выживать и сохранять здравый рассудок в самых трудных ситуациях.

Если книга покажется вам полезной и интересной и появятся вопросы – а они должны появиться – и пожелания или просто захочется поделиться впечатлением, вы можете направить все комментарии мне на электронную почту по адресу: [email protected]. Я обязательно постараюсь вам ответить.

Автор благодарит за неоценимую помощь в работе над книгой врача-трансфузиолога И. И. Занину, заведующую отделением переливания крови одной из московских больниц.

Вступление

Еще в юности я увидел фильм «Сказка странствий», из которого запомнил удивительный по своей мудрой наивности монолог главного героя – врача и философа Орландо.

«Я исследовал органы человека, и когда я заглянул внутрь его, мне открылось, что каждый человек – это целый мир!

Внутри него текут реки, ручьи, полные животворной влаги. А то, что мы называем «сердце», «легкие», – это материки, это острова, омываемые океаном. Реки – это жилы, по которым течет ее голубая кровь. Европа, Азия, Африка, материки, – это ее сердце, ее легкие, облака – это пар от ее дыхания. И вот к какому выводу я пришел: раз уж государства являются частями одного единого живого организма, они должны жить в мире! Ну где это видано, чтобы правое легкое воевало с левым, чтобы печень старалась захватить часть селезенки?!»[7]

МНЕ НРАВИТСЯ ЭТА МЕТАФОРА. МНОГО ЛЕТ РАБОТАЯ С КРОВЬЮ, ИЗУЧАЯ ЕЕ СВОЙСТВА И ФУНКЦИОНИРОВАНИЕ, Я ДЕЙСТВИТЕЛЬНО ЗАМЕТИЛ ОЧЕНЬ БОЛЬШОЕ СХОДСТВО МЕЖДУ КЛЕТКАМИ КРОВИ И СООБЩЕСТВОМ ЛЮДЕЙ.

Если сравнивать клетки организма с нами, людьми, а различные государства и страны – с органами, как можно представить себе, что какие-то органы вдруг объявят свою гегемонию, начнут стравливать клетки одной ткани с клетками другой, грабить самых беззащитных и слабых? Вы можете вообразить такие процессы в своем организме?

Очевидно же, что такой человек будет обречен на скорую и мучительную смерть или не очень долгую, но тоже болезненную жизнь, представляя собой фактически поле боя одних клеток организма с другими. Чуть забегая вперед, скажу: такое случается и связано это зачастую как раз с переливанием крови или пересадкой костного мозга.

С другой стороны, уж очень похоже поведение человеческого вида на поведение раковой опухоли. Как она пожирает организм, так и человечество пожирает запасы Земли, тромбирует сосуды – реки, вырубает легкие – леса и засоряет кровь – воду рек и океанов. Можете представить себе ситуацию, что клетки какого-то органа решили запрудить какую-нибудь артерию, чтобы увеличить кровенаполнение части органа в ущерб другой части. И в результате получить некроз, пустыню. Как произошло с Аральским морем?

Я очень надеюсь, что это потребительство – временное явление и мы когда-нибудь, как клетки разумные (citus sapiens), свою раковую тактику пожирания природных ресурсов и засорения окружающей среды наконец прекратим и станем действительно нужной и важной для Земли, как для организма, тканью.

Кстати, чтобы не обвиняли меня в излишнем фантазировании: есть очень важное сходство между клетками человеческого организма и человеком как живой и весьма инициативной клеткой организма Земля. Это сходство – очень узкие параметры комфортных условий внешней среды для жизни человеческого организма и его клеток. Как клетки организма привязаны к нему и без него жить не могут, во всяком случае если им не создавать подходящие условия искусственно, так и человек привязан к физико-химическим постоянным планеты Земля.

К ПРИМЕРУ, ТЕМПЕРАТУРА ЧЕЛОВЕЧЕСКОГО ТЕЛА, ТО ЕСТЬ ОКРУЖАЮЩЕЙ СРЕДЫ ДЛЯ КЛЕТОК, ОКОЛО 37 °C. И ЗА ПРЕДЕЛАМИ ДИАПАЗОНА 35–38 °C КЛЕТКИ ЧУВСТВУЮТ СЕБЯ НЕКОМФОРТНО.

Они болеют, разрушаются, могут сильно измениться (вплоть до появления раковых образований). Если холодно – останавливаются биохимические реакции, если жарко (39–40 °C) – разрушаются белки и гибнут клетки.

Для человека комфортная температура атмосферы составляет +25 °C, влажность – не выше 60–70 %[8], умеренная интенсивность солнечного ультрафиолета, отфильтровывание атмосферой короткого излучения. Недостаток УФ нарушает усвоение кальция, у детей вызывает рахит, у взрослых – остеопорозы, мышечную астению, нарушение регуляции артериального давления, а избыток ультрафиолетового излучения обжигает кожу и может вызвать образование раковых опухолей.

Точно так же легко найти параметры и по кислотно-щелочному балансу: в крови (в зависимости от ее вида) этот параметр колеблется между 7,37–7,44, венозная кровь кислее (показатель кислотности, РН, ближе к 7), артериальная – щелочнее, 7,44–7,45. И если этот показатель окажется слишком высок или слишком низок, клетки крови и стенок сосудов начнут разрушаться и погибать.

Мы привязаны к гравитационной постоянной – ускорению свободного падения на Земле 1g = 9,8 м/сек2. Если этот физический параметр вдруг изменится, мы начнем болеть, большая часть из нас погибнет, дети станут развиваться в иных условиях и тоже изменятся.

Происходило ли подобное раньше? Конечно. 65 млн лет назад в Центральной Америке астероид под углом 60 градусов с юго-востока, то есть против направления вращения Земли, врезался в нашу планету со скоростью 12 м/сек, неизбежно изменив скорость ее вращения: замедлив ее, и при этом поднял миллионы тон гипсового грунта и водяного пара в верхние слои атмосферы. Он создал огромный кратер Мексиканского залива, сформировал полуостров Юкатан и изменил сразу два важнейших параметра Земли: увеличил гравитацию за счет снижения центробежной силы и на десятки лет критически уменьшил количество УФ, поступающего в биосферу, устроив «ядерную», или, правильнее сказать, «астероидную» зиму.

Все крупные животные – например, динозавры, которым было комфортно при пониженной гравитации в теплом, прогретом и влажном климате, где легко вырастали высокие и богатые зеленой массой растения, – очень быстро стали погибать: сперва из-за холода и давления собственного веса, а затем и от голода. Фактически за первый же год погибло до 90 % всех гигантских рептилий, придавленных своим весом.

Вот такую «химиотерапию» Вселенная провела Земле, сменив клеточный состав ее организма в пользу более мелких млекопитающих животных.

Гравитация, состав атмосферы и сила солнечного ветра определяют всю жизнь на Земле. Именно поэтому для нас, землян, невозможно долго и безопасно жить на Марсе или Луне. На Марсе уровень солнечного света и тяготение в три раза ниже земного, на Луне же отсутствует атмосфера, а сила тяготения в шесть раз слабее земной. Чрезвычайно вредно жить в космосе, где совершенно нет тяготения, а слабая оболочка космических аппаратов недостаточно защищает людей от космических и солнечных лучей.

Есть и еще один очень важный параметр Земли, от которого мы чрезвычайно зависимы: наклон оси вращения планеты. Он обеспечивает смену сезонов, а имея обратное вращение самой оси и отклонение ее при этом вращении, регулярно дарит нам то райский сад субтропиков, то ледниковый период, которые длятся от сотен до десятков тысяч лет. Если бы не это явление, как фауна, так и флора смогли бы существовать на весьма узких полосах суши, а вода в океане циркулировала бы совсем по иным принципам, чем сейчас. Именно периодичность изменения условий среды обитания побудила различные популяции людей к движению по поверхности Земли и развитию технического прогресса, который составил конкуренцию природной эволюции.

Масштабная катастрофа, произошедшая с динозаврами, и смена некоторых видов животных и растений в результате большого ледникового периода – это серьезный намек, вразумление человечеству, что нужно изменить отношение к своему большому организму, частью которого оно является, и определить наконец свою функциональную задачу в мире. Вероятно, мы регулярно оказываемся свидетелями таких вразумлений, осталось сообразить, что же они означают. А сообразив, изменить отношение к Земле, думать о ней как о своем организме, а не как о стоянке туристов, которые уходят, за собой ничего не убрав.

Главное отличие людей от клеток наших организмов не в том, что мы разумные или можем что-то особенное. Оно состоит в том, что никакие клетки организма не считают себя лучше других клеток. Они все равны по статусу, они знают и понимают, что права и обязанности у них абсолютно одинаковые. Любые отличия клеток рациональны. Факт рождения клетки в коре головного мозга не делает нейрон более важным, чем лейкоцит, клетка печени, почки или слизистой желудка, выделяющая соляную кислоту в желудочном соке.

Давайте сравнение человечества и клеток организма человека сведем к конкретному сходству, а более подробно к этой параллели вернемся в заключении этой книги. Там и попытаемся понять, в чем же главная функция человечества во Вселенной и конкретно на Земле.

Ведь не зря же мы придумали себе всякие статусы и признаки, ищем и находим индивидуальные смыслы существования. Или все-таки весь смысл в заповеди «плодитесь и размножайтесь»? Для разумного существа как-то очень уж примитивно, правда? Хочется чего-то такого, особенного. Извращенного. Разве не так? Но почему-то природе Земли это не нравится, и она решает за всякие извращения этой заповеди наказать нарушителей разными болезнями. Но человек способен на разные придумки. Не случайно он – Разумный.

Мне вспоминается стишок Валентина Берестова:

Он, дескать, мал. Он, дескать, глуп,
но наш глупыш, собой владея,
С большим умом осуществлял
Свои дурацкие идеи.

Эта «дурацкая идея» – информация. Мы с древних времен создали средство для ее хранения: письменность. Мы использовали для этого различные носители: воск, мягкую глину, грифель, дерево, камень, бумагу, магнитную ленту, грифельные валики и прочие более сложные предметы. Для нас информация – знаки, сложенные в слова, фразы и смыслы.

Для клеток информация – это белки, а хранилище ее – нуклеиновые кислоты: дезоксирибонуклеиновая и рибонуклеиновая (ДНК и РНК). Вся информация об организме есть в каждой клетке и хранится в ядре, в ДНК. Именно ДНК – главный архив, где все молекулы скручены в особые структуры – хромосомы.

Как клетка общается с другой клеткой? Есть два способа. Первый – белки, которые клетка создает и передает другой клетке. Это больше напоминает сигнальные флаги, которыми корабли передают сообщение в море, или разговор по телефону. Более сложный способ – передать фрагмент РНК или ДНК, или очень сложное вещество, цитокин. Это сообщение условно похоже на приказ, циркуляр, инструкцию или методическое указание по выполнению какой-либо работы.

В человеческом сообществе информацию передают с помощью речи: устной, письменной и цифровой. Внутри организма человека информацию передают особые белки, в организме «Земля» эту роль играют вирусы.

Вирусы – древнейший способ обмена информацией между клетками, существовавший еще в те времена, когда на планете никого, кроме одноклеточных организмов (бактерий, инфузорий и амеб), не было. Таких жителей на планете обитало много, нужно было как-то общаться. Самый простой способ – обняться и обменяться кусочками белка и ДНК-РНК. Но это слишком близкое общение ограничивало круг миллиметрами окружающего пространства, и если информация начинала расходиться в обществе одноклеточных, то обязательно срабатывал принцип «испорченного телефона», так что пославший сообщение организм уже через полметра передачи не узнал бы свой «текст». Чтобы информация сохранялась во внешней среде, ее нужно было запаковать, как письмо, в конверт. А на конверте сделать запись: кому и от кого. Так появились первые вирусы – как корреспонденция одноклеточных. Принцип этот сохранился и в многоклеточных организмах.

Но клетки жутко любопытные, им никак не удается внушить, что читать чужие письма – дурной тон. Это так неприлично, что в огромных организмах иммунной системе приходится убивать зараженные вирусом клетки, пока некоторые «глупости» и «слухи» не разнеслись по всему организму и даже всему виду. К сожалению, это удается не всегда, особенно если письмо новое, незнакомое и заражено свежими слишком опасными идеями. Выявляют больных и зараженных оперативные работники организма: белые клетки крови, лейкоциты, сотрудники силовой структуры – иммунитета.

Прежде чем мы начнем разговор о жидкой ткани, давайте вспомним: а что же это за пространство в организме, в котором кровь, по сути, живет и при этом непрерывно движется?

Автострады, шоссе, дороги…

Кровь в своем рабочем состоянии всегда находится в сосудах и капиллярах.

Всего в организме человека встречаются три типа сосудов: артерии, вены и лимфатические сосуды, которые иногда называют протоками. Между кровеносным сосудом и протоком существует разница в строении стенки, как и между артерией и веной.


Рис. 1. Кровеносные сосуды


Клетки крови, не совершающие особого движения, перемещения из одной части организма в другую, в основном находятся в органах, где они работают, в тканях и межклеточном пространстве.

Например, те же лейкоциты, сидящие в засадах на границе в коже и слизистой оболочке, или эритроциты – донесшие свой груз О2 или СО2 до «заказчика».

В сосудах клетки движутся, и весьма быстро, работать им там просто некогда. Так что, по моему убеждению, сосуд – все-таки дорога, а не обиталище.

Есть еще один аргумент в пользу того, что сосуды – это дороги. Когда мы берем кровь на анализ, то клетки белой крови – лейкоциты и особенно лимфоциты – находятся в состоянии, которое я назову транспортным. Путешествующие люди всегда держат наготове две вещи: деньги и документы. Так и у клеток. Все рабочие ферменты (как инструменты) находятся в неактивном состоянии, о том же, что это за клетка, свидетельствуют ее документы – особые белки на внешней поверхности мембраны – и ферменты, с помощью которых клетка-путешественник ест, то есть потребляет глюкозу или жир из плазмы в зависимости от «назначенной ей диеты». Рабочий человек по дороге на работу инструменты в руках не держит, так и клетки крови.

Итак, сосуды – дороги. И от качества этих дорог, как в любой стране, зависит и качество экономики, и даже сроки жизни, существования государства. Хорошие дороги, отсутствие пробок и заторов, возможность доставлять продукты или боеприпасы к местам военных действий в срок и в полном объеме, а мусор своевременно вывозить – и жители в городах, и бойцы на поле битвы ни в чем не нуждаются и не болеют.

Крупные сосуды, такие как аорта, легочная артерия, подвздошные и бедренные артерии, полые или портальная вены, называются магистральными. Начало дороги всегда там, где начинается движение по ней. В странах они обычно идут от столицы или крупного города к периферии, от крупного города в сторону деревень, из деревни в поле или лес – к месту, где нужно работать, большие дороги, магистрали имеют свои имена: Аорта, Легочный ствол, верхняя или нижняя Полая вена, Воротная вена и т. п.

От широкой дороги с сильным движением берут начало мелкие, однополосные. И что важно понять сразу: все дороги-сосуды имеют одностороннее движение. Я напоминаю об этом, потому что за аллегориями вы можете вдруг забыть этот важный факт.

Артерии берут начало на выходе из сердца. Собственно, название артерии и обозначает, что этот сосуд несет кровь от сердца, даже если эта кровь по составу венозная. По дорогам грузовики ездят и порожние, и с мусором, и с полезными вещами, состав этих машин может быть разным.

ДЛЯ ВЕН И АРТЕРИЙ ЕСТЬ ПРАВИЛО: СОСУД, НЕСУЩИЙ КРОВЬ ОТ СЕРДЦА, – АРТЕРИЯ, А К СЕРДЦУ – ВЕНА, НЕЗАВИСИМО ОТ СОСТАВА КРОВИ В КОНКРЕТНОМ СОСУДЕ.

И если все артерии начинаются от сердца и аорты, то все вены начинаются от капилляров в тканях и, подобно ручейкам, собирающимся в реки, сливаются из мелких во все более крупные, постепенно переходя в нижнюю и верхнюю полые вены, которые уже впадают в сердце. Из сердца же выходит легочная артерия[9], которую иногда называют легочным стволом. Она короткая и толстая и сразу делится на правую и левую, а затем расходится по долям легких: в правое – три ветки, в левое – две.

Все сосуды (артерии и вены) объединены в два круга: большой и малый. Каждый круг замкнут на сердце, как насосе, качающем кровь. Правая половина сердца – по малому кругу, через легкие, левая половина – по большому, через весь организм.

Газообмен СО22 и наоборот, О2>СО2, осуществляется в капиллярах. Капилляры – не сосуды! Хотя тут мнения ученых разошлись:

– У капилляра есть стенка? Значит, сосуд.

– Ну, какая это стенка? Сплошные дыры! Нет, это не сосуд, а недоразумение.

– А вот и не подеретесь! Какая разница? Это пространство (космос) между артериолой и венулой, немного оформленное клетками интимы в один слой с огромными «окнами», через которые в тканях и происходит обмен газами и веществами.

– У капилляра есть артериальный и венозный концы, значит, все-таки сосуд?!

– Не обязательно. Мало ли у чего есть какой конец… Даже два. Не достоин он называться сосудом!

Артериола и венула – это самые маленькие сосудики, диаметр которых чуть больше капилляра, но от него они отличаются тем, что имеют уже нормальную сосудистую стенку.

Почему я делаю такой упор на эти детали?

Потому что сосуды имеют стенку, состоящую из нескольких слоев, и в венах, и артериях тоже есть сосуды и капилляры. Не смейтесь, это правда, и такие сосуды самые многочисленные в человеческом организме. Их назвали «сосуды сосудов» – vasa vasorum. Если в венулах и артериолах капилляров нет, то чем крупнее сосуды, тем больше в них и того и другого. Потому что сосудистая стенка – это ткань, состоящая из клеток, которой тоже надо «дышать и есть».


Рис. 2. Послойное строение кровеносного сосуда среднего калибра


Сосуды сосудов играют очень важную роль в поддержании артериального давления, как и самые мелкие сосуды, в стенке которых имеются мышечные волокна, позволяющие изменять диаметр просвета.

Поэтому, если случается беда и количество крови вдруг начинает уменьшаться, первыми свой запас отдают vasa vasorum, а потом и более крупные сосуды сокращаются, выжимая из себя, как из губки, все клетки, все эритроциты. Выглядит это как бледность и ощущается как похолодание кожных покровов у больного. Кровь быстро уходит из кожи, подкожной и жировой ткани, потом потихоньку выжиматься начинают даже внутренние органы, но это крайне скверное развитие событий, и в такой ситуации вытащить больного почти никогда не удается, поэтому крайне важно этого не допускать.

Состояние недостатка крови обычно сопровождается потерей сознания, и на первом этапе это называется коллапсом (collapsus – «упавший»): падает артериальное давление, падает без сознания и человек. От шока коллапс отличает то, что шок – это обычно реакция на внешнюю причину или боль, возникающую из-за травмы или острой ситуации, связанной с нарушением кровоснабжения какой-нибудь ткани или органа. Так, шок, вызванный потерей крови, называется геморрагическим (от haemorragia – кровоизлияние[10] или кровотечение).

С чем из нашей жизни можно сравнить мельчайшие сосуды? Это проезды и проходы между домами, тогда как капилляры – это уже дорожки и тропинки прямо к дверям и окнам.

Любую дорогу можно искусственно сузить и расширить, сосуд тоже сужается и расширяется – подчиняясь командам, передающимся по нервным волокнам. Эти команды передает центр в головном мозге, который называется сосудодвигательным. Потому что управляет движением стенок сосудов. Сосудодвигательный центр относится к вегетативной части центральной нервной системы и находится в продолговатом мозге между головным и спинным мозгом.

Кроме нервной регуляции есть регуляция гормональная, ее еще называют гуморальной, то есть зависящей от содержания в крови определенных веществ – регуляторов, или медиаторов (посредников). Медиаторы работают не на весь организм, а на отдельный участок ткани или орган: в коже, сердце, печени или других местах.

Управление диаметром просвета артерий и вен – очень важный и довольно сложный механизм. Чем уже может стать сосуд, тем выше будет периферическое сопротивление сосудов давлению и току крови (в дальнейшем этот термин мы сократим до ПСС и периодически будем о нем вспоминать).

Сужение и расширение позволяют выбросить кровь из «депо» или, наоборот, уменьшить ее количество в крупных сосудах и кровеносном русле. Это бывает нужно, чтобы не допустить потери сознания от кровопотери, и происходит на первой фазе шока при кровотечении, до или после остановки кровотечения.

А почему так важно при ранении какое-то время не терять сознания? Чтобы дать возможность человеку убраться из опасного места в безопасное, где «отключиться» уже можно, и позволить организму или справиться с проблемой и вернуться в сознание, или умереть.

ПОТЕРЯ СОЗНАНИЯ ПРИ КРОВОТЕЧЕНИИ, КАК И ЯВЛЕНИЯ КОЛЛАПСА, СУБЪЕКТИВНО ВОСПРИНИМАЮТСЯ ЧЕЛОВЕКОМ КАК НЕЧТО СТРАШНОЕ. НО ОНИ ВТОРИЧНЫ, ЭТО РЕАКЦИЯ РАБОТЫ МОЗГА И СОЗНАНИЯ НА СОБЫТИЕ, КОТОРОЕ, ЕСЛИ НИЧЕГО НЕ ИСПРАВИТЬ И НЕ ПРЕРВАТЬ ПОТЕРЮ КРОВИ, МОЖЕТ ПРИВЕСТИ К СМЕРТИ.

Оттого и случается, например, обморок при виде крови. Это подсознательная защитная реакция организма на сигнал «опасность»!

Есть более прагматичная причина, по которой раненый с кровопотерей теряет сознание еще до того, как это приведет к коллапсу. Это необходимость привести организм в состояние покоя, уменьшить потребление энергии, дать возможность крови наилучшим образом распределиться и, главное, облегчить ее поступление в мозг. И чтобы сердцу стало легче его питать, нужно все органы расположить горизонтально.

Кроме этого, раненый и постоянно двигающийся человек тревожит рану, которая, находись он в состоянии покоя, возможно, давно бы уже закрылась тромбами и начала заживать. Но человек все теребит ее, теребит, и поэтому кровь никак не остановится и продолжает вытекать из сосудов наружу или в полость внутри организма.

Что происходит в организме при травме? Ломаются и разрываются сосуды, рвутся ткани. В них выходит кровь, содержимое разбитых клеток. Реагируют на это в первую очередь болевые рецепторы. Боль ограничивает подвижность в поврежденном месте, а в ответ на разрушение стенок сосудов организм запускает тромбообразование, чтобы остановить кровотечение.

Одновременно потеря крови приводит к централизации кровообращения, то есть кровь уходит из здоровых тканей, которые могут перенести голодание без особого вреда, и перебрасывается из мелких сосудов в крупные. Это явление временное, некоторые ткани спокойно выдерживают такое состояние несколько часов. Но нервная ткань не входит в их число: клетки мозга не переносят голодания и отсутствия кислорода дольше 5–7–10 минут в зависимости от температуры тела и окружающей среды.

Как уже говорилось, артерии берут начало пути от сердца, и первая на этом пути аорта. Этот сосуд очень плотный, но не имеет мышечного слоя в стенке. Зато сама стенка крепкая – для того чтобы выдерживать очень высокое давление: артериальное систолическое в момент сокращения сердца (систолы) и диастолическое в момент его расслабления (диастолы). Диастолическое давление возникает от ПСС. Так что на стенку аорты постоянно оказывается давление изнутри. Именно это давление характеризуют «нижние» цифры, которые показывает аппарат для измерения давления – тонометр.

Снаружи аорта тоже под давлением, но уже меньшим, оно зависит от напряжения мышц, образующих брюшную полость. Если мышцы живота сильно напряжены, то давление в аорте намного больше систолического. Бывает, что это приводит к разрыву аорты или образованию выпячивания, или истончения стенки.

Разрыв аорты часто начинается с расслоения стенки и образования аневризмы – подобия мешка, в котором структура стенки тоньше, чем у здорового сосуда. Аневризма активно пульсирует и напоминает такое образование, как грыжа. Представьте, как выглядела бы грыжа на автомобильном колесе или садовом шланге. Аневризма образовывается в результате двух причин: врожденной слабости «коллагеновой арматуры» и регулярных критических повышений артериального давления.


Рис. 3. Аорта


Стенка аневризмы – это постоянная угроза разрыва. Аневризма может появиться где угодно: в животе, в легких, но наибольшую опасность представляют аневризмы артерий мозга и аорты. В головном мозге аневризма небольшой артерии может стать причиной смерти. Она может образоваться в любом возрасте: и в детстве, и после травм черепа (тяжелых сотрясений), и как результат гипертонических кризов – резких повышений артериального давления.

Теперь поговорим о венах. Они начинаются от венул в тканях и органах, собирают из капилляров венозную кровь. Восходящее движение крови в сторону сердца обеспечивает шевеление мышц и органов вроде кишечника, а также приводит в движение кровь клапаны внутри вен. Движения тканей, мышц и пульсация проходящих рядом с венами артерий также вызывает сокращение вен, а клапаны, расположенные в их просвете, не позволяют крови двигаться в обратную сторону. Это как коридор с дверями, пройдя которые, обратно уже не выйдешь. И каждый следующий коридор чуть шире предыдущего.

Давление в венозной сети намного ниже артериального и измеряется не ртутным, а водным столбом.

Именно куда меньшим давлением объясняется различие в строении вены и артерии: стенка вены заметно слабее[11]. Если артериальное давление зависит от двух факторов: силы сердечного выброса крови и тонуса периферических артерий, то венозное держится в основном за счет движения крови от тканей к сердцу и даже в случае остановки сердца довольно долгое время сохраняется в организме, наполняя кровью легкие и вызывая их отек.

Венозная сеть обширна, имеет особые образования: сплетения, или резервуары, например синусы. Между артериальной и венозной системой имеются особые перебросы, закрытые со стороны артерий клапанами, они называются «шунты».

КЛАПАНЫ ОТКРЫВАЮТСЯ, ЕСЛИ ДАВЛЕНИЕ В АРТЕРИАЛЬНОЙ СИСТЕМЕ СТАНОВИТСЯ НИЖЕ, ЧЕМ В ВЕНОЗНОЙ, НАПРИМЕР ПРИ КОЛЛАПСЕ ИЛИ КРОВОТЕЧЕНИИ. ЭТА МЕРА ПОЗВОЛЯЕТ ПЕРЕРАСПРЕДЕЛИТЬ КРОВЬ В ТЯЖЕЛЫХ СОСТОЯНИЯХ.

Иногда эти клапаны оказываются дефектными и не закрываются. Такие открытые шунты называются патологическими и могут вызывать серьезные проблемы вплоть до кровоизлияний в ткани органа и разрыва вен.

Вены нижней части тела собираются в нижнюю полую вену, вены верхней половины тела и головы – в верхнюю полую вену, обе вены сливаются, впадая в правое предсердие сердца.

Вены кишечника, собирающие кровь, обогащенную полезными молекулами различных веществ из расщепленной и всосавшейся пищи, со слизистой, сливаются в большую вену, которая впадает в венозную сеть печени и входит в этот орган через «ворота печени», которым вена и обязана названием «воротная», или vena porta. А все вены, сливающиеся в этот ствол, называются системой портальной вены.


Рис. 4. Круги кровообращения организма


Мы подошли к необходимости описать такую важную систему дорог, как круги кровообращения.

Невозможно понять принцип движения крови по кругам, если не разобраться в том, как устроено сердце. В контексте кровообращения сердце – это четырехкамерный автоматический и автономный[12] насос, разделенный на две половины – правую и левую.

Правая часть сердца качает венозную кровь по малому кругу кровообращения, а левая – артериальную по большому. Малый круг – это сосудистая сеть легких. Большой – сосудистая сеть всего организма. Представили пропорции? В сотни раз малый меньше большого, и объем крови в этих кругах тоже отличается. Поэтому правая половина сердца по своей насосной функции раза в четыре слабее, чем левая, а давление в малом кругу намного ниже давления в большом.

Давление между сосудами, выходящими из правого желудочка, загоняющими кровь в легкие, и сосудами, выводящими из легких перед входом в левое предсердие, почти одинаковое, разница составляет очень незначительную величину. Если в сосудах между легкими и левым предсердием давление по какой-то причине начнет расти, вода в крови станет наполнять легкие и пениться.

Часто при сильных физических нагрузках плохо тренированное сердце не справляется с поступающей из легких кровью, и вода пропитывает ткань легкого, снижая функцию газообмена. Тогда возникает чувство нехватки воздуха, одышка и потребность в отдыхе. Если не снизить нагрузку, вода из плазмы крови выйдет в просвет альвеол и начнет пениться – разовьется отек легких. От этого можно умереть.

Такие отеки на финише случаются со спортсменами-чемпионами. Телекомментаторы зрителям не доставляют удовольствия видеть, как задыхаются бегуны на финише, как медики оказывают им помощь, дают дышать кислородом со специальными препаратами, гасящими пену.

Кроме артериальной и венозной крови немалую долю жидкой ткани в организме составляет такая субстанция, как лимфа. Она образуется из межклеточной жидкости, по своему составу похожа на плазму крови, очень жирная, и в ней обнаруживают массу белых клеток крови – лимфоцитов. О них и поговорим в следующей главе.

Тайные дороги лимфоцитов

Внимательный читатель, а особенно те, кто немного разбирается в медицине и уже сталкивался с исследованиями крови, могут сказать: «Стоп. Как же это получается, что моноцит или нейтрофил хватают микроб и тащат в лимфоузел? Ведь при анализе в крови не обнаруживаются никакие нейтрофилы или моноциты с микробами внутри. Как же и где это перетаскивание происходит?»

Вам приходилось видеть в лесу асфальтированные или бетонные дороги, на которых совсем нет машин? Или, проезжая по автотрассе, замечать странные съезды со шлагбаумом или без, но со знаком «проезд запрещен» – «кирпичом»? Это секретные дороги, по ним перемещаются военные машины. В организме таких «тропочек» очень много и все они входят в единую лимфатическую сеть. Лимфатические протоки есть во всех тканях и органах. Обычно вторжение микроорганизмов обнаруживается лейкоцитами в первые часы. Это время составляет инкубационный период и определено скоростью размножения микробов, накопления выделяемых ими токсинов и проникновения ядов в кровь.


Рис. 5. Лимфатическая сеть человека


Сколько времени нужно лейкоцитам, чтобы донести микробов от мозоли на большом пальце ноги до ближайшего лимфоузла? Если считать от момента натирания мозоли до появления воспалительной дорожки по ходу лимфатического протока и до набухания в паху группы лимфоузлов, то от 3–4 часов до суток. Максимальная скорость подъема – примерно 1 см в час, а скорость распространения воспаления с этим почти никак не связана.

Дело в том, что моноциты далеко не всегда доносят «языка». Поэтому, пока реакция иммунитета не стала общей (а это происходит после того, как микроб оказывается в лимфоузле), в первичном очаге идет «бой местного значения». Каждый моноцит тащит «языков» в лимфоузел, и некоторые упускают, иногда микроб оказывается слишком силен, и моноцит погибает в протоке. Тогда микробы продолжают размножаться, благо еды в лимфе очень много, в основном жиров.

И поскольку живые моноциты-макрофаги норовят проглотить захватчиков и тащить их дальше, к лимфоузлу, у микробов очень мало времени для размножения. Они размножаются вопреки всему, иногда даже внутри нейтрофила или макрофага. Все, что успевает микроб в лимфе, – это наскоро ухватить несколько молекул белков, жиров и углеводов теми порами, которые еще не заклеились комплементом, пропердином и калликреином[13], как клейкой лентой; если повезет, один-два раза размножиться; или выделить разные экзотоксины прямо в лимфу[14].

Зачем им последнее? Во-первых, больше некуда, а во-вторых, у некоторых микробов испражнения весьма токсичны и обладают разрушающим действием на все клетки в лимфе и лимфоциты и, что очень важно, на стенки сосудов и на мембраны эритроцитов. Если токсины вызывают массовое разрушение эритроцитов (гемолиз), при выходе свободного гемоглобина в большом количестве в плазму развивается очень тяжелое осложнение – острая почечная недостаточность. Микробы, разрушающие своими токсинами эритроциты, называются гемолитическими (потому что вызывают гемолиз).

Экзотоксины так названы не случайно. Они действительно токсины – яды. Потому что пагубно действуют на клетки оболочки (интимы), выстилающей любые сосуды, лимфатические тоже. Могут они повреждать и специфические клетки: печени, почек, мозга или сердца или суставов.

Я буду периодически вспоминать интиму, потому что ее значение в крово- и лимфообращении огромно. И первая причина этой важности в том, что, воспаляясь, интима может привести к склеиванию сосуда, особенно если он очень тонкий. Такое закрывание называется облитерацией.

Сосуд не просто склеивается фибрином, он буквально зарастает на некотором протяжении, так что его потом уже ничем не пробить, не растворить. Если сосуд потолще и просвет в нем побольше, то воспаление интимы приводит к возникновению бугра или бляшки. Это явление – образование бугров и бляшек в сосудах – называется «атеросклероз». Вообще, sclerosis – это гибель высокоорганизованной ткани (печени, мозга, сердца, почек и т. п.) и замещение ее соединительной тканью – низкоорганизованной, весь смысл которой в том, чтобы просто держать то, что ее окружает, а работать как-то иначе, например как клетки печени, сердца, почек и иных органов, она не может. Замещение клеток мозга соединительной тканью – тоже склероз. В таком случае он приводит к нарушению важной функции мозга – памяти, и потому этот термин вошел в обиход обывателей. Забыв о чем-то, мы часто произносим: «Склероз!» – и хлопаем себя по лбу. Но, пожелтев из-за склероза печени, так не делаем… Хотя и там и там процесс один: специфические клетки заменяются соединительными, а орган утрачивает свои функциональные способности.

Однако вернемся к лимфатическим сосудам. Как и в кровеносной системе, они имеют капилляры (тупиковые сосуды), протоки.

Капилляры собирают жидкость из межклеточного пространства и отправляют в сосуды, те, в свою очередь, соединяясь друг с другом в сеть, поднимают лимфу к лимфатическому узлу, а уж оттуда протоки собираются в один главный лимфатический проток, из которого лимфа сбрасывается в верхнюю полую вену. Это хорошо видно на схеме.


Рис. 6. Слияние лимфатических сосудов в главный проток и его впадение в левую подключичную вену


Как и венозная сеть с ее капиллярами, лимфатическая сеть начинается в межклеточном пространстве (МКП). Она содержит до 30 % всей воды организма.

В лимфатических сосудах есть мышечные волокна и клапаны, как в венах, поэтому движение лимфы подчинено тем же законам, что и движение венозной крови. Нужно, чтобы работали мышцы, между которыми проходят сосуды. Клапаны не дают лимфе течь назад.

Внешне лимфа выглядит как желтоватая мутная жидкость с той же соленостью, что и кровь. Но в лимфе много жиров, то есть основной транспорт жира из тканей в кровь идет через лимфатическую сеть.

Если из-за травмы или воспаления лимфатический сосуд или проток закрывается, перерезается или удаляется[15], отток лимфы из тканей или части тела прекращается, а в этой области происходит локальное ожирение.


Рис. 7. Слоновость ноги при лимфостазе


Лимфатических сосудов нет в хрящах, роговице глаз и хрусталике.

Долгое время считалось, что лимфатической сети нет в головном мозге, однако в 2015 году было доказано наличие лимфатических сосудов и в центральной нервной системе: в головном и спинном мозге.

Итак, лимфатическая сеть – это тайные дороги лейкоцитов, по которым они и двигаются после боя к месту отдыха, если у них вообще бывает отдых. Но чаще всего они направляются к отделению полиции – лимфатическому узлу, где отчитываются о выполненной работе и получают новое назначение. Ведь лимфоциты живут 80–120 суток. Все это время они выполняют поручения, но обычно какое-то одно. Переучивать лимфоциты слишком накладно. Организму проще и выгоднее взять свежеиспеченную клетку и обучить ее, чем гнать по новой в университет – в вилочковую железу (тимус) – и в лимфоузел отправлять старый лимфоцит на переподготовку.

Таким образом, единственное, что может лимфоцит-ветеран, – это поделиться знаниями и опытом с молодежью в лимфатическом узле. И, может быть, повторить свою работу с В-клетками еще раз, если угроза из очага воспаления не исчезла.

Именно в лимфатическом узле Т-лимфоциты проводят инструктаж В-лимфоцитов. И как мы помним, лимфа всегда движется от периферии к центру – к главным сосудам большого круга кровообращения.

Всем нам иногда приходится принимать лекарства внутрь или вводить в кровь инъекцией. Это приводит к тому, что концентрация препарата распределяется по всей воде организма, но работает-то он в конкретном месте.


Рис. 8. Строение лимфатического узла[16]


Вся медицина ориентирована на факторы болезни: местные и общие. При местном воспалении лечение тоже проводится обычно местное. И до определенного момента лечение фокусируется там, где присутствует болезнь. Если вы сами проанализируете и сопоставите болезни и методы, то убедитесь в правильности этого утверждения. Чем начинаем лечить ангину? Полосканиями и антисептическими пастилками. Ушиб лечим прикладыванием холодного на место травмы. Рану обрабатываем антисептиком и заживляющей мазью или гелем.

И только если местно проблему не решить, приступаем к приему «общих» препаратов.

Иммунная система поступает точно так же. Она концентрирует борьбу непосредственно там, где происходит вторжение агрессора или появляется внутренний враг – раковая клетка или раковая ткань (группа клеток).

Но она всегда действует по очереди в двух планах: сначала местном и потом в общем.

Так, В-лимфоциты, задача которых вырабатывать специфические антитела, превращаются в плазматические клетки – оседлые в непосредственной близости от очага воспаления и насыщают межклеточное пространство вокруг воспаления иммуноглобулинами. Именно их мы обнаруживаем в крови, потому что они естественным образом попадают туда, но их максимальная концентрация обычно там, где нужны активные действия.

Часть 1
Смотр личного состава. Анатомия и физиология крови

Белые и красные

Если бы не галантерейщик Антони ван Левенгук[17] из голландского города Делфта, который любил в свободное время шлифовать линзы, чтобы рассматривать мельчайшие объекты в пыли и воде, мы бы довольно долго не имели возможности узнать, что такое кровь, и, может быть, до сих пор считали бы ее «одним из соков, текущих по организму»[18].

Любопытный голландец однажды попытался рассмотреть каплю крови в свой микроскоп и был очень удивлен, увидав там в основном красные шарики, которые позже назовут клетками эритроцитами.

Лейкоциты Левенгук сразу разглядеть не мог из-за их прозрачности по сравнению с окрашенными гемоглобином эритроцитами. Уже потом он заметил их, похожих на размазанных бесформенных амеб.

Много ли немедиков рассматривают кровь в микроскоп? У всех ли дома есть микроскопы? Ваш стоит на кухне в шкафу? Вы через него разглядываете продукты, например на предмет роста возбудителей, или изучаете семейный бюджет? Ответы очевидны. Кто-то знает про клетки крови из школьного курса, но большинство обычно видит кровь при порезе пальца во время приготовления пищи или при заточке карандаша перочинным ножом.

ПРЕЖДЕ ЧЕМ НАЧНЕМ РАЗГОВОР НЕПОСРЕДСТВЕННО О КРОВИ, СДЕЛАЕМ КОРОТЕНЬКИЙ ЭКСКУРС В ОСНОВЫ АНАТОМИИ.

Организм – это тело. Тело состоит из органов и мягких тканей, которые натянуты на скелет, состоящий из костей. Кости – тоже ткань: костная. Скелет – это каркас, органом его до сих пор не называли, хотя почему нет? Устроен он весьма непросто. Ткани – это совокупности клеток, однотипных по строению и близких по функциональным возможностям. Всего тканей в организме четыре: соединительная, мышечная, эпителиальная, нервная.

Органы – это структурные объединения однотипных тканей с возможными включениями разнотипных. Например, каркас органа из соединительной ткани – строма, а рабочая ткань – эпителиальная. Все органы и ткани пронизаны сосудами, по которым течет кровь и лимфа.

Что еще? Ткани и клетки, из которых они состоят, можно разделить на низко- и высокодифференцированные. Это как рабочие: чернорабочие и мастера высшего разряда. И тех и других много, сколько надо, но в случае гибели восстанавливаются быстрее чернорабочие, низкодифференцированные, и постепенно они замещаются мастерами по мере роста их квалификации. Чернорабочие – это обычно клетки соединительной ткани. В скорости восстановления им немного уступают клетки эпителия слизистых оболочек. Чем специфичнее ткани, тем сложнее и дольше они ремонтируются, тем дольше на месте их гибели сохраняется рубец из ткани соединительной.

Итак, что же такое кровь?

Кровь – это ткань организма, такая же, как мышцы, кости, кожа и т. п., но жидкая. Она относится к соединительным тканям, и в ней есть все присущие живой ткани компоненты: клетки, строма (своеобразный каркас, организующий ткань или орган) и межклеточное пространство. Отличает кровь от других тканей не только жидкое состояние, но и разнообразие клеток.

Все клетки крови делятся на белые и красные, строма – сосуды, в которых течет, движется кровь, и особый волокнистый белок фибрин, который образуется, если кровь сворачивается. А пока она жидкая и течет, он сохраняется в виде растворенного белка-предшественника – фибриногена.

Все межклеточное пространство крови заполнено водой с растворенными в ней различными органическими и неорганическими веществами.

Из чего еще состоит кровь человека?

Больше всего в ней эритроцитов. Они красные, не имеют ядра, а по форме похожи на бублик без дырки – двояковогнутый диск.

В крови также присутствуют тромбоциты, или, как их еще называют, кровяные пластинки, – они бесцветные и в десятки раз мельче эритроцита. В анализе они обозначаются сокращением PLT (platelets).

И, наконец, лейкоциты – бесформенные бесцветные клетки. Хотя по размеру лейкоциты больше эритроцитов, но в тысячу раз уступают им по численности.

В принципе, это три основных типа форменных элементов крови. Почему я не использовал слова «клеток»? Дело в том, что полноценные клетки в крови – только лейкоциты.

Почему? Напомню внешние характеристики животной клетки (рис. 9) из школьного курса биологии: «Окружена мембраной из двух слоев фосфолипидов, пронизанных белками-ферментами, заполнена цитоплазмой, в которой имеются ядро и органеллы: митохондрии, рибосомы, аппарат Гольджи и «клеточный центр».

Так вот, только у лейкоцитов есть полный набор этих компонентов и больше ни у кого.


Рис. 9. Схема строения клетки человека и животных


«Клеточная стенка»[19] – мембрана – это очень важная структура, она «кожа» клетки, строма, или скелет для укрепления внутри клетки органелл, чтобы они там не болтались, как в мешке. Мембрана животной (человеческой) клетки состоит из двух слоев фосфолипопротеидов. Очень важное свойство мембраны – полупроницаемость, то есть вода через нее проходит легко, а более крупные молекулы – с трудом или даже «за ручку» – принудительно, с помощью белков-ферментов.

Эритроциты в процессе эволюции отказались от клеточного ядра в пользу гемоглобина. Поэтому клеткой эритроцит можно называть только условно, все-таки ядро в юности у него было. Хиленькое такое ядро, напоминающее сетку, за это предшественников эритроцитов называют ретикулоцитами[20]. Однако перед тем как покинуть костный мозг и выйти на работу в свободное плавание, эритроцит окончательно избавляется от ядра. А вот остальные органеллы в нем есть, и митохондрии, и центр Гольджи и другие.

Тромбоциты же даже в юности не имели ядра и больше всего напоминают щепочки, которые невидимым ножом отрезаются от мембраны стволовой клетки в костном мозге. Собственно, поэтому их и назвали не клетками, а пластинками.

С лейкоцитами ситуация совсем иная. Это не просто клетки, а огромная семья различных клеток: от макрофагов-моноцитов (MON) до небольших, но очень многочисленных и воинственных нейтрофилов (NEY). О видах и классификации лейкоцитов будет сказано позже, в главе, посвященной исключительно им, а пока вкратце отмечу, что все лейкоциты делятся на два типа. Первый из них – гранулоциты, которые содержат зерна в цитоплазме. К ним относятся нейтрофилы (Нф), эозинофилы (Эф) ибазофилы (Бф).

Второй тип – агранулоциты. Они не содержат зерен в цитоплазме, имеют несегментированное ядро. В их число входят моноциты (мц) или лимфоциты (лц), причем существует огромное семейство из Т- и В-лимфоцитов. Агранулоциты еще называют мононуклеарами (что переводится как «одноядерные»).

Интерес биологов и морфологов к лейкоцитам обострился уже во второй половине XIX века, когда химических красок, необходимых для текстильной промышленности и прочих нужд, выпускалось достаточно. Изначально лейкоциты описывали по внешнему виду и по отношению к красителям. Почему? Чтобы увидеть лейкоциты в деталях, обнаруженные среди красных эритроцитов прозрачные клетки нужно было покрасить, и не только снаружи: требовалось обозначить контур мембраны, выделить внутренние элементы и ядро. Красители должны были проникнуть внутрь клетки и вступить в реакцию с различными веществами органелл и ядра.

Сейчас используются краски двух типов: кислые и щелочные. Клетки, которые окрашиваются только щелочным красителем, стали называть базофилами, от «базис» – основание (так химики называют щелочи)[21]. Если клетки любят только кислый эозин, то их называют эозинофилами. А если лейкоцит отлично окрашивается обеими красками или нейтральной (по Рh-уровню), то его называют нейтрофилом.

ПО РАЗМЕРАМ И ФОРМЕ ЯДЕР, А ТАКЖЕ ПО ОТНОШЕНИЮ К КРАСИТЕЛЯМ ЛЕЙКОЦИТЫ РАЗДЕЛИЛИ НА ДВА ВИДА: НЕЙТРОФИЛЫ И ЛИМФОЦИТЫ. НЕЙТРОФИЛЫ МЕЛЬЧЕ, ЛИМФОЦИТЫ КРУПНЕЕ.

Теперь несколько слов нужно сказать о жидкой части крови – этом «бульоне», в котором перечисленные форменные элементы путешествуют. Он называется плазмой крови и имеет очень сложный состав из белков, жиров в водорастворимой форме, то есть тоже связанных с белками, и углеводов – проще говоря, это в основном сахарá: глюкоза, фруктоза. Также там 0,9 % раствор поваренной соли Na+Cl- и в небольших количествах калий К+ и кальций Са2+, а еще совсем немного бикарбонатов COH- и фосфатов PO43-, которые относятся к так называемым буферам. В данном контексте буфер означает амортизатор. Обычно это соль, отдельные части которой в растворе могут, вступая в реакцию с ненужными агрессивными элемен-тами[22], гасить эту щелочную или кислотную агрессию и таким образом держать Ph в нужных пределах. Иными словами, они выравнивают кислотно-щелочной баланс в растворе. Это важно, поскольку плазма крови всегда должна сохранять стабильные параметры кислотно-щелочного баланса. Гемоглобин в эритроцитах и белки тоже тщательно следят, чтобы Ph крови не сильно отклонялся от нормы.

Спросите, а с чего это кровь вдруг будет или щелочной, или кислой?

Во время работы глюкоза сгорает, остается углекислый газ, а это что? Правильно, кислота! Но углекислый газ связан с гемоглобином, и если бы он поступал прямо в кровь, там была бы кока-кола с пузырьками! Ну или что-то вроде.

Кроме СО2 в крови оказываются органические кислоты, которые образуются, если тканям не хватает кислорода и глюкоза «не догорела». Это молочная кислота (МК), которую ненавидят спортсмены, пировиноградная (ПВК) и уксусная (УК). Для того чтобы эти хулиганки не отравляли кровь своим присутствием и нужны буферы, которые вступают с ними в реакцию и связывают их, лишая кислотных свойств. При этом временно образуются сложные соли. Почему временно? Потому что то, что может сгореть, обязательно сгорит в ближайшее время, как только найдется нужное количество молекул кислорода, а то, что сгореть не может, через почки или потовые железы обязательно удалится из организма.

ПОСЛЕ ЕДЫ В ЗАВИСИМОСТИ ОТ СОСТАВА СЪЕДЕННОГО В ОРГАНИЗМ МОЖЕТ ПОСТУПАТЬ НЕМАЛО ЩЕЛОЧНОЙ ПИЩИ, И ТОГДА В ДЕЛО ОПЯТЬ ВСТУПАЮТ БУФЕРЫ И ГАСЯТ ИЗБЫТОК PH ПЛАЗМЫ КРОВИ, СДВИГАЯ ЕГО В КИСЛУЮ СТОРОНУ.

Но важно знать, что Ph артериальной крови в норме чуть-чуть отклонен в щелочную сторону, а венозной – в кислую. К слову, в зависимости от части тела кислотность венозной крови тоже отличается: чем ниже, то есть ближе к ногам, тем кровь кислее, чем выше – тем ниже ее кислотность. Но значения эти в норме отличаются на сотые и тысячные доли. А вот если человек болеет или мало двигается, если мышцы не могут нормально гнать венозную кровь к сердцу и легким, то отличия Ph становятся значимыми и могут приводить к отравлению тех тканей, где кровь слишком кислая.

Кислая кровь сильнее и быстрее сворачивается, риск образования тромбов тем выше, чем кислее становится кровь.

Если кровь в артериях ближе к щелочной, а в венах к кислой, то бывает ли так, что артериальная тоже закисает, а венозная защелачивается?

Бывает. Артериальная кровь киснет чаще, и это намного вреднее, чем защелачивание венозной. Венозная стенка рассчитана на экстремальные отклонения, тогда как артерии в целом и выстилка их стенок в частности очень нежные и чувствительные к появлению лишних и довольно агрессивных кислот. Так же как и давление, они разрушают мембраны клеток и интимы сосудов, создавая в этих местах очаги для образования атеросклеротических бляшек и тромбов.

К кислотам нужно отнести сахарá – глюкозу и фруктозу, которые являются очень мощными окислителями и обжигают мембраны клеток, если их концентрация в крови выше 6,6 ммоль/л держится слишком долго, дольше 1–2 часов.

Когда мы берем кровь на анализ, то обычно знаем, что ищем. Если определенные клетки, то красим и считаем их в специальной камере[23], если вещества, то используем реактивы и ориентируемся на два метода: качественный и количественный.

В рамках качественного метода мы определяем, присутствуют ли какие-либо искомые вещества или нет. Буквально: «да» или «нет», + или —. А вот количественный позволяет в случае, если ответ «да», определить, сколько этих «да»-веществ имеется в крови. Значения этих показателей бывают разные в зависимости от системы измерений СГС или СИ, в миллиграммах на децилитр (миллиграмм/проценты) или миллимоль/л. В разных странах приняты разные системы, поэтому приборы-анализаторы обычно перенастраивают по требованию владельцев и согласно медицинским стандартам конкретной страны.

Концентрации всех веществ в плазме крови нестабильны. Они постоянно потребляются клетками, они поступают в кровь извне (из пищеварительного тракта) или выбрасываются клетками за ненадобностью. Поэтому все показатели анализа крови, который мы называем биохимическими, в норме сверяются с диапазоном от минимума до максимума. И даже если у одного человека брать кровь в течение дня, как это бывает, например, в отделении реанимации, то некоторые показатели меняются с каждым взятием крови.

Концентрация различных веществ в ткани, где идут боевые действия, в тысячи раз выше их концентрации в крови, куда они попадают из межклеточной жидкости через лимфу. Примером такого резкого изменения концентрации служат, например, антитела иммуноглобулины – особые белки, которые специфичны к определенному виду микробов или вирусов и создаются очень точно для каждого неприятеля с учетом расстояний между характерными точками на клеточной стенке микроба.

Уничтожение микробов антителами совершается двумя приемами.

Сначала антитело (иммуноглобулин), по форме напоминающее букву Y[24], тремя концами крепко приклеивается к «бронированной» стенке микроба. И вырывает кусок этой брони так же, как супергерой, пытающийся вытащить из машины преступника, отрывает дверь автомобиля. Видели такую сцену в фильмах?

Только в отличие от героя, иммуноглобулин не отбрасывает «дверь», он так и ходит с ней «в руках». Представляете себе такую картинку в боевике? Дело в том, что молекула иммуноглобулина не одна. Микроб буквально облеплен антителами, и они разламывают его на части, отрывая куски.

Но так бывает не всегда.

Броневая стенка микроба может быть слишком крепкой, и антителам разломать ее не удается. Например, так происходит с палочками туберкулеза, лепры и чумы. В этом случае иммуноглобулины, облепив микроб, фактически затыкают ему «рот», связывают «руки». То есть лишают возможности жить – питаться и размножаться.

Антитело с куском микробной стенки и микроб, облепленный антителами, – все это циркулирующие иммунные комплексы (ЦИКи). Они могут быть разными по массе и объему.

МЫ ЧАСТО ИСПОЛЬЗУЕМ СЛОВО «АНТИГЕН», ПРИ ЭТОМ СЛЕДУЕТ УКАЗАТЬ, ЧТО ЭТО ОБЩЕЕ ОБОЗНАЧЕНИЕ ДЛЯ ЛЮБОГО ВРАЖДЕБНОГО ВЕЩЕСТВА, ПОПАДАЮЩЕГО В ОРГАНИЗМ, ПРОТИВ КОТОРОГО ВЫРАБАТЫВАЮТСЯ АНТИТЕЛА. АНТИГЕНОМ НАЗЫВАЕТСЯ И САМ МИКРОБ, И МОЛЕКУЛА ВЕЩЕСТВА НА ЕГО МЕМБРАНЕ, И ВИРУС, И БЕЛКОВЫЙ РЕЦЕПТОР НА ЕГО ОБОЛОЧКЕ. АНТИГЕН МОЖЕТ БЫТЬ И БОЛЬШИМ, И МАЛЕНЬКИМ ПО ОТНОШЕНИЮ К АНТИТЕЛУ. АНТИГЕН, ВЫЗЫВАЮЩИЙ АЛЛЕРГИЧЕСКУЮ РЕАКЦИЮ, НАЗЫВАЕТСЯ «АЛЛЕРГЕН».

При разрушении микробов их содержимое – эндотоксины (токсины, которые внутри) – попадает в лимфу и кровь (венозную – это важно).

Внутри микробов очень много различных химически и биологически активных веществ, которые вступают в реакцию с белками, жирами и гормонами крови, при этом тоже образуются комплексы, которые получили название «молекулы средней массы», или «средние молекулы» (СМ).

Они могут содержать в своем составе до 40 фрагментов различных веществ: испорченные белки, обломки гормонов, куски бактериальной мембраны и элементы клеточного ядра.

Средние молекулы – это обобщенное название для мусора, отходов метаболизма, иммунной работы, воспалительных процессов. Средние молекулы циркулируют по крови и лимфе, участвуя в различных факторах гомеостаза: они влияют на Ph и вязкость этих жидкостей, на ломкость лейкоцитов, на разрушение (окисление) стенок сосудов. Средние молекулы – это зло. Причем Зло «во вселенском масштабе, если определить организм как вселенную» для населяющих его клеток и симбионтов[25].

Образуются СМ еще в межклеточном пространстве, потом идет их достраивание в лимфе и крови.

Их можно сравнить с куском жвачки, которая клеит на себя все, к чему прикоснется, пока не покрывается пылью и не перестает быть липкой, то есть пока средние молекулы не облепятся более нейтральными веществами.

Как яды они поражают нервную систему и подавляют активность иммунитета, приклеиваясь к лимфоцитам и мешая им работать.

Есть немало бактерий, токсины которых оказывают губительное действие для клеток иммунитета. Лейкоциты и лимфоциты погибают от них, если прекращают нормально работать.

Однако благодаря небольшой массе средние молекулы до 95 % неплохо фильтруются почками и удаляются с мочой. Они накапливаются в организме и определяются в крови в большом количестве, если идет какое-то сильное воспаление, например сепсис, а почки не успевают их удалить.

Итак, почки – прекрасный фильтр. И именно поэтому лимфатическая система сбрасывает собранный из межклеточного пространства мусор в венозную кровь, которая активно очищается: пропускается через почки (а также селезенку и печень), где освобождается от токсинов, тех же средних молекул и свободных радикалов (мелкомолекулярных веществ, образующихся из недоокисленных продуктов питания клеток [23]).

Объем лимфы в организме примерно равен объему крови (3–5 литров), и она постоянно обновляется, то сбрасываясь в кровь, то возвращаясь из межклеточного пространства. При обезвоживании «лимфатическое русло пересыхает» первым, это скверно отражается на иммунной системе, ведь других дорог у лимфоцитов нет. Теперь понимаете, почему медики напоминают людям, что очень важно в сутки употреблять от 2 до 3 литров воды в виде разных жидкостей?

Если живые микробы вырвутся на свободу, лимфоузел воспаляется, набухает и болит, иногда даже наполняется гноем. Наиболее ярко эта картина выглядит при бубонной форме чумы.


Рис. 10. Воспаленные паховые лимфоузлы при чуме, туляремии – бубон


Бубон – это группа воспаленных лимфатических узлов (в паху или подмышке), в которые от места укуса блохой были доставлены палочки чумы. Растворить клеточную стенку микроба мощности ни у нейтрофилов, ни у моноцитов не хватает, а будучи внесенными[26] в кожу при укусе блохи, палочки чумы именно по лимфатическому сосуду попадают в лимфатический узел и оттуда дальше[27].

Нехватка воды в организме в первую очередь наносит поражение иммунной системе, во вторую – системе свертывания и вязкости крови.

Работая на скорой и в неотложке, я сталкивался с таким явлением, что летом в жару одинокие люди, лишенные ухода и присмотра, забывали пить достаточное количество воды и умирали от инсультов и инфарктов, спровоцированных усиленным тромбообразованием.

Кроветворение

Мы привыкли знать, что кровь есть, мы привыкли, что кровообращение напрямую связано с жизнью. Но откуда берется кровь изначально? Где зарождаются клетки крови? Ведь когда созданное из клеток кардиомиоцитов сердце еще нерожденного человека совершает первый удар, оно начинает гнать кровь – значит, она уже есть и заполняет кровеносное русло эмбриона. Ее еще всего несколько десятков миллилитров, но это уже полноценная кровь, с клетками и плазмой.

С водой более-менее ясно: основная часть воды поступает в организм извне, кстати, как и на Землю, куда вся вода прилетела с кометами из космоса. Но основные жители крови – клетки.

И как у любых жителей страны, у клеток крови есть свой роддом, детсад, школа, высшие учебные заведения и даже кладбище.

Приоткрою завесу тайны: возникновение крови связано с костным мозгом. А это значит, что мы должны обсудить его, чтобы продвинуться в нашем разговоре дальше. Итак, давайте разберемся, что такое костный мозг. В чем его принципиальное отличие от головного и спинного, и если это отличие такое существенное, то почему он – мозг?

Изначально мозгом называли только содержимое черепной коробки, но, изучая строение костей, древние и средневековые врачи обнаружили в них некую субстанцию и из-за внешнего сходства тоже назвали ее мозгом. И лишь позже, на границе XVIII–XIX веков, врачи стали отличать одно от другого благодаря микроскопу, изобретенному А. ван Левенгуком, и пониманию, что отличие в этих веществах есть, и очень значимое.

В медицине, а точнее – в анатомии-физиологии, много сходных ситуаций, когда раннее заблуждение дало название, которое закрепилось в терминологии. Затем по мере развития технологий врачи понимали ошибочность этого наименования, но традиции оказываются сильнее разума и логики, поэтому все оставалось, как было.

В итоге медики мира договорились, что пусть уж клеточная субстанция внутри костей называется мозгом, даже если к нервной ткани никак не относится.

Как я уже говорил, изобретение микроскопа позволило совершить важный прорыв в изучении тканей вообще и тканей организма человека в частности. Благодаря ему врачи морфологи-гистологи (описывающие внешние особенности тканей) определили, что костный мозг бывает тоже двух типов: красный и белый. Причем белый в основном состоит из жировой ткани, а красный – из странной и весьма неоднородной по клеточному составу. Белый костный мозг содержится в трубчатых костях, а красный – в плоских и в небольшом количестве в диафизах прочих костей скелета. Но обычно в костях есть и тот и другой.

Каждая кость (если она не плоская) имеет два конца (диафизы) и середину (эпифиз). Если внутри тела кости имеется полость, то она заполнена белым костным мозгом (БКМ), а губчатые части внутри краев заполнены красным костным мозгом (ККМ).

Интересный факт: всего в организме взрослого человека масса красного костного мозга составляет около 1,5 кг, то есть его общий объем и масса примерно равны объему и массе печени или среднестатистическому головному мозгу (объем головного мозга обычно больше).

ККМ обобщенно еще называют миелоидной тканью, и в ней имеются две основные группы клеток, дающие два ростка, один из которых создает белые клетки крови, а второй – красные.

Вообще, стволовые клетки костного мозга (СККМ) – это самый ранний строительный материал, из которого образуется не только кровь, но и внутренние органы, и сосуды, и другие ткани. Именно поэтому СККМ считаются универсальными клетками. Однако при попадании в организм они «нюхом» находят путь в кости и там предпочитают заниматься своим основным делом: творить кровь.

Если насчет красного КМ кое-что становится понятно – он рождает клетки, то возникает резонный вопрос: а для чего нужен белый КМ, если это просто жир?

В организме нет ничего бесполезного или бессмысленного, и если мы это понимаем, то давайте признаем и тот факт, что любая ткань имеет несколько функций.

Когда я работал на скорой, наша подстанция располагалась в старом здании небольшой клиники. Этот дом строился сразу после Великой Отечественной войны и имел свою котельную с котлом, трубой и большой угольной ямой.

В 1980-х окруженная многоэтажками подстанция давно уже была подключена к центральному отоплению, но котельную не ломали, а наоборот, время от времени приводили в порядок и держали в рабочем состоянии, даже имелся запас угля на несколько дней. Как и другие медицинские учреждения, скорая должна быть работоспособна в любых условиях. Мало ли что может случиться? Пусть будет резервный источник тепла для круглосуточно работающих медиков.

Так и жир в БКМ – это источник энергии для клеток ККМ, как своеобразный дровяной сарай или угольная яма. Кроме того, это регулятор роста клеток, потому что в жировой ткани БКМ содержатся особые клетки, выделяющие, подобно тромбоцитам, гормон – так называемый фактор роста.

Итак, ККМ – это «роддом» клеток крови, БКМ – это источник пищи, энергии и регулятор «родовспоможения», причем не только фактор роста «пинает» все клетки ККМ: есть еще один «пинатель» персонально для красного ростка – эритропоэтин. Этот гормон выделяется почками. А аналогичный (по сути, но не по составу) ему лейкопоэтин поступает из селезенки.

Почему эритропоэтин выделяется почками? Потому что они очень чувствительны к уровню поступающего кислорода, и, когда им его начинает не хватать (из-за недостатка гемоглобина крови – общий показатель кислородотранспортной функции), они синтезируют эритропоэтин, который избирательно стимулирует красный росток костного мозга. А тот, подчиняясь приказу почек, уже активно выращивает эритроциты и отправляет их на работу – носить газы.

ЛЮБОПЫТНЫЙ ФАКТ: У ЖИТЕЛЕЙ ВЫСОКОГОРЬЯ ПРИ ПОНИЖЕННОМ СОДЕРЖАНИИ КИСЛОРОДА В ВОЗДУХЕ И АТМОСФЕРНОМ ДАВЛЕНИИ НИЖЕ ПРИВЫЧНЫХ 750 ММ РТ. СТ. (720–690) – ГЕМОГЛОБИН В НОРМЕ ОБЫЧНО ВЫШЕ ВЕРХНЕЙ ГРАНИЦЫ (169–170 МГ%) И ДОСТИГАТЬ МОЖЕТ 180–200 МГ%.

А чем может грозить постоянная выработка эритроцитов?

Ну, чтобы понятно было, это как в любой перенаселенной стране: слишком много народа, постоянные пробки на дорогах, груз идет слишком долго и аварий много. Машины часто врезаются в стены, и дома от ударов разрушаются. То же самое происходит с артериями и венами[28]. Всего должно быть в меру, и эритроцитов тоже.

Однако вернемся в «родильное отделение» крови. Что в нем особенного, отличающего обитателей-«рожениц» от остальных тканей организма?

Клетки каждого из ростков рождаются постоянно. Соотношение всегда примерно 1000:1. То есть на тысячу миелопотентных[29] клеток одна лимфопотентная. Обратите внимание, что соотношение эритроцитов к лейкоцитам в крови тоже примерно такое же – 1000:1. Причем число молодых клеток, выбрасывающихся в кровь, у детей больше, чем у стариков. Если взять небольшой период в несколько минут, то можно увидеть, что красный росток «печатает» отпрысков в тысячу раз быстрее, чем белый. И при рождении четырех эритроцитов от стенки мегакариоцита отщепляется один тромбоцит.

Синтез всех дочерних клеток КМ регулируется специальными гормонами, выделяемыми различными внутренними органами.

Миелопотентная (МПК) клетка остается в костном мозге. Она вообще не любит далеко отходить от «роддома», потому что, не успев родиться, уже беременна новыми клетками. Как же получается, что дочерняя клетка отличается от материнской? Для людей естественно, что дети и похожи на родителей, и сильно от них отличаются. Но в отношении клеток мы привыкли, что обычно они делятся, давая совершенно идентичные копии, а тут – нет. В данном случае рождаются как точные копии, так и новые клетки, отличающиеся от исходной.

Лимфоциты и прочие клетки разговаривают друг с другом с помощью специальных веществ – кининов, лимфокинов, интерлейкинов, цитокинов. Эти химические вещества представляют собой команды, приказы, распоряжения и инструкции.

Болтают ли клетки просто так? Возможно. Мы только начали изучать их язык – язык цитокинов. И еще не все слова и выражения нам понятны.

Может быть, вещества передают не только приказы и инструкции, но и романы, и сборники рассказов, и шутки-анекдоты. Наверняка есть что-то позитивное, что радует клетку и поощряет ее работать лучше.

Но я подозреваю, что клетки – жуткие зануды и общаются только по существу. Они даже редко спрашивают друг друга, получая необходимый ответ при «осмотре» мембраны. Кроме цитокинов стимуляторами гемопоэза служат особые гормоны. Эритропоэтин вырабатывается почками, а лимфопоэтины (их несколько) вырабатываются печенью, селезенкой, лимфоузлами и тимусом (вилочковой железой).

Обычно цитокин выделяется одной клеткой для другой или группы клеток одного типа, находящихся рядом. Те общаются между собой тет-а-тет. Но их (цитокины) обнаруживают в крови только потому, что «болтающих» об одном и том же клеток очень много. Их «слова и фразы» можно случайно «подслушать» – обнаружить в плазме крови в остаточных концентрациях. Обычно цитокины нужно искать там, где идет «разговор». Они как слова из мегафона «слышны» в ограниченном пространстве, а дальше разносится только «эхо». Поэтому, если кинины и гормоны определяются в количестве выше нормы, значит, «ор» стоит нешуточный.

Именно под действием этих веществ-команд стволовая клетка, делясь, рождает другие клетки. То же самое происходит и с миелопотентной клеткой, и с лимфопотентной.

И вот молодые потентные клетки родились. Одна остается тут же, другая на некоторое время задерживается или сразу отправляется путешествовать. Если осядет в вилочковой железе, из нее получатся Т-лимфоциты, если попадет в селезенку или в лимфатический узел – появятся В-лимфоциты. Тут во многом как у людей в выборе будущей профессии: немного влияние родителей, немного обстоятельств, чуть-чуть воли судьбы…

Каждая потентная клетка имеет все, что ей необходимо для сотворения новых клеток внутри себя. Снаружи ей нужны только питание (глюкоза или жир) и кислород, которые позволяют выработать АТФ. Кроме этого, еще образуется тепло, как и всегда происходит при реакции окисления. Это лишнее тепло от места, где идет активная работа, отводится лимфой и венозной кровью.

Почему я заговорил про тепло? Потому что нормальная, правильная температура, при которой идет гемопоэз, – 37 градусов или немного выше[30].

Если посмотреть на тело человека с помощью тепловизора – особого прибора, который показывает разными цветами участки с разной температурой, – то места в скелете, где находится костный мозг, всегда горячее остальных тканей.

Подведем итоги.

В костном мозге идет огромная работа днем и ночью. Деление занимает несколько часов, так что каждые сутки появляется несколько сотен тысяч новых клеток крови.

Во время болезни этот процесс ускоряется в сотни раз, и мобилизация становится экстренной, а среди клеток, рождающихся в костном мозге, увеличивается число молодых, недоделанных новобранцев.

Болезнь – это война, а во время войны, естественно, объявляется мобилизация, экономика переводится на военные рельсы, общее количество выделяемой энергии увеличивается. Поэтому температура во время болезни (воспалении) растет. Это совершенно нормально. Хотя и неприятно.

Все инструкции по выполнению работ находятся в ядре клетки. Команды фактора роста похожи на распоряжение: «Вскрыть пакет № 15! Выполнить инструкцию!» Этот пакет № 15 хранится многократно свернутый в хромосомах. Все, чего не хватает клетке для исполнения приказа, – это команды, глюкозы и кислорода.

За роддомом – детсад, школа, университет, кладбище?

Кроме костного мозга к системе кроветворения и кроверазрушения (утилизации старых клеток), которое также следует затронуть, относят и другие органы, прямо или косвенно[31] принимающие участие в этих процессах.

Так, я уже сообщил, что важным регулятором синтеза эритроцитов являются почки, тщательно следящие за таким качеством крови, как транспорт газов, и в частности кислорода. Если возникает проблема в виде анемии (малокровия) или, наоборот, кровь становится слишком вязкой, и из-за этого через почки уменьшается кровоток, почки начинают выделять эритропоэтин – гормон, стимулирующий красный росток КМ, – или уменьшают его выделение, когда недостатка кислорода нет.

Печень (Haepar) регулирует синтез тромбоцитов, свертывание крови, выделяя некоторые плазменные факторы, что тоже относится к кроветворению, так как логически дополняет формирование полноценного состава крови. Многие начитанные люди знают, что печень – «главная биохимическая лаборатория организма», через которую проходит кровь, особенно из вен кишечника, содержащая все, что в нем всасывается. Полезные вещества становятся еще полезнее, и, главное, их количество в крови балансируется, ведь даже самое полезное легко становится вредным, если его слишком много. Особенно это касается жира и белка: жир сильно сгущает кровь, а белок, наоборот, так любит воду, что, если его оказывается слишком много, вытягивает ее в кровь из всех тканей.


Рис. 11. Строение печени


Ну так ведь кровь – это не только клетки, но и вода, и вещества, которые в ней растворены и которые создают особую среду обитания – плазму. Кроме этих веществ печень выделяет в кровь немало факторов свертывания крови, таких как гепарин, витамин К и многие другие.

Селезенка (Splen) переполнена эритроцитами и лимфоцитами, ее иногда называют кладбищем эритроцитов, так как именно здесь находят свой конец старые переносчики газов, здесь их раздевают, разбирают гемоглобин на части, превращая его в билирубин, а все остальные составляющие эритроцитов расщепляют на мелкие фрагменты и отправляют в плазму крови в качестве питательных и строительных компонентов для клеток. Занимаются этим особые лимфоциты и коренные жители селезенки – спленоциты.

Селезенка – один из важнейших органов не только в процессе кровеутилизации, но и в системе иммунитета. Ее удаление приводит к развитию тяжелого иммунодефицита, ослаблению не только антимикробной, но и антиопухолевой защиты. Потому с середины ХХ века, когда поняли, что этот орган очень нужен, его фрагменты стали сохранять, подсаживая кусочки в сальник живота, если селезенка не подверглась заражению метастазами при раке, а, например, повреждена от удара или ранения в живот. Кроме участия в кроветворении, селезенка активно способствует и кровообращению. Ведь неслучайно в ее строме имеются мышечные ткани. В период активной физической работы селезенка тоже начинает ритмически сжиматься, помогая сердцу перекачивать кровь. Особенно сильно это заметно у лошадей, когда во время скачки селезенка так усиленно работает, что раздаются характерные екающие звуки из живота.

ЧЕЛОВЕК ВО ВРЕМЯ АКТИВНОЙ РАБОТЫ МОЖЕТ ОТМЕЧАТЬ БОЛЕЗНЕННОЕ РАСПИРАНИЕ В ЖИВОТЕ, ВЫЗВАННОЕ ПЕРЕПОЛНЕНИЕМ СЕЛЕЗЕНКИ КРОВЬЮ, ОТЧЕГО ОРГАН РАСТЯГИВАЕТСЯ И БОЛИТ. ПОХОЖЕЕ ЯВЛЕНИЕ БЫВАЕТ И С ПЕЧЕНЬЮ.

Чтобы эти неприятные явления прекратились, есть один правильный выход, и он заключается не в том, чтобы «лечь и отдохнуть», а в том, чтобы регулярно, ежедневно доводить организм до этого состояния. Примерно за 21–30 дней организм частично скомпенсирует свои возможности под ежедневные нагрузки – натренируется.

Почему 21–30 дней?

Потому что клеткам нужно делиться, тканям, в том числе сосудам, нужно расти, а на это требуются время и энергия, ну и постоянное напоминание клеткам и людям о необходимости совершенствоваться в виде ежедневных тренировок или работы.

Это нормальные процессы, и с тренированностью, развитием кровеносной сети в мышцах и легких неприятные ощущения проходят.

Венозная кровь у спортсмена или тренированного человека нормально распределяется по тканям и перестает накапливаться во внутренних органах, растягивая их.


Рис. 12. Строение селезенки


Вилочковая железа, или тимус (Thimus), тоже относится к органам кроветворения, хотя больше связана с иммунитетом. Но раз уж лимфоциты, главные клетки иммунитета, по совместительству еще и клетки крови, то и орган, где они проходят обучение и становятся Т-лимфоцитами (от слова «тимус»), относят к органам кроветворения. Долгое время считалось, что вилочковая железа сохраняется до полного формирования организма, примерно лет до 20, а потом становится куском жира. На самом деле она отлично работает до самой старости, просто с годами ей становится необходимо много энергии, а жир – это своеобразный склад энергоносителей-углеводородов, как угольная яма, дровник или резервуар с мазутом для котельной или электростанции.

Почему жир? Дело в том, что при необходимости спастись организм использует глюкозу, запасенную преимущественно в мозге и мышцах, при интенсивной работе, а для каждодневной рутинной деятельности лучше подходит жир, который тратится и пополняется намного медленнее, чем быстро сгорающая глюкоза. Соотношение тимоцитов (обобщенное название для клеток, населяющих строму тимуса) к жиру с возрастом смещается в сторону жира, и этот процесс отчасти связан с тем, что организм угасает и уже не может тратить ресурсы на иммунную защиту. Отсюда причина того, что к старости часто развиваются онкологические заболевания и любые инфекции атакуют организм чаще и легче, а протекают они тяжелее.

Организм с утратой способности к воспроизводству как бы сам старается поскорее покинуть мир живых при малейшей возможности. Это сказывается на всех клетках организма, у которых срабатывает предел Хейфлика.

Предел Хейфлика[32] – это число делений всех клеток млекопитающих (включая человека) от рождения клетки до ее гибели. И это число имеет значение где-то между 50 и 55.

А ЗНАЧИТ ЭТО, ЧТО БЕССМЕРТИЕ НЕВОЗМОЖНО, ПОТОМУ ЧТО САМОУНИЧТОЖЕНИЕ ЗАЛОЖЕНО В ПРОГРАММУ ЖИЗНИ КАЖДОЙ КЛЕТКИ. ТО ЕСТЬ СМЕРТЬ – ЭТО НЕИЗБЕЖНОСТЬ. ОНА ЗАПИСАНА В САМИХ КЛЕТКАХ И ЯВЛЯЕТСЯ ВАЖНЕЙШИМ ФАКТОРОМ ЭВОЛЮЦИИ ВИДОВ.

Счетчик делений каждой узкопрофильной (дифференцированной) клетки заложен в самом ядре, в хромосомах. И представляет собой участок-теломера, который отрезается в результате деления. То есть каждая хромосома воссоздает не совсем свою копию: у той уже -1 теломера. Так что самая последняя старая клетка уже имеет -50 теломер от исходной. А когда эта клетка больше не может делиться, она погибает. Никакой вечной жизни.

Дольше других держатся клетки костного мозга, соединительной ткани и эпителия, но и они постепенно деградируют, вызывая болезненные процессы в системах, чаще всего – в опорно-двигательной и пищеварительной, и в отдельных органах.

Причина тому проста: иммунитет стоит на страже вида, и, если человек для популяции ценности уже не имеет, а как носитель и распространитель вероятных инфекций, наоборот, представляет угрозу, защита организма отключается, чтобы скорее самоуничтожить его, как бы организуя своеобразный карантин. Как бы обидно это ни звучало, но в чистом разуме природы нет понятия гуманности, а есть исключительная рациональность. Когда в организме начинает отказывать система внутренней безопасности, которую составляют Т-лимфоциты[33], он приговорен к скорой смерти от онкологии или тяжелых инфекций.

Тимус – это университет или высшая военная школа для лимфоцитов, именно тут из безликих и необученных делают профессионалов: офицеров-аналитиков и инструкторов для иммунитета – Т-лимфоциты. Они подразделяются на два основных типа: Т-хелперы (посредники) и Т-супрессоры (подавители) в соотношении 2:1 – это нормальный баланс сил в правильно работающем иммунитете, индекс отношения Т-хелперов к Т-супрессорам должен быть не меньше 2 и в анализах иммунограммы обозначается как ИРИ – индекс реактивности иммунитета[34]. Обучение происходит с помощью особых гормонов вилочковой железы и цитокинов. Причем если гормоны больше напоминают команды вроде «Равняйсь, смирно! На занятия шагом марш!», то обработка их цитокинами – это уже лекции и семинары, в результате которых лимфобласты из курсантов становятся офицерами.

В тимусе «учат» не только Т-лимфоциты, кроме этого там есть «школа макрофагов», где готовят этих суперагентов-одиночек.


Рис. 13. Микроструктура вилочковой железы


Рис. 14. Вилочковая железа относительно легких


Лимфатические узлы (Nodus lymphaticus). Мнения ученых сошлись на том, что лимфатические узлы все-таки относятся к кроветворению, так как в них тоже идет своеобразная переподготовка Т- и B-лимфоцитов. Здесь происходит совершенствование моноцитов – макрофагов.

Лимфатические узлы, пейеровы бляшки (на кишках), лимфоидные образования (типа глоточных и небных миндалин) – все это регионарные отделения силовых структур организма. Бляшки вроде полицейских участков или опорных пунктов полиции, узлы – городские управления внутренних дел, миндалины – полицейские кордоны, блокпосты и погранзаставы на дорогах, вокзалах и в аэропортах.

Зачем они и как устроены?

Зачем, думаю, понятно: это воинские подразделения, казармы, где обитают, тренируются, набираются опыта солдаты-нейтрофилы, прежде чем отправятся на войну в слизистую оболочку; где проходят дообучение по конкретному месту службы Т-лимфоциты; где происходит инструктаж и обучение В-лимфоцитов. Здесь также есть криминалистический отдел и архив.


Рис. 15. Лимфатический узел бывает одиноким, бывает в компании других в зависимости от уровня угрозы внешней агрессии. Для всех ЛУ строение типовое, одинаковое


Именно эти бравые парни или девчонки (в зависимости от пола организма, лимфоциты, как и все клетки, имеют набор хромосом, в который входят и половые хромосомы, а значит, и среди них есть мужчины и женщины, и больше никаких других полов нет) направляются к месту боевых действий – воспалению, если возникает прорыв микробов, грибов или вирусов в подконтрольном регионе.

Анатомически и архитектурно лимфатический узел похож на управление внутренних дел: есть дежурная часть у входа, есть следственный отдел и кабинеты оперуполномоченных, есть дознаватели и криминалисты, есть даже СИЗО для подозрительных микробов. Обычно лимфатический узел, или, как его для краткости называют медики, лимфоузел, расположен на пути лимфатического протока, который собирает мельчайшие сосуды в себя. Есть и казарма, где ждут своего часа В-лимфоциты. Подробнее работа лимфатической системы рассказана в главе «Тайные дороги лимфоцитов», которую вы, наверное, уже прочитали.

Жидкая? Нет, мягкая!

Если кровь перестанет течь внутри сосудов, она свернется[35].

Почему кровь сворачивается в одной ситуации и не сворачивается в другой? За счет чего ей удается оставаться жидкой, и лишь когда это необходимо (я не говорю сейчас о состоянии болезни) – при ранении сосуда, образовывать тромбы?

Прежде чем пытаться рассмотреть баланс состояний крови, важно увидеть их составляющие компоненты. Эти компоненты называют «факторы свертывания крови».

Очевидно, что если кровь – это жидкая ткань, то ее жидкое, текучее состояние есть норма, а свертывание и обретение плотности, отсутствие возможности двигаться – тоже нормальная реакция на какие-то события и внешние или внутренние влияния, но эксклюзивная и предназначенная для закрытия повреждений и предотвращения кровопотери. Но для сосудов и кровообращения необходимость в образовании тромба – это патологическое состояние, как и продолжающееся кровотечение при повреждении сосудов.

Итак, кровь именно в жидком, текучем состоянии может выполнять свою главную задачу – переносить газы и различные вещества к тканям, органам и от них. А значит, свертывание крови – это ожидаемое и вынужденное действие в ответ на нежелательное событие: появление раны или повреждение стенки сосуда.

В крови одновременно работают две биохимические системы: свертывающая и антисвертывающая. Их баланс обеспечивает постоянную готовность к образованию тромбов, при этом не давая крови образовать сгусток, когда в этом нет потребности.

Баланс свертывания/антисвертывания можно изобразить в виде графика синусоиды, где верхняя часть кривой – это свертывание и пик – тромбозы, а низ – антисвертывание и пик (провал) – кровотечения. Поэтому на графике должны быть две кривые: крайние нежелательные параметры и реальные – обеспечивающие жизнь и движение крови.


Рис. 16. Механизм образования тромба при ранении


Механика (цепочка реакций) свертывания подразумевает два типа процессов: плазменный и тканевой.

Это означает, что часть реакций идет исключительно в плазме крови и за счет веществ, которые в этой плазме были и появились в ответ на провокацию свертывания. А часть реакций протекает в ткани поврежденного сосуда в его стенке, в клетках той ткани, где случилось повреждение, и вокруг них. Быстро и легко закрываются раны в коже и мышцах, а вот в органах, если почему-то рвутся сосуды, возникает висцеральное кровотечение, которое очень плохо останавливается.

Свертывающая система состоит из 13 факторов, из которых 23 тромбоцитных. Удивлены? В каждой шутке есть доля правды. Как так получается, что факторов всего 13, а из их числа можно назвать 23? Давайте по порядку.

К плазменным факторам относятся следующие.

• Фактор I. Фибриноген – бесцветный белок, растворенный в плазме крови. Вырабатывается клетками соединительной ткани, входящими в состав интимы стенки сосудов – фибробластами. Фибриноген – протополимер (его молекулы невелики и растворены в плазме), то есть он готов по команде склеиться с другими молекулами фибриногена и образовать нити фибрина.

• Фактор II. Протромбин – неактивированная форма фермента тромбина, который участвует в активации фактора Ха при участии фактора Va (буква «а» после номера фактора обозначает «активный»). Протромбин вырабатывается в печени и активируется при участии витамина К (без него время свертывания удлиняется).

• Фактор III. Тромбопластин состоит из белка апопротеина-III и фосфолипидов (кирпичиков, из которых состоит клеточная стенка). Тромбопластин выделяют практически все клетки организма, кроме клеток крови и клеток эндотелия (интимы), выстилающего все сосуды. Если тромбопластин проконтактирует с кровью, тут же запустится свертывание. Это один из прямых факторов, которые включают образование фибрина и тромбов при повреждении стенки сосуда.

• Фактор IV. Ионы Са++ поступают в кровь с пищей или из депо (костей). Без него невозможна полимеризация фибрина[36] из фибриногена. Тромбопластин без Са++ бесполезен.

• Факторы V и VI. Проакцелерин, Акцелерин. Это белок бета-глобулин, вырабатываемый в печени, но в отличие от протромбина для его активации витамин К не нужен. В форме акцелерина он в присутствии Ха[37]-фактора биохимически оказывает воздействие на протромбин и превращает его из протромбина в тромбин.

• Фактор VII. Проконвертин относится к гамма-глобулинам, белкам-ферментам – протеазам. Синтезируется в печени с помощью витамина К, вместе с тромбопластином участвует в активации Ха-фактора.

• Фактор VIII. Антигемофильный глобулин – белок бета-глобулин, вырабатывается в печени и клетках эндотелия сосудов. С фактором Виллебранда образует комплекс, принимающий участие в активации фактора Ха. При отсутствии VIII фактора возникает гемофилия A.

Активируется VIII фактор по внешнему пути с участием тромбина и ионов Ca2+ методом отщепления от фактора Виллебранда. Его специфическая деятельность направлена на протеолиз (отщепление белковых фрагментов) фактора X и протекает при обязательном участии фактора IX.

• Фактор IX. Фактор Кристмаса – белок альфа-глобулин, профермент. Синтезируется в печени с участием витамина К. Вместе с факторами XIа и VIIIа участвует в активации фактора Ха. При отсутствии фактора IX развивается гемофилия-В.

• Фактор X. Фактор Стюарта-Прауэра – белок, относящийся к гамма-глобулинам, профермент. Продуцируется в печени при участии витамина К. В компании с факторами III, VII, VIII и IX – Х становится активным – Ха и в присутствии Са++ и фактора Vа превращается в ферментный комплекс, который активирует протромбин.

• Фактор XI. Фактор Розенталя (плазменный предшественник тромбопластина) – белок гамма-глобулин, профермент, вырабатывается в печени и вместе с ионами Са++ активирует IX фактор. Его отсутствие вызывает гемофилию С.

• Фактор XII. Фактор Хагемана – белок бета-глобулин, профермент. Вырабатывается в печени. Практически всегда находится в плазме крови. Активируется при контакте с белком соединительной ткани коллагеном. Происходит это при механическом повреждении стенки сосуда. В активации фактора XII участвуют также высокомолекулярный кининоген и ферменты, расщепляющие белки, например калликреин, тромбин или трипсин[38].

Интересный факт: XII фактор активируется еще в пробирке при контакте со стеклом. Это создавало некоторые проблемы при его обнаружении и изучении, пока стенки пробирок не стали обрабатывать специальным стабилизатором и пока не появились пластиковые пробирки.

Активированный фактор Хагемана, в свою очередь, воздействует на фактор свертывания крови XI и запускает так называемую внутреннюю систему гемостаза (свертывания крови). При ДВС-синдроме его содержание в плазме снижено.

• Фактор XIII. Трансглутаминаза (Фибрин-стабилизирующий фактор, фактор Лаки-Лоранда) – белок бета-2-гликопротеин, содержится в клетках эндотелия сосудов, эритроцитах, почках, мышцах. Дополнительно активируется тромбином и усиливает связи между волокнами (нитями) фибрина, укрепляя сгусток, делая его плотнее. Недостаток этого фактора приводит к длительным кровотечениям.

Интересный факт: врожденный дефицит XIII фактора чаще всего наследуется мужчинами, хотя связан не с половыми хромосомами Х или Y, а другими (аутосомами) и приводит к длительным кровотечениям. Так, у новорожденного с такой патологией из пуповины кровь может сочиться до нескольких недель.

Приобретенный дефицит XIII фактора развивается при недостатке витамина С, лучевой болезни, раке или метастазах в печени, циррозе и тяжелом гепатите. XIII фактор расходуется при ДВС-синдроме[39].

Вы не могли не обратить внимания, что этот синдром упоминается в описании некоторых факторов, и очевидно, что они играют в нем не последнюю роль. Правильнее сказать, именно их недостача приводит к развитию этого состояния. Но об этом мы поговорим позже. Вот схема свертывания крови.

Так почему же 13 и 23 из их числа? Потому что в уже рассмотренных факторах не последнюю роль играет тромбоцит, а в нем, как в шкатулке с секретом, спрятаны еще 23 фактора, которые выходят при его разрушении!

Мы обсудили плазменные факторы. Давайте рассмотрим некоторые из тромбоцитных.


Рис. 17. Обратите особое внимание на внутренний путь, из-за него все наши проблемы, инфаркты, инсульты и пр. Но без него нельзя


Свое название тромбоцитные факторы получили благодаря тому, что некоторые из них выходят в плазму крови из тромбоцита при его разрушении.

А еще потому что, присутствуя в плазме (как ионы Са++) или выходя в нее из клеток при повреждении сосудистой стенки, они оказывают влияние именно на тромбоциты.

И здесь имеется в виду влияние вообще: есть те, которые разрушают тромбоциты, а есть те, которые не дают им распасться, одни усиливают действие выходящих из тромбоцитов факторов, а другие, наоборот, блокируют эти вещества.

Все вещества-регуляторы, связанные с тромбоцитами и прямо или опосредованно влияющие на свертывание, называются тромбоцитарными[40] факторами свертывания крови. Часть из них очень активны, часть – не настолько, а некоторые ждут подходящего момента и без стечения определенных обстоятельств в свертывание не вмешиваются.

Почему я упомянул эритроконцентрат и лейкоредуцированную? Дело в том, что хотя в клинике (осмыслении клинических процессов) считается, будто основными являются 13, но на самом деле нет малозначительных «кирпичиков», избыток или недостаток каждого из них может нанести вред, раскачать систему и вызвать кровотечения или тромбозы.

Когда я заведовал переливанием крови[41], флебологи-хирурги направляли к нам пациентов с варикозной болезнью вен ног и трофическими язвами. Язвы мешали взять больного на операцию, ведь ткани практически не заживали. И после удаления варикозной вены оставался велик риск получить незаживающие много недель раны и незарастающие швы. Перед нами стояла задача ускорить заживление язвы и подготовить больного к операции.

Для небольших язв хватало курса очищения крови (плазмаферезом) и обработки эритроцитной массы ультрафиолетом, а вот с огромными язвами голени мы решили выполнить сложную процедуру заготовки тромбоконцентрата из крови больного и использовали эту взвесь для перевязки и аппликации на язву. Тем самым мы многократно ускорили заживление. Процедура трудоемкая, дорогая, но, как оказалось, очень эффективная. Для примера скажу, что язву диаметром больше 10 см и глубиной больше 5 см нам удалось закрыть соединительной тканью за две недели, а полностью поврежденное место зажило, покрылось кожей за полтора месяца.

В САМОМ НАЧАЛЕ КНИГИ Я РАССКАЗАЛ О ГИБЕЛИ РОЖЕНИЦЫ ОТ КРОВОПОТЕРИ И ДВС-СИНДРОМА, НЕСМОТРЯ НА ОГРОМНОЕ КОЛИЧЕСТВО ЗАГОТОВЛЕННОЙ ДЛЯ НЕЕ И ПЕРЕЛИТОЙ ЕЙ ДОНОРСКОЙ КРОВИ. ТЕПЕРЬ, КОГДА ВЫ ОЗНАКОМИЛИСЬ С СОСТАВОМ КРОВИ И ТАКОЙ ЕЕ СПОСОБНОСТЬЮ, КАК СВЕРТЫВАНИЕ, НАСТАЛО ВРЕМЯ ОБСУДИТЬ ТОТ СЛУЧАЙ.

Что тогда сделали неверно? Что надо и что можно было сделать?

Одной из главных ошибок врачей в тот день было вливание цельной донорской крови. Не удивляйтесь, но донорские эритроциты тогда были лишними: они помешали сохранению баланса свертывания/антисвертывания.

Акушеры сделали кесарево сечение, спасли ребенка, удалили матку. Собственно, после этого нужно было вливать не цельную донорскую кровь (с антикоагулянтом), а только плазму крови с факторами свертывания, обязательно добавить препараты, блокирующие разрушение фибрина (фибринолиз)[42].

Странно? Дело в том, что в механике ДВС патологическую роль играет избыток фибринолизина, в тот момент вырабатываемого печенью в ответ на избыток факторов свертывания, выброшенных разрушенными тромбоцитами. Вместо фибринолизина нужно было вводить гепарин, который бы остановил образование тромбов. Тот фибринолизин, что уже выбросился, отработал бы свое, но не привел бы к кровоточивости из слизистых. Параллельно следовало бы провести плазмаферез, удаляя продукты деградации фибрина (ПДФ), и замещать удаленную плазму «чистой», здоровой донорской. Так удалось бы стабилизировать свертывание, и уже после этого, определив степень анемии (снижения числа эритроцитов и гемоглобина), небольшими объемами можно было вводить донорские эритроциты. И что очень важно, не стоило стремиться непременно нормализовать эти параметры, достаточно было поднять их значение до 50–60 % от нормы, учитывая тот факт, что больной в подобных ситуациях обычно без сознания, лежит и никакой физической работы не выполняет, а иногда даже дышит не сам, а благодаря прибору искусственной вентиляции легких. Так что для поддержания необходимых жизненных функций этого значения красных кровяных телец вполне достаточно.

После стабилизации свертывания, если число тромбоцитов слишком малó (а показатель в крови может упасть до 20–30 тысяч/мкл при норме 180–250), можно влить несколько доз тромбоконцентрата, приподняв значение до 100, но делать этого больше нет необходимости.

С 1991/1992 года врачами отработана методика спасения больных от ДВС, особенно рожениц. Была организована специальная бригада трансфузиологов в Москве при больнице им С. П. Боткина, которая выезжала на случаи массивных акушерских кровотечений с центрифугой для плазмафереза и запасом плазмы. Проблема решается за два-три часа[43].

Алгоритм мер борьбы с ДВС входит в программу подготовки реаниматологов, а центрифуга для плазмафереза и свежезамороженная плазма должны быть в клинике или быстро доставляться при каждом случае угрозы развития синдрома. Обычно необходимые приборы и плазма есть в отделении или на станции переливания крови.

Можно ли было спасти ту женщину в 1985/86 году? Да. При условии, что родовое отделение было бы готово к подобным случаям и имело бы в арсенале центрифугу и запасы свежезамороженной плазмы… Но, увы, история не терпит сослагательного наклонения и никакие «бы» тут не подходят.

Свертываем-развертываем

От момента остановки тока крови или выхода ее из сосуда до появления рыхлого сгустка проходит время. Обычно 3–5 минут. И этот промежуток имеет очень большое значение.

В XX веке, когда приборы для измерения параметров свертывания крови были дороги и дефицитны, можно было увидеть в отделениях кардиологии такую картину[44]: медсестра с предметным стеклом, секундомером и скарификатором подходит к пациенту, берет каплю крови из пальца. Потом медсестра нажимает кнопку секундомера, каждые 10 секунд кончиком скарификатора проводит по капле крови на стекле и засекает начало появления сгустка, продолжает цеплять сгусток, пока вся капля не превратится в него. На этом секундомер останавливается. Получается результат анализа: время свертывания крови (ВСК). Отмечается точка начала формирования сгустка (30 сек–1,5 мин) и время, когда вся кровь свернулась, – 3–5 мин. Или больше. Обычно это исследование проводилось перед использованием препаратов, замедляющих свертывание, чтобы не переборщить и не довести до угрозы кровотечений.

Пациенты, которым проводили такие процедуры, находились обычно в отделении кардиологии или неврологии и у них стояли внутривенные катетеры. Логичен вопрос: зачем колоть палец, если кровь можно взять шприцем из вены, как ее обычно набирают для общего клинического анализа или для коагулометрии в аппаратах?

ЧТОБЫ ПОНЯТЬ ЛОГИКУ ПРОКАЛЫВАНИЯ ПАЛЬЦА (ПОЧЕМУ НЕ ИЗ ВЕНЫ?), НУЖНО РАЗОБРАТЬСЯ В СХЕМЕ СВЕРТЫВАНИЯ КРОВИ. ЭТО НЕ ТАК СЛОЖНО, КАК МОЖЕТ ПОКАЗАТЬСЯ НА ПЕРВЫЙ ВЗГЛЯД.

Существует одна объективная причина запуска свертывания крови – это повреждение сосудистой стенки. Но также одна из причин, которые я назову «субъективными» (не случайно в кавычках), – это повышенная ломкость тромбоцитов и спонтанный запуск образования фибриновых волокон в плазме крови.

Почему «субъективная»? Я бы сказал, это «субъективное мнение» крови в текущий момент, что ей нужно непременно свернуться. Несмотря на некоторую абсурдность такого объяснения, ситуация эта случается, например, при сепсисе или отравлении каким-то ядом. Сам же организм «не считает», что свертывание так уж нужно, и потому увеличивает содержание в плазме вещества, растворяющего фибрин, – фибринолизина. Образовавшиеся рыхлые сгустки растворяются с образованием «обломков», которые называют «продукты деградации фибрина». Они подобны битому кирпичу или, точнее, кирпичным фрагментам разбитых стен, которые вновь в дело уже не пустить. Можно только перемолоть в пыль и вымести.

К субъективным причинам можно отнести и остановку кровотока, например, из-за прижатия сосуда, но как только кровоток восстанавливается, образовавшиеся сгустки начинают растворяться. Кровь как бы старается исправить ситуацию.

Так что, уважаемый читатель, в природе планеты, называемой организм, есть только одна объективная причина запуска свертывания крови: возникновение раны. Сквозной – с внешним разрывом, и несквозной – изнутри, например из-за воспаления интимы.

Повредить стенку сосуда можно снаружи – нанеся какую-то травму: удар, порез, пулевое ранение. Что-то твердое механически разрушает ткани вместе с сосудом. Стенка повреждена, и этот путь называют внешним.

Повредить сосуд изнутри сложнее, дольше, но вполне возможно, и это происходит довольно часто. Для этого не обязательно таранить стенку сосуда, как при травмировании снаружи. Клетку интимы сосуда – эндотелия – можно окислить, например, недосгоревшими кислотами из глюкозы, или кетонами, оставшимися от распада жиров, или ацетальдегидом из недоокисленного этилового спирта. Можно заразить вирусом или отравить токсинами из микробов. А можно «подергать» стенку сосудов с помощью различных биологически активных веществ вроде никотина, и тогда в местах границ, где один участок сосуда спазмирован, а другой, наоборот, расслаблен, образуются «трещины», эрозии интимы, которые потом превращаются в бляшки и становятся местом образования тромба.

Разрушение клеток эндотелия интимы запускает механизм свертывания, который называется внутренним[45]. Внутренний путь свертывания крови коварнее внешнего. Ведь с внешним все понятно: вот рана, вот кровь, вот сосуды. Прижми их, прижми рану, если повреждена вена, или наложи жгут, если повреждена артерия, и, по крайней мере, есть шанс спасти жизнь и остановить кровотечение.

А когда начинается внутренний путь свертывания? Кто его видит? Иммунная система организма?

Поврежденные токсинами или зараженные вирусом клетки, по мнению иммунитета, подлежат уничтожению. Без рассуждений, без дебатов и размышлений: гуманно или не гуманно, можно или нет – нужно! И никто не объяснит иммунитету, что убить клетку интимы сосуда – это все равно что снести подпорку в шахте. Того и жди, что кровля обвалится. И ведь так и происходит. Убитые клетки на поверхности оставляют после себя рану. И этот процесс, нарастая день за днем, увеличивает напряженность свертывания крови. Какое-то время свертывание удается стабилизировать, останавливать. Но если инфекция или токсикоз не исчезает, сосуд воспаляется изнутри, и в нем появляются тромбы и продукты деградации фибрина, обладающие антисвертывающей способностью. Представьте себе большой дом, в котором бригады с одной стороны заколачивают окна и двери, а с другой уже разбивают эти загородки, разрушают стены и выбрасывают вещи.

Насколько часто развивается внутренний путь свертывания крови?

Если исключить прошедшую пандемию COVID-19 со смертельным штаммом Дельта, то в группы риска попадают больные сахарным диабетом, септические больные и отравленные некоторыми биологическими ядами (растений, змей, насекомых).

В отличие от внешнего, внутренний путь имеет больше звеньев в цепочке запуска свертывания. Это сделано не случайно. Клетки эндотелия (интимы) повреждаются постоянно, не создавать же всякий раз тромбы? Всего делов – починить поврежденное место. А для этого нужно взять из плазмы крови липиды высокой плотности и подремонтировать стенку клетки эндотелия. Это если липидов высокой плотности достаточно, а если много других – низкой или очень низкой плотности? Тогда ремонт получается тяп-ляп, и на месте разрушенной клетки возникает «кучка» из липидов и фибрина, называемая бляшкой. Если соседние клетки продолжают разрушаться, бляшка растет вширь и внутрь сосуда[46].

И только если эти повреждения не прекращаются, а разрушенных клеток оказывается слишком много, цепочка тромбообразования все-таки запускается и в сосуде на разрушенных стенках начинает откладываться белок фибрин, сужая и закрывая просвет.

Так вот, медсестра прокалывает палец и берет каплю крови именно для того, чтобы оценить время при внешнем пути свертывания. Есть еще одна причина: катетер в вене невольно касается интимы сосуда и повреждает ее, кроме этого, через него вливаются различные растворы, возможно, вводятся противосвертывающие препараты, а значит, результат анализа будет во всех случаях недостоверным.

Однако если больной человек лечится от осложнений, связанных с атеросклерозом, то есть лечат не плотника или слесаря, которые постоянно бьют себя молотком по пальцам или режутся инструментом, а пациента со стенокардией или гипертонической болезнью или нарушениями кровообращения в мозге, врачей больше волнует не столько внешний механизм, сколько активность внутреннего пути запуска свертывания крови – тромбообразования.

Поэтому от такого анализа времени свертывания крови сейчас отказались как от недостаточно точного и нужного. Его заменили более точными «базисными методами коагулометрии», при которых получают данные о:

• протромбиновом времени (протромбиновый индекс);

• МНО;

• фибриногене;

• тромбиновом времени;

• АЧТВ.

Также используют старые методы, отнесенные в дополнительные:

• определение времени свертывания крови;

• определение времени рекальцификации стабилизированной крови (плазмы).

Все эти методы лучше применять у постели больного[47]. Потому что кровь, как и осетрина, «бывает только одной свежести – первой», если речь идет о способности сворачиваться. И чтобы понять весь механизм этого процесса, давайте рассмотрим основную цепочку до образования фибриновых волокон, которая называется «общий путь».

На возникновении фибрина-полимера образование тромба не заканчивается, рыхлый сгусток нужно укрепить, уплотнить. Сделать эту затычку надежной помогает кальций и клеящая способность фибрина и фрагментов развалившихся тромбоцитов. Если тромб не закрепится в поврежденном месте, он опасен. Он может, уносимый течением крови, перекрыть сосуд совсем не там, где нужно. А это вызовет острую ишемию и гибель тканей, например, ноги или руки или в каком-то органе. Почти всегда это перейдет в некроз, гангрену или инфаркт. Крови необходимо не допускать такого явления, поэтому тромб в ране должен быть укреплен, а по мере того как рана зарастает, он должен быть растворен. Это очень важное, непременное условие свертывания.

ТРОМБ – ЭТО ВСЕГДА ВРЕМЕННАЯ ПРОБКА. И ЕСЛИ ВЫШЕНАЗВАННОЕ УСЛОВИЕ ПО КАКОЙ-ТО ПРИЧИНЕ НАРУШАЕТСЯ, ТО ПРИЧИНА ЭТА – ПАТОЛОГИЧЕСКИЙ БОЛЕЗНЕТВОРНЫЙ ПРОЦЕСС.

Наличие тромбов в сосудах или полостях – ушках предсердий – это опасное болезненное состояние. В последнее время тромбы или стараются растворить специальными препаратами – тромболитиками, или устанавливают в ушко левого предсердия особую перепонку – окклюдер, которая не позволит тромбу оторваться и причинить большой ущерб здоровью.

Если регулярно брать кровь на состояние свертывающей системы, то можно заметить, что все параметры постоянно меняются от максимального разжижения до близкого к спонтанному тромбообразованию, однако ни кровоточивости, ни тромбов в организме в норме не возникает. А если что-то из перечисленного случается, то уже как проявление болезни. В норме же срабатывает принцип стабилизации с помощью отрицательной обратной связи: избыток активаторов свертывания вызывает повышенный синтез антисвертывающих компонентов, и, наоборот, избыток антикоагулянтов или снижение концентрации кальция в плазме крови приводит к усилению синтеза факторов свертывания в печени.

Свертывающая система очень подвижна и чувствительна как к внешним факторам влияния окружающей среды: температуре, давлению, пищевым продуктам, так и к внутренним: балансу электролитов, содержанию воды, микробной и вирусной нагрузке, вызванной поселившимися в организме условными патогенами[48].

В целом каскад свертывания крови можно показать схемой, приведенной на рис. 17. Обратите внимание на самый последний пункт этой схемы – продукты деградации фибрина[49]. Это очень важный показатель, при некоторых очень серьезных заболеваниях и беременности кровь особым образом исследуют не только на их наличие, но на их количество. Появление продуктов деградации фибрина прямо указывает на то, что в сосудах происходит ошибка: несанкционированное свертывание. Возможно, что срабатывает провоцирующий фактор, обычно активирующий внутренний путь. То есть где-то внутри сосуда или сосудов идет воспалительный процесс, в результате которого образуются тромбы, рыхлые и бессмысленные. Их сразу начинает растворять фибринолизин. Отчасти эти действия напоминают панику. В общем – да, некая хаотичность имеется, и чем больше таких очагов в сосудах возникает, тем опаснее становится ситуация в целом, поскольку подобные процессы с различной скоростью приводят к тяжелому синдрому – диссеменированному (распространенному) внутрисосудистому свертыванию (ДВС-синдром).

Последняя эпидемия COVID-19 очень наглядно показала взаимосвязь между вирусом, который очень любят клетки эпителия, и нарушением свертывания крови в мелких сосудах.

Мы добрались до красных кровяных телец. О тромбоцитах поговорили, но настало время изучить самую многочисленную семью форменных элементов, бывших клеток – эритроцитов. Мы немного обсуждали их, когда я перечислял клеточный состав крови, теперь нужно рассмотреть их более внимательно.

Красная кровь

Из форменных элементов больше всего в крови эритроцитов. Их в норме от 3,7 до 5,3 миллиарда в 1 микролитре (обозначается обычно так: 3.5–5.3х1012).

Вы уже знаете, что эритроциты – переносчики двух газов: О2 и СО2. Можно сравнить их с машинами доставки, которых на дорогах больше остальных.

Если на дорогах мы видим разные машины – фуры на 20 тонн и небольшие грузовички от 1–3 тонн, и в крови примерно то же самое. Особенно это важно для капилляров: там размер калиброван, и большим или малоэластичным, слишком жестким клеткам прохода нет.

Бывают большие эритроциты – макроциты и мегалоциты, бывают и мелкие – микроциты. Логика подсказывает, что промежуточный вид эритроцитов называется «нормоциты». Кстати, еще эритроциты подразделяются на юные, зрелые и старые. Есть и больные формы – шизоциты, например при генетических повреждениях.


Рис. 18. Сравнительные размеры разных эритроцитов


Значение диаметра эритроцита для капилляра можно сравнить с важностью калибра пули. Возьмите меньше необходимого – будет болтаться в стволе и при выстреле нормально не полетит, возьмите чуть больше – застрянет.

Итак, если продолжать сравнение эритроцитов с машинами, то, пожалуй, к макроцитам можно приравнять пятитонные самосвалы, к нормоцитам – более изящные, но емкие трехтонные грузовички с фургонами, а вот микроциты – это микроавтобусы до 1 тонны грузоподъемности.

Добравшись до нужного адреса, каждый из этих грузовиков должен въехать во двор, подобраться к подъезду, откинуть борт и разгрузиться. Дорожка узкая, самосвал вообще туда въехать не может, борта широкие, трехтонный фургон, прежде чем въехать, должен открыть все люки, распахнуть борта и только так потихоньку проползти мимо дверей и окон, чтобы жители перетаскали к себе в квартиры коробки с едой и выкинули в кузов мусор. На первый взгляд удобнее всего микроавтобусу-микроциту: въехал, развернулся, разгрузился, забрал отходы, но… кузов маловат – и продуктов привез мало, и мусор забрал не весь, большая часть пролетела мимо бортов на землю. Это неудобно. Из-за небольшого размера расстояние между ферментами-насосами немного отличается от расстояния между «окнами приема-выдачи товара и мусора», в результате микроцит не может толком ни отдать кислород, ни принять углекислый газ, лишь частично выполняя свою функцию. Он слишком свободно себя чувствует в капилляре, его мембрана недостаточно плотно прилегает к «окнам», через которые осуществляется газообмен.

Но кое-как микроцит все-таки справляется. Именно кое-как. Разумеется, что для достаточного обеспечения тканей этих «машинок» должно быть много.

И вот с точки зрения логистики получается, что большие машины нерентабельны. Если в жизни их можно загнать на какой-нибудь промежуточный склад и там перегрузить содержимое на мелкие машинки, то в организме так не сделаешь, а значит, макроцит совершенно неэффективен, толку от него нет никакого. Ни взять кислород толком не может в легких, ни отдать в тканях. Если ему что-то и достается, то исключительно для собственных потребностей. Все, на что он годится, – это циркулировать в сосудах и «кормить» кислородом другие клетки крови. И за это спасибо.

Нормоцит – это хорошо: он все делает очень рационально. Но есть важное условие: он должен быть здоровым и достаточно молодым. Не удивляйтесь, эритроциты, как и люди, тоже болеют и стареют. В отличие от клеток с ядрами, у эритроцита нет «предела делений», он стареет внешне, в его мембране накапливаются «морщины» – особые белки, определяющие возраст. При этом мембрана теряет эластичность.

Хороши ли микроциты в смысле логистики? Они выполняют свою работу, но только если в организме не хватает железа и вместо нормоцитов приходится гнать с конвейера более мелкие машины.

Вообще, микроциты – это вспомогательные клетки, которые появляются в организме, когда человек испытывает недостаток в железе либо по каким-то причинам теряет кровь. Они кое-как решают задачу доставки и удаления газов, но по мере налаживания ситуации от них организм старается избавиться, заменяя их нормоцитами.

Перевес макро- и микроцитов над нормоцитами, по сути, можно приравнять к анемии: хотя гемоглобин вроде бы есть, эффективно он не работает.

Все отклонения в синтезе эритроцитов – это не норма для организма, а временная, вынужденная мера, которую сам организм стремится скорее исправить, как только сможет. И, когда синтез эритроцитов налаживается, макроциты и микроциты, равно как и старые эритроциты, довольно быстро отправляются в селезенку «на списание».

ПРИМЕРНО ЧЕТВЕРТАЯ ЧАСТЬ ВСЕХ КЛЕТОК ОРГАНИЗМА ЧЕЛОВЕКА – ЭТО ЭРИТРОЦИТЫ.

ЭРИТРОЦИТ В ЗДОРОВОМ ТЕЛЕ ЖИВЕТ ОКОЛО 120 ДНЕЙ, ПОСЛЕ ЧЕГО ЕГО ПОГЛОЩАЕТ МАКРОФАГ.

КАЖДУЮ СЕКУНДУ В КОСТНОМ МОЗГЕ ЧЕЛОВЕКА ОБРАЗУЕТСЯ 2,5 МИЛЛИОНА НОВЫХ ЭРИТРОЦИТОВ.

В юности, как я уже говорил, эритоцит был полноценной клеткой с ядром, но 99,99 % всего объема этого тельца заполнено гемоглобином, и к моменту полного созревания ядро исчезает.

Гемоглобин – составное вещество, имеет «голову» – гем и четыре белковые цепи, объединенные общим словом «глобин» от «глобулярного белка (глобулина)».


Рис. 19. Структура и биохимическая формула гема


Газы – кислород и углекислота – прикрепляются к голове, к гему, по одной молекуле О2 или СО2 на одну молекулу гемоглобина.

Как и в обычной клетке, в эритроците присутствуют органеллы, например митохондрии, которые берут глюкозу из плазмы, кислород из своего же гемоглобина и выделяют нужное количество АТФ.

Зачем она нужна, эта АТФ? Напомню, что аденозин-трифосфат – это биохимический субстрат, дающий энергию для реакций. Образуется АТФ в митохондриях из Аденозин-дифосфата и ортофосфорной кислоты.

АТФ= АДФ+ОФК.

Субстрат+АТФ (при участии фермента) = продукт+ +АДФ+ОФК.

АТФ дает энергию для работы ферментов, например тех самых, которые протаскивают газы через клеточную стенку внутрь и наружу.

Интересный факт: и кислород, и углекислота при их избытке в тканях – яды. Поэтому каждая молекула этих газов на учете и должна быть связана с особым транспортным белком. Если они по какой-то причине оказываются свободными, то отравляюще воздействуют на белки клеток, особенно клеточной стенки (фосфолипопротеиды).

Многие клетки, принимая кислород, сразу же его тратят, то есть берут из крови ровно столько, сколько им нужно в каждый момент жизни организма и его работы. Есть, правда, клетки, которые любят запасать кислород впрок. И возникает резонный вопрос: а где они его хранят? Или в них, как в эритроцитах, есть свой гемоглобин? Все верно, эти запасливые клетки – миоциты, мышечные, только в них не гемоглобин, а похожий на него миоглобин, отличающийся тем, что представлен одной молекулой белка с «башкой» – гемом. От количества миоглобина в миоцитах зависит такой физический параметр человека, как выносливость.

ГЕМОГЛОБИН, КАК И МИОГЛОБИН, В «ЧИСТОМ» СВОБОДНОМ ВИДЕ В ПЛАЗМЕ КРОВИ – СИЛЬНЫЙ ЯД, ОСОБЕННО ДЛЯ ПОЧЕК.

ГЕМОГЛОБИН ВЫХОДИТ ПРИ РАЗРУШЕНИИ ЭРИТРОЦИТОВ – ГЕМОЛИЗЕ, А МИОГЛОБИН – ПРИ РАЗРУШЕНИИ МИОЦИТОВ – МИОЛИЗЕ. НАПРИМЕР, ЭТИ ВЕЩЕСТВА ВЫСВОБОЖДАЮТСЯ ПРИ ДЛИТЕЛЬНОМ СДАВЛЕНИИ ИЛИ ПОВРЕЖДЕНИИ (ЗАКУПОРКЕ) АРТЕРИИ, ПИТАЮЩЕЙ МЫШЦУ.

Кстати, если помните, многоядерные клетки, о которых я упоминал в самом начале книги, – это именно мышечные – миоциты.

Итак, эритроцит переносит кислород из легких, накачав свой гемоглобин этим газом, затем в тканях, в капиллярах обменивает его на углекислый газ и возвращает его в легкие, там обмен повторяется. За пару месяцев жизни эритроцит совершает такие циклы бессчетное число раз. Небольшую часть кислорода он тратит на себя. В венозной крови эритроциты, набитые углекислым газом, все равно немного имеют и кислорода, иначе они не смогли бы выполнять свою работу. Были бы как голодный обессиленный рабочий, лежащий у станка: он есть, а работы нет. Поэтому в нормально функционирующем организме эритроциты всегда имеют запас кислорода от нескольких процентов до 99. Именно этот параметр – сатурация О2 – и показывает нам такой ставший очень популярным в последние, ковидные годы прибор пульсоксиметр, который иногда кое-где называют сатурометром.

От роддома до кладбища

Средний срок жизни эритроцита в здоровом организме не превышает 120 дней. А учитывая, что идеально здоровых людей нет, то по мере нашего старения время жизни эритроцитов сокращается, и чем больше у нас различных хронических проблем, воспалений, тем короче жизнь переносчиков газов. Это можно сравнить с транспортом на разбитых дорогах: машины, которым приходится ездить по ухабам, чаще ломаются и быстрее полностью выходят из строя. А учитывая, что избитые поврежденные эритроциты никто не чинит, они «уходят на списание», и «техконтроль» проводят лейкоциты-макрофаги.

Как макрофаг узнает, что эритроцит старый, изношенный и его пора «списывать»?

Так у эритроцита все «на лице» написано, точнее – на его теле, на мембране. У молодого активного эритроцита вся мембрана усеяна белками-ферментами, которые качают газы туда-сюда, внутрь-наружу, а чем эритроцит старее, тем этих ферментов на мембране становится меньше, а всякого мусора в виде различных обломков бактерий и мертвых клеток больше. Кроме этого особые молекулы, называемые «гликокаликс», тоже входящие в состав мембраны, становятся все жестче – это тоже признак старости эритроцита. Эластичность мембраны эритроцита – один из важных показателей в анализе вязкости крови.

Если сравнить с человеком, то представьте, если бы его возраст определялся не по паспорту, а по количеству морщин, состоянию зубов, ногтей, дряблости мышц и анализам? Или по тесту на физическую выносливость: отжался 50 раз – живи и работай дальше, нет – пошел в топку. В организме с этим строго, «кто не работает – тот не ест», пенсионеров там не существует и «почетных ветеранов» тоже.

Вот так однажды встречаются где-нибудь в вене селезенки фагоцит с эритроцитом-ветераном, и фагоцит говорит ему на своем цитокиновом языке:

– А ну, старичелло, сколько тебе дней?

Тот послушно дает себя ощупать, а на мембране его особыми белками отмечено количество циклов по большому и малому кругам кровообращения, ясно видно, что уже больше двух месяцев отработал или побывал в «горячих точках» и сильно поврежден разными токсинами микробов.

– Э, – говорит фагоцит после осмотра, – ты уже лишних две недели живешь… Ступай ко мне в пасть, прошло твое время, пора в крематорий!

И глотает его – фагоцитирует.

Но вот что любопытно, фагоцит съедает, то есть переваривает, исключительно мембрану эритроцита, белки из цитоплазмы и кое-какие скудные запасы глюкозы, а вот весь гемоглобин выплевывает! Понятное дело, ведь свободный гемоглобин – яд. Правда, это все происходит в селезенке, и там за дело принимаются другие клетки, тоже лимфоциты, но местные жители – могильщики. Они быстренько обрубают у гемоглобина белковые хвосты, которые уходят в дело, разбираются на кирпичики-аминокислоты и затем встраиваются в молекулы резервного белка крови – альбумина, а вот гем в чистом виде под названием «свободный билирубин» или в связанном с белком (тогда его называют связанным билирубином или в некоторых анализах – прямым, хотя ничего прямого в его формуле нет), отправляется в печень на переработку и становится желчным пигментом.

Селезенку ведь не случайно еще называют кладбищем эритроцитов.

Нужно сказать, что фагоциты из селезенки отлавливают не только старых эритроцитов, но и чужих, донорских. Однако иммунитет, несмотря на агрессивное отношение к «чужакам», дает совершить несколько циклов донорским клеткам по кругам кровообращения.

Поэтому вливание донорской крови при необходимости восполнить объем клеток-эритроцитов имеет большую важность.

Странный вопрос

Как дышат клетки?

Как дышим мы, я надеюсь, понятно. Вдох-выдох… Воздух зашел в легкие, вышел. Кислород забрался, углекислый газ отдался. А вот что дальше происходит с кислородом?

Есть такое смешное шестиногое животное, живущее тысячи лет, – тихоходка. Нечто среднее между червями и членистоногими. Она никуда не спешит, крови в привычном для нас понимании не имеет (вместо нее ее тело содержит некую жидкость) и обходится без легких, получая необходимый кислород прямо через кожу – оболочку. При этом поговаривают, что она может выжить даже в вулканической лаве, космическом холоде и вакууме, хотя я в это не верю. Но она действительно обладает очень высокой выживаемостью в крайне трудных условиях. Вот бы нам быть такими, как тихоходки!

Вернемся к нашей красной крови, содержащей белки, жиры, углеводы, гормоны, соли, воду и железо. Красная кровь – это эритроциты и тромбоциты клеточной массы жидкой ткани, текущей в сосудах и называемой в русском языке просто кровью. Она (красная) переносит газы. То есть участвует в важнейшем деле, называемом дыханием.

ДЫХАНИЕ – ЭТО НЕ ТОЛЬКО ВДОХ-ВЫДОХ. ЭТО ПУТЬ КИСЛОРОДА!

Кислород берется из атмосферного воздуха, куда отдается растениями по ночам в процессе темновой фазы фотосинтеза. На вдохе он поступает в легкие, а точнее, в альвеолы. Это пузырьки на конце самых мелких бронхов – бронхиол. В этих пузырьках для воздуха тупик, а для кислорода путь дальше – внутрь организма. Тут он утрачивает самостоятельность. Кислород берут за валентность 2-, как за руку, и ведут через тоненькую стенку альвеолы через вещество, без которого эту функцию поводыря выполнить невозможно, – сурфактант[50]. Выводят в капилляры, пронизывающие ткань легкого, и передают эритроциту, перед этим как раз освободившему место, отдав углекислый газ. Этот процесс на данном этапе называется внешнее дыхание.

Раз есть внешнее, должно быть и внутреннее, только в медицине его принято называть тканевым, ведь путь кислорода в тканях продолжается, но не кончается.

Кислород забирается[51] клетками из крови и отправляется в «энергоподстанции» – «печки», которые называются митохондрии. Здесь кислород участвует в горении – окислении различных веществ для образования АТФ.

Это своеобразный «конденсатор» или генератор энергии на одну операцию в биохимических реакциях. АТФ образуется из АДФ – аденозин-2-фосфата – и ортофосфорной кислоты. Чтобы эта реакция произошла в митохондрии, и нужен кислород, который свяжется с углеродом и водородом, образуя при этом углекислый газ и воду. Все это вам, может быть, уже известно, а может быть, и нет[52].

Итак, путь кислорода разделился на два в результате сгорания глюкозы и жира: образуется два окисла – углекислый газ (СО2) и вода(Н2О).

Пути воды понятны: сохраняться и циркулировать по организму в меру необходимости, перемещаясь, как сквозь губку, туда, где больше веществ, ее любящих, выделяться с дыханием, потом, калом и мочой.

Углекислый газ хорошо растворяется в воде, и потому часть его отдается эритроцитам, часть связывается с аминами (NH3-) и водой, небольшая часть – с белками плазмы венозной крови, поскольку именно в венозную кровь клетки выделяют углекислый газ.

СО2 из плазмы, если не слишком прочно связан с другими веществами, как, например, с аминами в мочевине (карбамид), постепенно забирается эритроцитами и относится в малый круг кровообращения (МКК).

А что у нас омывает кровь в малом круге кровообращения? Правильно, легкие! То есть там СО2 покидает организм через стенку альвеол и отправляется в воздух планеты Земля.

Здесь СО2 попадет к растениям, подвергнется процессу фотосинтеза, спасибо К. А. Тимирязеву[53], где вместо АТФ роль источника энергии сыграет квант солнечного света (фотон).

Углерод уйдет на синтез глюкозы, а лишний кислород за ненадобностью выбросится в атмосферу.

Вообще-то, из газов в атмосферу Земли мы выбрасываем не только кислород, но к дыханию это уже никак не относится, скорее к пищеварению.

Итак, дыхание делится на два типа: внешнее и тканевое. Именно для него и нужна кровь, чтобы доставлять кислород и (примкнувший к нему) углерод от легких в ткани и из тканей в легкие.

Весь путь кислорода от вдоха до выдоха имеет в итоге только одну важнейшую задачу – синтез АТФ. Без АТФ организм не может жить.

Не клетки, а пластинки

Про тромбоциты я немного рассказал в главе, посвященной свертыванию. Уже ясно, что это не клетки, а пластинки, которые отщепляются от родовой клетки красного ростка костного мозга (однако в природе есть живые организмы, у которых тромбоциты – клетки, то есть имеют ядро и, вероятно, даже могут делиться сами).

Откуда взялось такое название – «тромбоциты»?

ДАВНО ДЕЛО БЫЛО. КОГДА ЕЩЕ ТОЛЬКО-ТОЛЬКОИЗОБРЕЛИ МИКРОСКОП И НАЧАЛИ ИЗУЧАТЬ КРОВЬ, ВРАЧИ УВИДЕЛИ, ЧТО ЭТА ЖИДКОСТЬ ИМЕЕТ ФОРМЕННЫЕ ЭЛЕМЕНТЫ, И ВСЕ, ЧТО В НЕЙ НАШЛИ, ОТНЕСЛИ К КЛЕТКАМ КРОВИ.

В связи с неточностью описаний и отсутствием фотографии как способа сохранения изображений, а также запутанностью терминологии в ранние периоды развития микроскопии момент первого обнаружения тромбоцитов точно неизвестен. Их открытие приписывается Альфреду Донне в 1842 году, но есть мнение, что тромбоциты наблюдал и описал еще сам создатель микроскопа, Антони ван Левенгук, в 1677 году.

Термин «кровяные пластинки», который до сих пор является предпочтительным в англоязычной медицинской литературе (blood platelets), был введен итальянским исследователем Биццоцеро в 1881 году. Биццоцеро также сыграл ведущую роль в выявлении связи тромбоцитов с гемостазом и тромбозом. Это впоследствии и привело к появлению названия «тромбоцит», который впервые использовал Декхюйзен в 1901 году и которое в русском языке стало основным.

В англоязычной литературе термин «тромбоцит» (thrombocytes) используется исключительно для обозначения ядерных тромбоцитов, которые находятся в крови у немлекопитающих. То есть эволюционно можно понять, что когда-то в истории биологического мира Земли тромбоциты возникли именно как клетки с ядром, но постепенно, в процессе «оптимизации» кроветворения, их синтез стал далеким от клеточного.

Термин «бляшка Биццоцеро» может встречаться в литературе на русском языке, но это по большей части переводные книги и, как правило, всегда добавляется пояснение, что речь идет о тромбоците.

Тромбоциты из форменных элементов крови – самые маленькие по размеру. Обычно их число в норме составляет от 180–360 тысяч на 1 микролитр.

Чем заняты тромбоциты?

Изначально им отводились две функции, отраженные в их названии.

1. Образование тромбоцитных агрегатов (сгустков), которые становятся основой для будущего тромба – затычки, закрывающей повреждение (рану) в сосудистой стенке.

2. Предоставление своей мембраны – поверхности – для участия в свертывании крови и появлении волокон фибрина.

Как оказалось, считать, будто бы это все, для чего нужен тромбоцит, – в корне неверно. На самом деле у него намного больше незаметных, но очень важных дел. Вот чем занимаются тромбоциты.

• Выделяют фактор роста клеток, ускоряя тем самым заживление ран и восстановление тканей.

• Играют роль тряпок-щеток, собирающих мусор в крови, делая его биохимически менее вредным (при этом составляя как бы «музей мусора»).

• Стараются залечить, отремонтировать поврежденную из-за ударов артериального давления внутреннюю стенку сосудов – интиму. Правда, тромбоцитам не всегда удается это сделать качественно, поэтому иногда на месте поврежденной интимы образуется атеросклеротическая бляшка, но в молодом организме и тромбоциты молодые, «рукастые и инициативные». Конечно, с возрастом пыла и старания у них становится все меньше. Потому атеросклероз – все-таки болезнь возрастных пациентов.

И все-таки главным делом тромбоцитов является остановка кровотечения там, где оно возникает.

Недостаток тромбоцитов приводит к кровоточивости и проявляется на коже и слизистых оболочках синяками – гематомами. Обилие сине-фиолетовых и желто-зеленых пятен на коже называется тромбоцитопеническая пурпура и указывает на необходимость срочно сдавать анализ крови. А потом так же срочно начинать обследование и лечение.

Избыток тромбоцитов повышает риск образования тромбов. Это очень опасный признак. Часто повышение количества тромбоцитов обнаруживается случайно, и врачи не всегда успевают своевременно принять меры. Если тромб образуется в сердце или мозге, пациент внезапно умирает от инсульта или инфаркта.

Тромбоциты образуются и расходуются постоянно. Время их жизни не превышает 2 недель, а в среднем составляет 7–9 дней.

ЧЕМ БОЛЬШЕ БОЛЕЗНЕЙ В ОРГАНИЗМЕ, ТЕМ КОРОЧЕ СРОК ЖИЗНИ ТРОМБОЦИТОВ. ИМЕННО МУСОР, КОТОРЫЙ ОНИ СОБИРАЮТ СВОЕЙ МЕМБРАНОЙ, И УКОРАЧИВАЕТ ИХ СРОК ЖИЗНИ.

Всего тромбоциты бывают пяти типов.

1. Юные – не больше 1 % от общего числа тромбоцитов.

2. Зрелые – 90–95 %.

3. Старые – 2–5,5 %.

4. Раздраженные – 0,8–2,3 %.

5. Дегенеративные – 0–0,2 %.

Костный мозг активно производит все форменные элементы, но больше внимания уделяет, конечно, лейкоцитам, которые должны бороться с инфекцией или зловредными клетками. Тромбоциты тоже активно отшнуровываются (так называется процесс их синтеза) от клеток костного мозга, но вот эта торопливость сказывается на качестве, появляются «дегенеративные» формы.

Количество раздраженных тромбоцитов и «дегенератов» нарастает при болезнях, и это отражается не только на самочувствии, но и на прогнозе осложнений. Потому что в крови увеличивается концентрация белков воспаления и антител – иммуноглобулинов, а еще различного «мусора», остающегося от микробов или погибших клеток.

Кстати, за тромбоцитами замечен и очень важный грех: они могут перетащить на себе раковые клетки. Даже от донора к реципиенту. Отчасти «мусор», который собирают тромбоциты, не только токсичен для эритроцитов и других элементов крови, он еще и представляет своеобразный архив для клеток иммунитета.

Кто любит детективы, тот, наверное, заметил, что следователей в районе места преступления так и притягивает к различному мусору как к источнику важных улик. Точно так же и иммунитет считает мусор, оставшийся в межклеточном пространстве, лимфе, крови от различных болезненных ситуаций, источником важной оперативной информации. Как бы давая возможность лимфоцитам постоянно помнить о том, с какими противниками недавно приходилось иметь дело.

А тромбоциты позволяют сохранять эти «улики» несколько недель или месяцев.

Постепенно, вместе с отмиранием тромбоцитов, и этот мусор исчезает, а с ним и тревожность постоянного вторжения.

Тромбоциты очень нежные. Они как мины «лепесток» – ПФМ-1: коснись – сразу взрывается! А при взрыве в плазму выбрасываются факторы свертывания крови.

Как вы думаете, часто происходит самоподрыв?

Постоянно.

И системе антисвертывания все время приходится подчищать результаты этого «нервяка» и растворять образующиеся рыхлые сгустки фибрина.

Что может спровоцировать разрушение тромбоцитов?

Физические факторы: резкое изменение артериального давления, как повышение, так и снижение. Наличие внутри сосуда механических помех – бляшек атеросклероза, ударяясь об которые, тромбоциты взрываются.

Химические: различные токсины, попадающие в кровь с пищей или образующиеся в результате работы клеток, микробные факторы, обломки недосгоревших кислот, белков, ферменты – содержимое погибших клеток, выходящее в кровь.

Замечено, что курение влияет отрицательно на синтез тромбоцитов, и наоборот, отказ или воздержание от курения вызывает повышение их синтеза на третий-четвертый день воздержания.

Белая кровь

Я уже говорил, что при изучении крови можно заметить немалое сходство в ее клеточном составе с человеческим сообществом. Я не скажу, что имеется абсолютная аналогия, в мире организма все подчинено одному главному правилу, которое можно обозначить латинским ratio – то есть разум, рациональность, разумность, рассудительность. В нашей жизни это понятие важное, но не главное, и это прежде всего отличает жизнь людей от жизни клеток. Для нас характерна интуитивность, алогичность в поступках. Клетки себе такой роскоши позволить не могут.

Важнейшую роль в поддержании этого ratio в организме играет «белая кровь», то есть белые клетки крови: лейкоциты и лимфоциты. Собственно, о них и их взаимодействиях между собой и с другими клетками пойдет речь в этой главе.

Итак, белая кровь. Это название не шутка. В старину даже было название заболевания «белокровие». Заболевание это никуда не делось, просто стало иначе называться – лейкоз!

Лейкоциты – это армия, служба безопасности, полиция, прокуратура и служба исполнения наказаний, а еще похоронная команда, архив, заводы по производству химического оружия и служба химической и бактериологической защиты. Как в любой армии есть подразделение по родам войск, есть звания и должности.

Снижение общего числа лейкоцитов называется «лейкопения», иногда употребляют термин «лейкемия». Но тут нужно сразу расставить точки над i.

Лейкемия – общее название для заболеваний крови, вызванных изменением числа белых клеток крови. Обратите внимание, я не сказал уменьшением или увеличением – любое отклонение от нормы. Лейкоз и лейкемия – почти синонимы. Лейкозы чаще упоминают, когда речь идет об онкологии крови.

Лейкопения – это снижение числа белых клеток крови, обычно вызванное сниженным размножением клеток костного мозга. При этом обычно употребляют фразу «подавление активности белого ростка костного мозга».

Болезни клеток обоих ростков называют миелопролиферативными, а белого – лимфопролиферативными[54]. Отличная тренировка дикции, не хуже, чем скороговорка про выдру в гетрах в недрах тундры!

Это общие понятия. Они включают в себя весь спектр болезней крови. Болезни белых клеток крови еще часто называют одним словом: лейкозы.

Ну вот, о болезнях «белой крови» пока все, хотя это огромная, требующая отдельной части или главы, а лучше книги, тема. А сейчас давайте разберемся с видами и типами клеток, имя которым лейкоциты.

Общее число лейкоцитов непостоянно. Оно колеблется в зависимости от обстоятельств, в которых находится человек. Здоров он или болен вне зависимости от самочувствия.

Повышение лейкоцитов обычно свидетельствует о воспалении. Критическим значением считается превышение 10000/мкл. В современных анализах указывается число с добавлением (умноженное на 10 в -9 степени, что, по сути, означает то же «в одном микролитре»). Норма общего числа 5000–6000 на один микролитр.

Если число лейкоцитов оказывается в диапазоне 7–9 тысяч, то наблюдают за больным и уже по обстоятельствам, клиническим проявлениям болезни и результатам анализов принимают решение, а то поспешишь – людей огорчишь.

Так однажды случилось, что, работая на скорой, я привез молодую женщину в хирургическое отделение с диагнозом «острый аппендицит». На следующий день именно в этой больнице у нас проходил цикл по хирургии, и на обходе профессора я в отделении встретил свою пациентку. Оказалось, что сразу на операцию ее не взяли. Хирург приемного отделения засомневался. Потому что при явной клинической картине аппендицита в анализе крови уровень лейкоцитов не превысил 9,5 тысячи, тогда как СОЭ (скорость оседания эритроцитов) оказалась очень высокой: более 60 мм/час. Врач усомнился в точности диагноза, назначил ультразвуковое исследование и рентген. Оба эти исследования не подтвердили воспаления аппендикса, не исключив при этом явного признака воспаления в животе.

Не подтвердил свою патологию и гинеколог, исключив воспаление придатка матки справа.

Женщину взяли на операцию, но лишь для того, чтобы убедиться: у пациентки болезнь Крона, после чего небольшую диагностическую рану зашили и начали курс консервативного лечения. Если бы в день госпитализации ее сразу прооперировали, она могла получить в дальнейшем и до конца жизни серьезные осложнения и течение болезни было бы значительно тяжелее[55].

Тут очень важно понимать, что воспаление в различных участках организма, особенно по ходу пищеварительного тракта, – это нормальное явление. Эти очаги возникают и проходят в течение минут, часов и суток, разрешаются сами собой и как заболевание обычно себя не проявляют.

Такие же места риска возникновения воспаления – это верхние дыхательные пути: носовые ходы, придаточные пазухи и горло, то есть места, где в организм постоянно попадают микробы извне, то там стоят на страже микробы – симбионты, резиденты и лейкоциты-нейтрофилы.

Вообще, оценивать состояние организма по количеству лейкоцитов в крови – все равно что определять степень активности государства и его нахождения в состоянии войны по количеству солдат и военной техники на дорогах – общие данные, без конкретики, где и с кем?

Какие же клетки входят в популяцию с обобщенным названием «лейкоциты»?

Напомню: все лейкоциты делятся на два основных подвида: те клетки, ядра которых сегментированы и в цитоплазме которых имеются гранулы с биологически активными веществами (БАВ) – гранулоцитарные лейкоциты, и клетки с одним несегментированным ядром – мононуклеарные лейкоциты, в основном к ним относятся лимфоциты.

Лейкоциты бывают следующих видов.

1. Нейтрофилы (Нф), или «нейтрофильные гранулоциты». Как я уже говорил, название они получили от типа красителя – нейтрального. Их, нейтрофилов, два вида. Первый – зрелые, можно сказать обученные и опытные контрактники – сегментоядерные. Второй – юные новобранцы-первогодки срочной службы – палочкоядерные.

Такие названия Нф получили за свой вид. После окрашивания я´дра этих клеток приобретают весьма характерную форму: сегментированную (вроде цепочки шпикачек) или палковидную – тут все понятно, одиночный батон, (круг) колбасы.

Число нейтрофилов, если оценивать в процентах, обы

Скачать книгу

© Звонков А.Л., текст, 2023

© Шварц Е.Д., иллюстрации, 2023

© Оформление. ООО «Издательство «Эксмо», 2023

  • О, как я поздно понял,
  • Зачем я существую,
  • Зачем гоняет сердце
  • По жилам кровь живую,
  • И что порой напрасно
  • Давал страстям улечься,
  • И что нельзя беречься,
  • И что нельзя беречься…
1963 г. Д. Самойлов

От автора

Если бы мне, когда я был студентом, сказали, что половину своей медицинской карьеры я буду заниматься переливанием крови, я покрутил бы пальцем у виска. Вы с ума сошли? Я скоропомощник! Я кардиолог! Какая кровь?

Не знаю почему, но как-то само собой в атмосфере медицины 70–80-х годов ХХ века витало… даже не мнение, а туман или флер ощущения, что Служба переливания крови – это что-то близкое к аптеке, пиявкам, дело не для настоящих медиков, а для тех, кто не смог пойти в хирургию или реаниматологию[1]. Какие врачи этим занимались? Да кто угодно! Даже специальности еще такой не было – трансфузиолог[2]. Кто это вообще такой? Переливатель? Из пустого в порожнее? Работа для медсестер, ну, в крайнем случае для врачей-лаборантов, которым и лечить-то людей не позволяется.

Нет, заниматься переливанием крови? Ни за что! Но у Создателя на наш счет свои планы.

В середине 80-х я работал выездным фельдшером и поневоле оказался участником большой операции в роддоме: речь шла о жизни и смерти. Дежурный анестезиолог примчался к нам, на подстанцию скорой, и попросил помощи – срочно сдать кровь. От кровопотери умирала женщина. Дежурный врач «дал SOS» по каналам скорой, милиции и пожарной службы. Собирались люди со всего города, но мы находились ближе всего: от приемного покоя роддома до подстанции было метров 50.

Я оказался в числе первых доноров. Сдал 400 миллилитров крови и продолжил дежурство. Спустя несколько дней узнал, что женщина, несмотря на заготовленные для нее порядка 40 литров донорской крови от более ста человек (медиков, милиционеров и пожарных), все равно скончалась. Удалось спасти только ребенка.

Позже я встретился с тем самым анестезиологом и расспросил его: что же случилось? Он объяснил, что у женщины произошла преждевременная отслойка плаценты, случилась огромная и очень быстрая кровопотеря, а затем развилось неуправляемое нарушение свертывания крови, остановить которое не удалось, несмотря ни на удаление матки, ни на влитые десятки литров донорской крови. «Чего-то мы еще не знаем и не понимаем», – добавил он. А в конце нашей беседы сказал: «Давай заканчивай институт, становись врачом, займись кровью и раскрой эту загадку ДВС-синдрома».

«Тьфу на тебя, – подумал я, – заниматься кровью? Да ни за какие коврижки!» Помню, что совершенно серьезно ответил: «Не дай Бог мне когда-нибудь связаться с переливанием крови!» Мне это дело представлялось совершенно неинтересным в плане медицинской практики. То ли дело кардиология! Мечта моя! В то время.

Через несколько лет, уже став врачом, в только-только созданной частной клинике я оказался единственным специалистом-медиком, способным взять на себя создание Службы крови. Это были годы перестройки и развала СССР. После окончания мединститута, имея в кармане диплом врача и свидетельство об окончании интернатуры по анестезиологии и реанимации, в частной клинике я был вынужден год заниматься рекламой, делопроизводством и курьерской работой. Очевидно, что, когда понадобилось закрыть «дыру» переливания крови, я не особенно кочевряжился, а сразу сказал: «Согласен!» Конечно, мог отказаться. Но я так хотел заняться хоть чем-то медицинским, в любом качестве, лишь бы вернуться к врачебной работе и, главное, продолжать свое участие в создании клиники совершенно нового направления: малоинвазивной, бескровной медицины.

Служба крови в такой клинике представлялась мне чистой формальностью. Зачем переливать кровь там, где операции бескровны? Я подписал приказ руководства, назначивший меня «заведующим службой крови» клиники[3].

Как мы все тогда ошибались по поводу бескровности!

За 20 с лишним лет отношение к крови и переливанию в медицине СССР и России сильно изменилось. Специальность отнесли к хирургии и реаниматологии, а отнюдь не к лабораторному делу. Я со своим дипломом анестезиолога (который нужен был для работы в кардиореанимации) и диким желанием непременно вернуться в медицину идеально подошел для организации Службы крови.

Жалел ли я о том, что так получилось? Бывало. Но сейчас, вспоминая 90-е годы, на которые и пришлась моя работа трансфузиологом, я совершенно не жалею об этом. Так было нужно. И нужно было главным образом мне – для осознания верности Божьих заповедей: «не клянитесь» и «не спорьте с судьбой» – она сильнее.

НАСТАЛО ВРЕМЯ РАССКАЗАТЬ ВАМ О КРОВИ, О ТОМ, ЧТО ЭТО ЗА ЖИДКОСТЬ И ПОЧЕМУ ОНА АССОЦИИРУЕТСЯ С ЖИЗНЬЮ (ВЕДЬ ВСЕМ ИЗВЕСТНО, ЧТО БЕЗ КРОВИ ЖИЗНЬ НЕВОЗМОЖНА). ЗАОДНО РАССКАЖУ О ТОМ, ПОЧЕМУ КЛЕТКИ НАШЕГО ОРГАНИЗМА ПОХОЖИ НА НАС И ЧЕМ МЫ ОТЛИЧАЕМСЯ ДРУГ ОТ ДРУГА – КОНЕЧНО, НЕ ВНЕШНЕ, А ПО ОБРАЗУ ЖИЗНИ, ЗАБОТАМ И СКЛАДУ МЫШЛЕНИЯ.

Поговорим о разных болезнях и методах лечения. А также о том, почему врачи-трансфузиологи не любят переливать кровь[4] и постоянно спорят об этом с лечащими врачами – хирургами или анестезиологами, требуя обоснования необходимости этого.

За 20 лет «кровавой службы» мне не раз приходилось решать настоящие загадки, связанные с кровью.

Одна из них возникла, когда кардиологического пациента готовили к большой и очень сложной операции по лечению угрозы инфаркта миокарда с помощью аортокоронарного шунтирования – когда в обход забитым холестерином артериям накладывают шунты из собственной вены больного. Операция выполняется с помощью аппарата искусственного кровообращения и в самом лучшем случае требует не меньше 2–2,5 литра донорской крови.

Больной готовился к операции, мы ждали со станции переливания крови два литра подобранной персонально для него эритроцитной массы. И вдруг получили ответ: «В результате проверки эритроцитной массы более чем от ста доноров совместимость не обнаружена».

Как так? Из ста человек ни один не подошел? Как это возможно?

Мы попросили проверить еще. И снова приходит ответ: «Еще сто доноров не подошли».

Это был удар ниже пояса. У нас все готово: операционная сестра в маске и перчатках разложила инструменты, мониторы пищат, анестезиолог выпил кофе – можно приступать, – а крови нет?! Сейчас шутить легко, а тогда у нас была, честно скажу, паника.

Посовещавшись, мы приняли единственное возможное решение: заготавливать собственную кровь от больного, несмотря на то что для него это было опасно. А главное – операция откладывалась почти на два месяца. Ведь брать кровь каждый день нельзя. В лучшем случае раз в неделю, а то и в две, каждый раз забирая не больше 200–250 миллилитров собственной эритроцитной массы.

Поверьте, это тоже операция, все равно как если бы каждые две недели отрезали кусок тела, каждый раз больший, чем прежде, и пришивали обратно взятое две недели назад. Представили? Может такая манипуляция пройти бесследно для организма? Естественно, нет.

Сам пациент, конечно, должен жить эти месяцы «шепотом», не нервничать, регулярно сдавать анализы крови, главный из которых – анализ на свертываемость, потому что постоянными заборами крови мы невольно влияем на это ее свойство, а значит, риск возникновения тромбов увеличивается. Пациенту приходится принимать увеличенные дозы специальных препаратов, регулирующих свертывающую систему, чтобы нам не потерять его еще до операции.

НО МЕНЯ МУЧИЛ ТОГДА ГЛАВНЫЙ ВОПРОС: ПОЧЕМУ ПАЦИЕНТ ОКАЗАЛСЯ АБСОЛЮТНО НЕСОВМЕСТИМ С ДОНОРСКОЙ КРОВЬЮ?

Я позвонил своему учителю в НИИ переливания крови, где проходил повышение квалификации, и спросил, с чем может быть связана такая невосприимчивость. Ответ не удивил, подсознательно я был готов к такому варианту. «Он когда-то давно перенес массивное переливание крови, – сказал учитель. – Если хочешь, узнай, когда и сколько было влито. Но если двести доз от разных людей ему не подошли, видимо, ему перелили несколько литров донорской крови. Флаг тебе в руки и успешного расследования».

Пациент вспомнил, что в начале 60-х годов он с семьей попал в автокатастрофу по дороге в Крым, был сильно травмирован, и его даже перевозили из одной больницы в другую. Из Мелитополя то ли в Ростов-на-Дону, то ли в Краснодар, он не помнил, ему было тогда лет 13–14. И вроде бы ему переливали кровь. Но сколько? Как она тогда прижилась?

Видимо, раз он дожил почти до 70, кровь прижилась. Его в том возрасте больше волновало, что каникулы пошли прахом, все лето на больничных койках и потом еще почти полгода – на костылях. А какую кровь влили, от кого и сколько – какая разница?

Могли по таблице совместимости[5] влить и кровь другой группы. Сейчас так делать нельзя, а в те годы – запросто. Тем более что практики разделять донорскую кровь на плазму и клетки в то время еще не было. Взяли от донора бутылку цельной крови, проверили группу и совместимость: не склеиваются клетки? Нет! Ну и влили, а могли вообще сделать прямое переливание из вены донора в вену больного с помощью специального насоса, который в те времена находился в операционных в каждой больнице. Сейчас это оборудование убрали, а прямое переливание запретили, но тогда оно было очень популярно.

По нашему запросу из Краснодарского архива пришел ответ: «Да, больному такому-то было перелито цельной донорской консервированной крови двадцать доз[6] от различных доноров. Реакции несовместимости не отмечалось». Вот так.

А теперь эта реакция не дает ему сделать операцию на сердце.

Чем закончилась история? Для пациента, в общем, хорошо. Пока он к нам ходил на заготовку его собственной эритроцитной массы, насмотрелся, как ангиохирурги делают новую в то время операцию – стентирование. В забитые артерии сердца устанавливается специальный протез – сетчатая металлическая трубочка. А главное, нет необходимости ни в какой крови, не нужно до двух недель выхаживать пациента в реанимации после операции, риск, что сердце после остановки не заведется, отсутствует, потому что стент устанавливают в артерию прямо на работающем сердце.

Так, когда мы, довольные, предъявили кардиохирургу десять контейнеров с эритроцитной массой больного и отрапортовали, что того «можно брать!», наш пациент самостоятельно лег на операцию стентирования и через трое суток пришел к нам счастливый и практически здоровый.

Спросите, куда делась добытая с такими приключениями подходящая кровь? Частично вернули, а частично уничтожили: она не годилась в качестве донорской. И хотя плазму мы отделили, эритроциты этого человека нельзя было перелить другому пациенту и по закону о донорстве, запрещающему использовать кровь больного человека как донорскую (она может быть перелита только самому пациенту во время операции или после нее), и потому еще, что они могут мгновенно разрушиться у любого реципиента в организме, а это смертельно опасно.

Уже сейчас в этом небольшом вступлении вы увидели массу различных специальных терминов: эритроцитная масса (не эритроцитарная), донор и реципиент, стентирование и прочее… В конце книги вы найдете «Комментарии и словарь медицинских терминов», где я постараюсь доступно объяснить значение некоторых названий (см. стр. 401).

Книга написана с небольшой долей иронии, чтобы вам было не скучно. Я шучу, даже когда рассказываю о важных вещах. Так их легче воспринимать. Только все-таки не забывайте, что кровь – это явление серьезное. Как и вся наша жизнь, в которой чувство юмора помогает выживать и сохранять здравый рассудок в самых трудных ситуациях.

Если книга покажется вам полезной и интересной и появятся вопросы – а они должны появиться – и пожелания или просто захочется поделиться впечатлением, вы можете направить все комментарии мне на электронную почту по адресу: [email protected]. Я обязательно постараюсь вам ответить.

Автор благодарит за неоценимую помощь в работе над книгой врача-трансфузиолога И. И. Занину, заведующую отделением переливания крови одной из московских больниц.

Вступление

Еще в юности я увидел фильм «Сказка странствий», из которого запомнил удивительный по своей мудрой наивности монолог главного героя – врача и философа Орландо.

«Я исследовал органы человека, и когда я заглянул внутрь его, мне открылось, что каждый человек – это целый мир!

Внутри него текут реки, ручьи, полные животворной влаги. А то, что мы называем «сердце», «легкие», – это материки, это острова, омываемые океаном. Реки – это жилы, по которым течет ее голубая кровь. Европа, Азия, Африка, материки, – это ее сердце, ее легкие, облака – это пар от ее дыхания. И вот к какому выводу я пришел: раз уж государства являются частями одного единого живого организма, они должны жить в мире! Ну где это видано, чтобы правое легкое воевало с левым, чтобы печень старалась захватить часть селезенки?!»[7]

МНЕ НРАВИТСЯ ЭТА МЕТАФОРА. МНОГО ЛЕТ РАБОТАЯ С КРОВЬЮ, ИЗУЧАЯ ЕЕ СВОЙСТВА И ФУНКЦИОНИРОВАНИЕ, Я ДЕЙСТВИТЕЛЬНО ЗАМЕТИЛ ОЧЕНЬ БОЛЬШОЕ СХОДСТВО МЕЖДУ КЛЕТКАМИ КРОВИ И СООБЩЕСТВОМ ЛЮДЕЙ.

Если сравнивать клетки организма с нами, людьми, а различные государства и страны – с органами, как можно представить себе, что какие-то органы вдруг объявят свою гегемонию, начнут стравливать клетки одной ткани с клетками другой, грабить самых беззащитных и слабых? Вы можете вообразить такие процессы в своем организме?

Очевидно же, что такой человек будет обречен на скорую и мучительную смерть или не очень долгую, но тоже болезненную жизнь, представляя собой фактически поле боя одних клеток организма с другими. Чуть забегая вперед, скажу: такое случается и связано это зачастую как раз с переливанием крови или пересадкой костного мозга.

С другой стороны, уж очень похоже поведение человеческого вида на поведение раковой опухоли. Как она пожирает организм, так и человечество пожирает запасы Земли, тромбирует сосуды – реки, вырубает легкие – леса и засоряет кровь – воду рек и океанов. Можете представить себе ситуацию, что клетки какого-то органа решили запрудить какую-нибудь артерию, чтобы увеличить кровенаполнение части органа в ущерб другой части. И в результате получить некроз, пустыню. Как произошло с Аральским морем?

Я очень надеюсь, что это потребительство – временное явление и мы когда-нибудь, как клетки разумные (citus sapiens), свою раковую тактику пожирания природных ресурсов и засорения окружающей среды наконец прекратим и станем действительно нужной и важной для Земли, как для организма, тканью.

Кстати, чтобы не обвиняли меня в излишнем фантазировании: есть очень важное сходство между клетками человеческого организма и человеком как живой и весьма инициативной клеткой организма Земля. Это сходство – очень узкие параметры комфортных условий внешней среды для жизни человеческого организма и его клеток. Как клетки организма привязаны к нему и без него жить не могут, во всяком случае если им не создавать подходящие условия искусственно, так и человек привязан к физико-химическим постоянным планеты Земля.

К ПРИМЕРУ, ТЕМПЕРАТУРА ЧЕЛОВЕЧЕСКОГО ТЕЛА, ТО ЕСТЬ ОКРУЖАЮЩЕЙ СРЕДЫ ДЛЯ КЛЕТОК, ОКОЛО 37 °C. И ЗА ПРЕДЕЛАМИ ДИАПАЗОНА 35–38 °C КЛЕТКИ ЧУВСТВУЮТ СЕБЯ НЕКОМФОРТНО.

Они болеют, разрушаются, могут сильно измениться (вплоть до появления раковых образований). Если холодно – останавливаются биохимические реакции, если жарко (39–40 °C) – разрушаются белки и гибнут клетки.

Для человека комфортная температура атмосферы составляет +25 °C, влажность – не выше 60–70 %[8], умеренная интенсивность солнечного ультрафиолета, отфильтровывание атмосферой короткого излучения. Недостаток УФ нарушает усвоение кальция, у детей вызывает рахит, у взрослых – остеопорозы, мышечную астению, нарушение регуляции артериального давления, а избыток ультрафиолетового излучения обжигает кожу и может вызвать образование раковых опухолей.

Точно так же легко найти параметры и по кислотно-щелочному балансу: в крови (в зависимости от ее вида) этот параметр колеблется между 7,37–7,44, венозная кровь кислее (показатель кислотности, РН, ближе к 7), артериальная – щелочнее, 7,44–7,45. И если этот показатель окажется слишком высок или слишком низок, клетки крови и стенок сосудов начнут разрушаться и погибать.

Мы привязаны к гравитационной постоянной – ускорению свободного падения на Земле 1g = 9,8 м/сек2. Если этот физический параметр вдруг изменится, мы начнем болеть, большая часть из нас погибнет, дети станут развиваться в иных условиях и тоже изменятся.

Происходило ли подобное раньше? Конечно. 65 млн лет назад в Центральной Америке астероид под углом 60 градусов с юго-востока, то есть против направления вращения Земли, врезался в нашу планету со скоростью 12 м/сек, неизбежно изменив скорость ее вращения: замедлив ее, и при этом поднял миллионы тон гипсового грунта и водяного пара в верхние слои атмосферы. Он создал огромный кратер Мексиканского залива, сформировал полуостров Юкатан и изменил сразу два важнейших параметра Земли: увеличил гравитацию за счет снижения центробежной силы и на десятки лет критически уменьшил количество УФ, поступающего в биосферу, устроив «ядерную», или, правильнее сказать, «астероидную» зиму.

Все крупные животные – например, динозавры, которым было комфортно при пониженной гравитации в теплом, прогретом и влажном климате, где легко вырастали высокие и богатые зеленой массой растения, – очень быстро стали погибать: сперва из-за холода и давления собственного веса, а затем и от голода. Фактически за первый же год погибло до 90 % всех гигантских рептилий, придавленных своим весом.

Вот такую «химиотерапию» Вселенная провела Земле, сменив клеточный состав ее организма в пользу более мелких млекопитающих животных.

Гравитация, состав атмосферы и сила солнечного ветра определяют всю жизнь на Земле. Именно поэтому для нас, землян, невозможно долго и безопасно жить на Марсе или Луне. На Марсе уровень солнечного света и тяготение в три раза ниже земного, на Луне же отсутствует атмосфера, а сила тяготения в шесть раз слабее земной. Чрезвычайно вредно жить в космосе, где совершенно нет тяготения, а слабая оболочка космических аппаратов недостаточно защищает людей от космических и солнечных лучей.

Есть и еще один очень важный параметр Земли, от которого мы чрезвычайно зависимы: наклон оси вращения планеты. Он обеспечивает смену сезонов, а имея обратное вращение самой оси и отклонение ее при этом вращении, регулярно дарит нам то райский сад субтропиков, то ледниковый период, которые длятся от сотен до десятков тысяч лет. Если бы не это явление, как фауна, так и флора смогли бы существовать на весьма узких полосах суши, а вода в океане циркулировала бы совсем по иным принципам, чем сейчас. Именно периодичность изменения условий среды обитания побудила различные популяции людей к движению по поверхности Земли и развитию технического прогресса, который составил конкуренцию природной эволюции.

Масштабная катастрофа, произошедшая с динозаврами, и смена некоторых видов животных и растений в результате большого ледникового периода – это серьезный намек, вразумление человечеству, что нужно изменить отношение к своему большому организму, частью которого оно является, и определить наконец свою функциональную задачу в мире. Вероятно, мы регулярно оказываемся свидетелями таких вразумлений, осталось сообразить, что же они означают. А сообразив, изменить отношение к Земле, думать о ней как о своем организме, а не как о стоянке туристов, которые уходят, за собой ничего не убрав.

Главное отличие людей от клеток наших организмов не в том, что мы разумные или можем что-то особенное. Оно состоит в том, что никакие клетки организма не считают себя лучше других клеток. Они все равны по статусу, они знают и понимают, что права и обязанности у них абсолютно одинаковые. Любые отличия клеток рациональны. Факт рождения клетки в коре головного мозга не делает нейрон более важным, чем лейкоцит, клетка печени, почки или слизистой желудка, выделяющая соляную кислоту в желудочном соке.

Давайте сравнение человечества и клеток организма человека сведем к конкретному сходству, а более подробно к этой параллели вернемся в заключении этой книги. Там и попытаемся понять, в чем же главная функция человечества во Вселенной и конкретно на Земле.

Ведь не зря же мы придумали себе всякие статусы и признаки, ищем и находим индивидуальные смыслы существования. Или все-таки весь смысл в заповеди «плодитесь и размножайтесь»? Для разумного существа как-то очень уж примитивно, правда? Хочется чего-то такого, особенного. Извращенного. Разве не так? Но почему-то природе Земли это не нравится, и она решает за всякие извращения этой заповеди наказать нарушителей разными болезнями. Но человек способен на разные придумки. Не случайно он – Разумный.

Мне вспоминается стишок Валентина Берестова:

  • Он, дескать, мал. Он, дескать, глуп,
  • но наш глупыш, собой владея,
  • С большим умом осуществлял
  • Свои дурацкие идеи.

Эта «дурацкая идея» – информация. Мы с древних времен создали средство для ее хранения: письменность. Мы использовали для этого различные носители: воск, мягкую глину, грифель, дерево, камень, бумагу, магнитную ленту, грифельные валики и прочие более сложные предметы. Для нас информация – знаки, сложенные в слова, фразы и смыслы.

Для клеток информация – это белки, а хранилище ее – нуклеиновые кислоты: дезоксирибонуклеиновая и рибонуклеиновая (ДНК и РНК). Вся информация об организме есть в каждой клетке и хранится в ядре, в ДНК. Именно ДНК – главный архив, где все молекулы скручены в особые структуры – хромосомы.

Как клетка общается с другой клеткой? Есть два способа. Первый – белки, которые клетка создает и передает другой клетке. Это больше напоминает сигнальные флаги, которыми корабли передают сообщение в море, или разговор по телефону. Более сложный способ – передать фрагмент РНК или ДНК, или очень сложное вещество, цитокин. Это сообщение условно похоже на приказ, циркуляр, инструкцию или методическое указание по выполнению какой-либо работы.

В человеческом сообществе информацию передают с помощью речи: устной, письменной и цифровой. Внутри организма человека информацию передают особые белки, в организме «Земля» эту роль играют вирусы.

Вирусы – древнейший способ обмена информацией между клетками, существовавший еще в те времена, когда на планете никого, кроме одноклеточных организмов (бактерий, инфузорий и амеб), не было. Таких жителей на планете обитало много, нужно было как-то общаться. Самый простой способ – обняться и обменяться кусочками белка и ДНК-РНК. Но это слишком близкое общение ограничивало круг миллиметрами окружающего пространства, и если информация начинала расходиться в обществе одноклеточных, то обязательно срабатывал принцип «испорченного телефона», так что пославший сообщение организм уже через полметра передачи не узнал бы свой «текст». Чтобы информация сохранялась во внешней среде, ее нужно было запаковать, как письмо, в конверт. А на конверте сделать запись: кому и от кого. Так появились первые вирусы – как корреспонденция одноклеточных. Принцип этот сохранился и в многоклеточных организмах.

Но клетки жутко любопытные, им никак не удается внушить, что читать чужие письма – дурной тон. Это так неприлично, что в огромных организмах иммунной системе приходится убивать зараженные вирусом клетки, пока некоторые «глупости» и «слухи» не разнеслись по всему организму и даже всему виду. К сожалению, это удается не всегда, особенно если письмо новое, незнакомое и заражено свежими слишком опасными идеями. Выявляют больных и зараженных оперативные работники организма: белые клетки крови, лейкоциты, сотрудники силовой структуры – иммунитета.

Прежде чем мы начнем разговор о жидкой ткани, давайте вспомним: а что же это за пространство в организме, в котором кровь, по сути, живет и при этом непрерывно движется?

Автострады, шоссе, дороги…

Кровь в своем рабочем состоянии всегда находится в сосудах и капиллярах.

Всего в организме человека встречаются три типа сосудов: артерии, вены и лимфатические сосуды, которые иногда называют протоками. Между кровеносным сосудом и протоком существует разница в строении стенки, как и между артерией и веной.

Рис. 1. Кровеносные сосуды

Клетки крови, не совершающие особого движения, перемещения из одной части организма в другую, в основном находятся в органах, где они работают, в тканях и межклеточном пространстве.

Например, те же лейкоциты, сидящие в засадах на границе в коже и слизистой оболочке, или эритроциты – донесшие свой груз О2 или СО2 до «заказчика».

В сосудах клетки движутся, и весьма быстро, работать им там просто некогда. Так что, по моему убеждению, сосуд – все-таки дорога, а не обиталище.

Есть еще один аргумент в пользу того, что сосуды – это дороги. Когда мы берем кровь на анализ, то клетки белой крови – лейкоциты и особенно лимфоциты – находятся в состоянии, которое я назову транспортным. Путешествующие люди всегда держат наготове две вещи: деньги и документы. Так и у клеток. Все рабочие ферменты (как инструменты) находятся в неактивном состоянии, о том же, что это за клетка, свидетельствуют ее документы – особые белки на внешней поверхности мембраны – и ферменты, с помощью которых клетка-путешественник ест, то есть потребляет глюкозу или жир из плазмы в зависимости от «назначенной ей диеты». Рабочий человек по дороге на работу инструменты в руках не держит, так и клетки крови.

Итак, сосуды – дороги. И от качества этих дорог, как в любой стране, зависит и качество экономики, и даже сроки жизни, существования государства. Хорошие дороги, отсутствие пробок и заторов, возможность доставлять продукты или боеприпасы к местам военных действий в срок и в полном объеме, а мусор своевременно вывозить – и жители в городах, и бойцы на поле битвы ни в чем не нуждаются и не болеют.

Крупные сосуды, такие как аорта, легочная артерия, подвздошные и бедренные артерии, полые или портальная вены, называются магистральными. Начало дороги всегда там, где начинается движение по ней. В странах они обычно идут от столицы или крупного города к периферии, от крупного города в сторону деревень, из деревни в поле или лес – к месту, где нужно работать, большие дороги, магистрали имеют свои имена: Аорта, Легочный ствол, верхняя или нижняя Полая вена, Воротная вена и т. п.

От широкой дороги с сильным движением берут начало мелкие, однополосные. И что важно понять сразу: все дороги-сосуды имеют одностороннее движение. Я напоминаю об этом, потому что за аллегориями вы можете вдруг забыть этот важный факт.

Артерии берут начало на выходе из сердца. Собственно, название артерии и обозначает, что этот сосуд несет кровь от сердца, даже если эта кровь по составу венозная. По дорогам грузовики ездят и порожние, и с мусором, и с полезными вещами, состав этих машин может быть разным.

ДЛЯ ВЕН И АРТЕРИЙ ЕСТЬ ПРАВИЛО: СОСУД, НЕСУЩИЙ КРОВЬ ОТ СЕРДЦА, – АРТЕРИЯ, А К СЕРДЦУ – ВЕНА, НЕЗАВИСИМО ОТ СОСТАВА КРОВИ В КОНКРЕТНОМ СОСУДЕ.

И если все артерии начинаются от сердца и аорты, то все вены начинаются от капилляров в тканях и, подобно ручейкам, собирающимся в реки, сливаются из мелких во все более крупные, постепенно переходя в нижнюю и верхнюю полые вены, которые уже впадают в сердце. Из сердца же выходит легочная артерия[9], которую иногда называют легочным стволом. Она короткая и толстая и сразу делится на правую и левую, а затем расходится по долям легких: в правое – три ветки, в левое – две.

Все сосуды (артерии и вены) объединены в два круга: большой и малый. Каждый круг замкнут на сердце, как насосе, качающем кровь. Правая половина сердца – по малому кругу, через легкие, левая половина – по большому, через весь организм.

Газообмен СО22 и наоборот, О2>СО2, осуществляется в капиллярах. Капилляры – не сосуды! Хотя тут мнения ученых разошлись:

– У капилляра есть стенка? Значит, сосуд.

– Ну, какая это стенка? Сплошные дыры! Нет, это не сосуд, а недоразумение.

– А вот и не подеретесь! Какая разница? Это пространство (космос) между артериолой и венулой, немного оформленное клетками интимы в один слой с огромными «окнами», через которые в тканях и происходит обмен газами и веществами.

– У капилляра есть артериальный и венозный концы, значит, все-таки сосуд?!

– Не обязательно. Мало ли у чего есть какой конец… Даже два. Не достоин он называться сосудом!

Артериола и венула – это самые маленькие сосудики, диаметр которых чуть больше капилляра, но от него они отличаются тем, что имеют уже нормальную сосудистую стенку.

Почему я делаю такой упор на эти детали?

Потому что сосуды имеют стенку, состоящую из нескольких слоев, и в венах, и артериях тоже есть сосуды и капилляры. Не смейтесь, это правда, и такие сосуды самые многочисленные в человеческом организме. Их назвали «сосуды сосудов» – vasa vasorum. Если в венулах и артериолах капилляров нет, то чем крупнее сосуды, тем больше в них и того и другого. Потому что сосудистая стенка – это ткань, состоящая из клеток, которой тоже надо «дышать и есть».

Рис. 2. Послойное строение кровеносного сосуда среднего калибра

Сосуды сосудов играют очень важную роль в поддержании артериального давления, как и самые мелкие сосуды, в стенке которых имеются мышечные волокна, позволяющие изменять диаметр просвета.

Поэтому, если случается беда и количество крови вдруг начинает уменьшаться, первыми свой запас отдают vasa vasorum, а потом и более крупные сосуды сокращаются, выжимая из себя, как из губки, все клетки, все эритроциты. Выглядит это как бледность и ощущается как похолодание кожных покровов у больного. Кровь быстро уходит из кожи, подкожной и жировой ткани, потом потихоньку выжиматься начинают даже внутренние органы, но это крайне скверное развитие событий, и в такой ситуации вытащить больного почти никогда не удается, поэтому крайне важно этого не допускать.

Состояние недостатка крови обычно сопровождается потерей сознания, и на первом этапе это называется коллапсом (collapsus – «упавший»): падает артериальное давление, падает без сознания и человек. От шока коллапс отличает то, что шок – это обычно реакция на внешнюю причину или боль, возникающую из-за травмы или острой ситуации, связанной с нарушением кровоснабжения какой-нибудь ткани или органа. Так, шок, вызванный потерей крови, называется геморрагическим (от haemorragia – кровоизлияние[10] или кровотечение).

С чем из нашей жизни можно сравнить мельчайшие сосуды? Это проезды и проходы между домами, тогда как капилляры – это уже дорожки и тропинки прямо к дверям и окнам.

Любую дорогу можно искусственно сузить и расширить, сосуд тоже сужается и расширяется – подчиняясь командам, передающимся по нервным волокнам. Эти команды передает центр в головном мозге, который называется сосудодвигательным. Потому что управляет движением стенок сосудов. Сосудодвигательный центр относится к вегетативной части центральной нервной системы и находится в продолговатом мозге между головным и спинным мозгом.

Кроме нервной регуляции есть регуляция гормональная, ее еще называют гуморальной, то есть зависящей от содержания в крови определенных веществ – регуляторов, или медиаторов (посредников). Медиаторы работают не на весь организм, а на отдельный участок ткани или орган: в коже, сердце, печени или других местах.

Управление диаметром просвета артерий и вен – очень важный и довольно сложный механизм. Чем уже может стать сосуд, тем выше будет периферическое сопротивление сосудов давлению и току крови (в дальнейшем этот термин мы сократим до ПСС и периодически будем о нем вспоминать).

Сужение и расширение позволяют выбросить кровь из «депо» или, наоборот, уменьшить ее количество в крупных сосудах и кровеносном русле. Это бывает нужно, чтобы не допустить потери сознания от кровопотери, и происходит на первой фазе шока при кровотечении, до или после остановки кровотечения.

А почему так важно при ранении какое-то время не терять сознания? Чтобы дать возможность человеку убраться из опасного места в безопасное, где «отключиться» уже можно, и позволить организму или справиться с проблемой и вернуться в сознание, или умереть.

ПОТЕРЯ СОЗНАНИЯ ПРИ КРОВОТЕЧЕНИИ, КАК И ЯВЛЕНИЯ КОЛЛАПСА, СУБЪЕКТИВНО ВОСПРИНИМАЮТСЯ ЧЕЛОВЕКОМ КАК НЕЧТО СТРАШНОЕ. НО ОНИ ВТОРИЧНЫ, ЭТО РЕАКЦИЯ РАБОТЫ МОЗГА И СОЗНАНИЯ НА СОБЫТИЕ, КОТОРОЕ, ЕСЛИ НИЧЕГО НЕ ИСПРАВИТЬ И НЕ ПРЕРВАТЬ ПОТЕРЮ КРОВИ, МОЖЕТ ПРИВЕСТИ К СМЕРТИ.

Оттого и случается, например, обморок при виде крови. Это подсознательная защитная реакция организма на сигнал «опасность»!

Есть более прагматичная причина, по которой раненый с кровопотерей теряет сознание еще до того, как это приведет к коллапсу. Это необходимость привести организм в состояние покоя, уменьшить потребление энергии, дать возможность крови наилучшим образом распределиться и, главное, облегчить ее поступление в мозг. И чтобы сердцу стало легче его питать, нужно все органы расположить горизонтально.

Кроме этого, раненый и постоянно двигающийся человек тревожит рану, которая, находись он в состоянии покоя, возможно, давно бы уже закрылась тромбами и начала заживать. Но человек все теребит ее, теребит, и поэтому кровь никак не остановится и продолжает вытекать из сосудов наружу или в полость внутри организма.

Что происходит в организме при травме? Ломаются и разрываются сосуды, рвутся ткани. В них выходит кровь, содержимое разбитых клеток. Реагируют на это в первую очередь болевые рецепторы. Боль ограничивает подвижность в поврежденном месте, а в ответ на разрушение стенок сосудов организм запускает тромбообразование, чтобы остановить кровотечение.

Одновременно потеря крови приводит к централизации кровообращения, то есть кровь уходит из здоровых тканей, которые могут перенести голодание без особого вреда, и перебрасывается из мелких сосудов в крупные. Это явление временное, некоторые ткани спокойно выдерживают такое состояние несколько часов. Но нервная ткань не входит в их число: клетки мозга не переносят голодания и отсутствия кислорода дольше 5–7–10 минут в зависимости от температуры тела и окружающей среды.

Как уже говорилось, артерии берут начало пути от сердца, и первая на этом пути аорта. Этот сосуд очень плотный, но не имеет мышечного слоя в стенке. Зато сама стенка крепкая – для того чтобы выдерживать очень высокое давление: артериальное систолическое в момент сокращения сердца (систолы) и диастолическое в момент его расслабления (диастолы). Диастолическое давление возникает от ПСС. Так что на стенку аорты постоянно оказывается давление изнутри. Именно это давление характеризуют «нижние» цифры, которые показывает аппарат для измерения давления – тонометр.

Снаружи аорта тоже под давлением, но уже меньшим, оно зависит от напряжения мышц, образующих брюшную полость. Если мышцы живота сильно напряжены, то давление в аорте намного больше систолического. Бывает, что это приводит к разрыву аорты или образованию выпячивания, или истончения стенки.

Разрыв аорты часто начинается с расслоения стенки и образования аневризмы – подобия мешка, в котором структура стенки тоньше, чем у здорового сосуда. Аневризма активно пульсирует и напоминает такое образование, как грыжа. Представьте, как выглядела бы грыжа на автомобильном колесе или садовом шланге. Аневризма образовывается в результате двух причин: врожденной слабости «коллагеновой арматуры» и регулярных критических повышений артериального давления.

Рис. 3. Аорта

Стенка аневризмы – это постоянная угроза разрыва. Аневризма может появиться где угодно: в животе, в легких, но наибольшую опасность представляют аневризмы артерий мозга и аорты. В головном мозге аневризма небольшой артерии может стать причиной смерти. Она может образоваться в любом возрасте: и в детстве, и после травм черепа (тяжелых сотрясений), и как результат гипертонических кризов – резких повышений артериального давления.

Теперь поговорим о венах. Они начинаются от венул в тканях и органах, собирают из капилляров венозную кровь. Восходящее движение крови в сторону сердца обеспечивает шевеление мышц и органов вроде кишечника, а также приводит в движение кровь клапаны внутри вен. Движения тканей, мышц и пульсация проходящих рядом с венами артерий также вызывает сокращение вен, а клапаны, расположенные в их просвете, не позволяют крови двигаться в обратную сторону. Это как коридор с дверями, пройдя которые, обратно уже не выйдешь. И каждый следующий коридор чуть шире предыдущего.

Давление в венозной сети намного ниже артериального и измеряется не ртутным, а водным столбом.

Именно куда меньшим давлением объясняется различие в строении вены и артерии: стенка вены заметно слабее[11]. Если артериальное давление зависит от двух факторов: силы сердечного выброса крови и тонуса периферических артерий, то венозное держится в основном за счет движения крови от тканей к сердцу и даже в случае остановки сердца довольно долгое время сохраняется в организме, наполняя кровью легкие и вызывая их отек.

Венозная сеть обширна, имеет особые образования: сплетения, или резервуары, например синусы. Между артериальной и венозной системой имеются особые перебросы, закрытые со стороны артерий клапанами, они называются «шунты».

КЛАПАНЫ ОТКРЫВАЮТСЯ, ЕСЛИ ДАВЛЕНИЕ В АРТЕРИАЛЬНОЙ СИСТЕМЕ СТАНОВИТСЯ НИЖЕ, ЧЕМ В ВЕНОЗНОЙ, НАПРИМЕР ПРИ КОЛЛАПСЕ ИЛИ КРОВОТЕЧЕНИИ. ЭТА МЕРА ПОЗВОЛЯЕТ ПЕРЕРАСПРЕДЕЛИТЬ КРОВЬ В ТЯЖЕЛЫХ СОСТОЯНИЯХ.

Иногда эти клапаны оказываются дефектными и не закрываются. Такие открытые шунты называются патологическими и могут вызывать серьезные проблемы вплоть до кровоизлияний в ткани органа и разрыва вен.

Вены нижней части тела собираются в нижнюю полую вену, вены верхней половины тела и головы – в верхнюю полую вену, обе вены сливаются, впадая в правое предсердие сердца.

Вены кишечника, собирающие кровь, обогащенную полезными молекулами различных веществ из расщепленной и всосавшейся пищи, со слизистой, сливаются в большую вену, которая впадает в венозную сеть печени и входит в этот орган через «ворота печени», которым вена и обязана названием «воротная», или vena porta. А все вены, сливающиеся в этот ствол, называются системой портальной вены.

Рис. 4. Круги кровообращения организма

Мы подошли к необходимости описать такую важную систему дорог, как круги кровообращения.

Невозможно понять принцип движения крови по кругам, если не разобраться в том, как устроено сердце. В контексте кровообращения сердце – это четырехкамерный автоматический и автономный[12] насос, разделенный на две половины – правую и левую.

Правая часть сердца качает венозную кровь по малому кругу кровообращения, а левая – артериальную по большому. Малый круг – это сосудистая сеть легких. Большой – сосудистая сеть всего организма. Представили пропорции? В сотни раз малый меньше большого, и объем крови в этих кругах тоже отличается. Поэтому правая половина сердца по своей насосной функции раза в четыре слабее, чем левая, а давление в малом кругу намного ниже давления в большом.

Давление между сосудами, выходящими из правого желудочка, загоняющими кровь в легкие, и сосудами, выводящими из легких перед входом в левое предсердие, почти одинаковое, разница составляет очень незначительную величину. Если в сосудах между легкими и левым предсердием давление по какой-то причине начнет расти, вода в крови станет наполнять легкие и пениться.

Часто при сильных физических нагрузках плохо тренированное сердце не справляется с поступающей из легких кровью, и вода пропитывает ткань легкого, снижая функцию газообмена. Тогда возникает чувство нехватки воздуха, одышка и потребность в отдыхе. Если не снизить нагрузку, вода из плазмы крови выйдет в просвет альвеол и начнет пениться – разовьется отек легких. От этого можно умереть.

Такие отеки на финише случаются со спортсменами-чемпионами. Телекомментаторы зрителям не доставляют удовольствия видеть, как задыхаются бегуны на финише, как медики оказывают им помощь, дают дышать кислородом со специальными препаратами, гасящими пену.

Кроме артериальной и венозной крови немалую долю жидкой ткани в организме составляет такая субстанция, как лимфа. Она образуется из межклеточной жидкости, по своему составу похожа на плазму крови, очень жирная, и в ней обнаруживают массу белых клеток крови – лимфоцитов. О них и поговорим в следующей главе.

Тайные дороги лимфоцитов

Внимательный читатель, а особенно те, кто немного разбирается в медицине и уже сталкивался с исследованиями крови, могут сказать: «Стоп. Как же это получается, что моноцит или нейтрофил хватают микроб и тащат в лимфоузел? Ведь при анализе в крови не обнаруживаются никакие нейтрофилы или моноциты с микробами внутри. Как же и где это перетаскивание происходит?»

Вам приходилось видеть в лесу асфальтированные или бетонные дороги, на которых совсем нет машин? Или, проезжая по автотрассе, замечать странные съезды со шлагбаумом или без, но со знаком «проезд запрещен» – «кирпичом»? Это секретные дороги, по ним перемещаются военные машины. В организме таких «тропочек» очень много и все они входят в единую лимфатическую сеть. Лимфатические протоки есть во всех тканях и органах. Обычно вторжение микроорганизмов обнаруживается лейкоцитами в первые часы. Это время составляет инкубационный период и определено скоростью размножения микробов, накопления выделяемых ими токсинов и проникновения ядов в кровь.

Рис. 5. Лимфатическая сеть человека

Сколько времени нужно лейкоцитам, чтобы донести микробов от мозоли на большом пальце ноги до ближайшего лимфоузла? Если считать от момента натирания мозоли до появления воспалительной дорожки по ходу лимфатического протока и до набухания в паху группы лимфоузлов, то от 3–4 часов до суток. Максимальная скорость подъема – примерно 1 см в час, а скорость распространения воспаления с этим почти никак не связана.

Дело в том, что моноциты далеко не всегда доносят «языка». Поэтому, пока реакция иммунитета не стала общей (а это происходит после того, как микроб оказывается в лимфоузле), в первичном очаге идет «бой местного значения». Каждый моноцит тащит «языков» в лимфоузел, и некоторые упускают, иногда микроб оказывается слишком силен, и моноцит погибает в протоке. Тогда микробы продолжают размножаться, благо еды в лимфе очень много, в основном жиров.

И поскольку живые моноциты-макрофаги норовят проглотить захватчиков и тащить их дальше, к лимфоузлу, у микробов очень мало времени для размножения. Они размножаются вопреки всему, иногда даже внутри нейтрофила или макрофага. Все, что успевает микроб в лимфе, – это наскоро ухватить несколько молекул белков, жиров и углеводов теми порами, которые еще не заклеились комплементом, пропердином и калликреином[13], как клейкой лентой; если повезет, один-два раза размножиться; или выделить разные экзотоксины прямо в лимфу[14].

Зачем им последнее? Во-первых, больше некуда, а во-вторых, у некоторых микробов испражнения весьма токсичны и обладают разрушающим действием на все клетки в лимфе и лимфоциты и, что очень важно, на стенки сосудов и на мембраны эритроцитов. Если токсины вызывают массовое разрушение эритроцитов (гемолиз), при выходе свободного гемоглобина в большом количестве в плазму развивается очень тяжелое осложнение – острая почечная недостаточность. Микробы, разрушающие своими токсинами эритроциты, называются гемолитическими (потому что вызывают гемолиз).

Экзотоксины так названы не случайно. Они действительно токсины – яды. Потому что пагубно действуют на клетки оболочки (интимы), выстилающей любые сосуды, лимфатические тоже. Могут они повреждать и специфические клетки: печени, почек, мозга или сердца или суставов.

Я буду периодически вспоминать интиму, потому что ее значение в крово- и лимфообращении огромно. И первая причина этой важности в том, что, воспаляясь, интима может привести к склеиванию сосуда, особенно если он очень тонкий. Такое закрывание называется облитерацией.

Сосуд не просто склеивается фибрином, он буквально зарастает на некотором протяжении, так что его потом уже ничем не пробить, не растворить. Если сосуд потолще и просвет в нем побольше, то воспаление интимы приводит к возникновению бугра или бляшки. Это явление – образование бугров и бляшек в сосудах – называется «атеросклероз». Вообще, sclerosis – это гибель высокоорганизованной ткани (печени, мозга, сердца, почек и т. п.) и замещение ее соединительной тканью – низкоорганизованной, весь смысл которой в том, чтобы просто держать то, что ее окружает, а работать как-то иначе, например как клетки печени, сердца, почек и иных органов, она не может. Замещение клеток мозга соединительной тканью – тоже склероз. В таком случае он приводит к нарушению важной функции мозга – памяти, и потому этот термин вошел в обиход обывателей. Забыв о чем-то, мы часто произносим: «Склероз!» – и хлопаем себя по лбу. Но, пожелтев из-за склероза печени, так не делаем… Хотя и там и там процесс один: специфические клетки заменяются соединительными, а орган утрачивает свои функциональные способности.

Однако вернемся к лимфатическим сосудам. Как и в кровеносной системе, они имеют капилляры (тупиковые сосуды), протоки.

Капилляры собирают жидкость из межклеточного пространства и отправляют в сосуды, те, в свою очередь, соединяясь друг с другом в сеть, поднимают лимфу к лимфатическому узлу, а уж оттуда протоки собираются в один главный лимфатический проток, из которого лимфа сбрасывается в верхнюю полую вену. Это хорошо видно на схеме.

Рис. 6. Слияние лимфатических сосудов в главный проток и его впадение в левую подключичную вену

Как и венозная сеть с ее капиллярами, лимфатическая сеть начинается в межклеточном пространстве (МКП). Она содержит до 30 % всей воды организма.

В лимфатических сосудах есть мышечные волокна и клапаны, как в венах, поэтому движение лимфы подчинено тем же законам, что и движение венозной крови. Нужно, чтобы работали мышцы, между которыми проходят сосуды. Клапаны не дают лимфе течь назад.

Внешне лимфа выглядит как желтоватая мутная жидкость с той же соленостью, что и кровь. Но в лимфе много жиров, то есть основной транспорт жира из тканей в кровь идет через лимфатическую сеть.

Если из-за травмы или воспаления лимфатический сосуд или проток закрывается, перерезается или удаляется[15], отток лимфы из тканей или части тела прекращается, а в этой области происходит локальное ожирение.

Рис. 7. Слоновость ноги при лимфостазе

Лимфатических сосудов нет в хрящах, роговице глаз и хрусталике.

Долгое время считалось, что лимфатической сети нет в головном мозге, однако в 2015 году было доказано наличие лимфатических сосудов и в центральной нервной системе: в головном и спинном мозге.

Итак, лимфатическая сеть – это тайные дороги лейкоцитов, по которым они и двигаются после боя к месту отдыха, если у них вообще бывает отдых. Но чаще всего они направляются к отделению полиции – лимфатическому узлу, где отчитываются о выполненной работе и получают новое назначение. Ведь лимфоциты живут 80–120 суток. Все это время они выполняют поручения, но обычно какое-то одно. Переучивать лимфоциты слишком накладно. Организму проще и выгоднее взять свежеиспеченную клетку и обучить ее, чем гнать по новой в университет – в вилочковую железу (тимус) – и в лимфоузел отправлять старый лимфоцит на переподготовку.

Таким образом, единственное, что может лимфоцит-ветеран, – это поделиться знаниями и опытом с молодежью в лимфатическом узле. И, может быть, повторить свою работу с В-клетками еще раз, если угроза из очага воспаления не исчезла.

Именно в лимфатическом узле Т-лимфоциты проводят инструктаж В-лимфоцитов. И как мы помним, лимфа всегда движется от периферии к центру – к главным сосудам большого круга кровообращения.

Всем нам иногда приходится принимать лекарства внутрь или вводить в кровь инъекцией. Это приводит к тому, что концентрация препарата распределяется по всей воде организма, но работает-то он в конкретном месте.

Рис. 8. Строение лимфатического узла[16]

Вся медицина ориентирована на факторы болезни: местные и общие. При местном воспалении лечение тоже проводится обычно местное. И до определенного момента лечение фокусируется там, где присутствует болезнь. Если вы сами проанализируете и сопоставите болезни и методы, то убедитесь в правильности этого утверждения. Чем начинаем лечить ангину? Полосканиями и антисептическими пастилками. Ушиб лечим прикладыванием холодного на место травмы. Рану обрабатываем антисептиком и заживляющей мазью или гелем.

И только если местно проблему не решить, приступаем к приему «общих» препаратов.

Иммунная система поступает точно так же. Она концентрирует борьбу непосредственно там, где происходит вторжение агрессора или появляется внутренний враг – раковая клетка или раковая ткань (группа клеток).

Но она всегда действует по очереди в двух планах: сначала местном и потом в общем.

Так, В-лимфоциты, задача которых вырабатывать специфические антитела, превращаются в плазматические клетки – оседлые в непосредственной близости от очага воспаления и насыщают межклеточное пространство вокруг воспаления иммуноглобулинами. Именно их мы обнаруживаем в крови, потому что они естественным образом попадают туда, но их максимальная концентрация обычно там, где нужны активные действия.

Часть 1

Смотр личного состава. Анатомия и физиология крови

Белые и красные

Если бы не галантерейщик Антони ван Левенгук[17] из голландского города Делфта, который любил в свободное время шлифовать линзы, чтобы рассматривать мельчайшие объекты в пыли и воде, мы бы довольно долго не имели возможности узнать, что такое кровь, и, может быть, до сих пор считали бы ее «одним из соков, текущих по организму»[18].

Любопытный голландец однажды попытался рассмотреть каплю крови в свой микроскоп и был очень удивлен, увидав там в основном красные шарики, которые позже назовут клетками эритроцитами.

Лейкоциты Левенгук сразу разглядеть не мог из-за их прозрачности по сравнению с окрашенными гемоглобином эритроцитами. Уже потом он заметил их, похожих на размазанных бесформенных амеб.

Много ли немедиков рассматривают кровь в микроскоп? У всех ли дома есть микроскопы? Ваш стоит на кухне в шкафу? Вы через него разглядываете продукты, например на предмет роста возбудителей, или изучаете семейный бюджет? Ответы очевидны. Кто-то знает про клетки крови из школьного курса, но большинство обычно видит кровь при порезе пальца во время приготовления пищи или при заточке карандаша перочинным ножом.

ПРЕЖДЕ ЧЕМ НАЧНЕМ РАЗГОВОР НЕПОСРЕДСТВЕННО О КРОВИ, СДЕЛАЕМ КОРОТЕНЬКИЙ ЭКСКУРС В ОСНОВЫ АНАТОМИИ.

Организм – это тело. Тело состоит из органов и мягких тканей, которые натянуты на скелет, состоящий из костей. Кости – тоже ткань: костная. Скелет – это каркас, органом его до сих пор не называли, хотя почему нет? Устроен он весьма непросто. Ткани – это совокупности клеток, однотипных по строению и близких по функциональным возможностям. Всего тканей в организме четыре: соединительная, мышечная, эпителиальная, нервная.

Органы – это структурные объединения однотипных тканей с возможными включениями разнотипных. Например, каркас органа из соединительной ткани – строма, а рабочая ткань – эпителиальная. Все органы и ткани пронизаны сосудами, по которым течет кровь и лимфа.

Что еще? Ткани и клетки, из которых они состоят, можно разделить на низко- и высокодифференцированные. Это как рабочие: чернорабочие и мастера высшего разряда. И тех и других много, сколько надо, но в случае гибели восстанавливаются быстрее чернорабочие, низкодифференцированные, и постепенно они замещаются мастерами по мере роста их квалификации. Чернорабочие – это обычно клетки соединительной ткани. В скорости восстановления им немного уступают клетки эпителия слизистых оболочек. Чем специфичнее ткани, тем сложнее и дольше они ремонтируются, тем дольше на месте их гибели сохраняется рубец из ткани соединительной.

Итак, что же такое кровь?

Кровь – это ткань организма, такая же, как мышцы, кости, кожа и т. п., но жидкая. Она относится к соединительным тканям, и в ней есть все присущие живой ткани компоненты: клетки, строма (своеобразный каркас, организующий ткань или орган) и межклеточное пространство. Отличает кровь от других тканей не только жидкое состояние, но и разнообразие клеток.

Все клетки крови делятся на белые и красные, строма – сосуды, в которых течет, движется кровь, и особый волокнистый белок фибрин, который образуется, если кровь сворачивается. А пока она жидкая и течет, он сохраняется в виде растворенного белка-предшественника – фибриногена.

Все межклеточное пространство крови заполнено водой с растворенными в ней различными органическими и неорганическими веществами.

Из чего еще состоит кровь человека?

Больше всего в ней эритроцитов. Они красные, не имеют ядра, а по форме похожи на бублик без дырки – двояковогнутый диск.

В крови также присутствуют тромбоциты, или, как их еще называют, кровяные пластинки, – они бесцветные и в десятки раз мельче эритроцита. В анализе они обозначаются сокращением PLT (platelets).

И, наконец, лейкоциты – бесформенные бесцветные клетки. Хотя по размеру лейкоциты больше эритроцитов, но в тысячу раз уступают им по численности.

В принципе, это три основных типа форменных элементов крови. Почему я не использовал слова «клеток»? Дело в том, что полноценные клетки в крови – только лейкоциты.

Почему? Напомню внешние характеристики животной клетки (рис. 9) из школьного курса биологии: «Окружена мембраной из двух слоев фосфолипидов, пронизанных белками-ферментами, заполнена цитоплазмой, в которой имеются ядро и органеллы: митохондрии, рибосомы, аппарат Гольджи и «клеточный центр».

Так вот, только у лейкоцитов есть полный набор этих компонентов и больше ни у кого.

Рис. 9. Схема строения клетки человека и животных

«Клеточная стенка»[19] – мембрана – это очень важная структура, она «кожа» клетки, строма, или скелет для укрепления внутри клетки органелл, чтобы они там не болтались, как в мешке. Мембрана животной (человеческой) клетки состоит из двух слоев фосфолипопротеидов. Очень важное свойство мембраны – полупроницаемость, то есть вода через нее проходит легко, а более крупные молекулы – с трудом или даже «за ручку» – принудительно, с помощью белков-ферментов.

Эритроциты в процессе эволюции отказались от клеточного ядра в пользу гемоглобина. Поэтому клеткой эритроцит можно называть только условно, все-таки ядро в юности у него было. Хиленькое такое ядро, напоминающее сетку, за это предшественников эритроцитов называют ретикулоцитами[20]. Однако перед тем как покинуть костный мозг и выйти на работу в свободное плавание, эритроцит окончательно избавляется от ядра. А вот остальные органеллы в нем есть, и митохондрии, и центр Гольджи и другие.

Тромбоциты же даже в юности не имели ядра и больше всего напоминают щепочки, которые невидимым ножом отрезаются от мембраны стволовой клетки в костном мозге. Собственно, поэтому их и назвали не клетками, а пластинками.

С лейкоцитами ситуация совсем иная. Это не просто клетки, а огромная семья различных клеток: от макрофагов-моноцитов (MON) до небольших, но очень многочисленных и воинственных нейтрофилов (NEY). О видах и классификации лейкоцитов будет сказано позже, в главе, посвященной исключительно им, а пока вкратце отмечу, что все лейкоциты делятся на два типа. Первый из них – гранулоциты, которые содержат зерна в цитоплазме. К ним относятся нейтрофилы (Нф), эозинофилы (Эф) ибазофилы (Бф).

Второй тип – агранулоциты. Они не содержат зерен в цитоплазме, имеют несегментированное ядро. В их число входят моноциты (мц) или лимфоциты (лц), причем существует огромное семейство из Т- и В-лимфоцитов. Агранулоциты еще называют мононуклеарами (что переводится как «одноядерные»).

Интерес биологов и морфологов к лейкоцитам обострился уже во второй половине XIX века, когда химических красок, необходимых для текстильной промышленности и прочих нужд, выпускалось достаточно. Изначально лейкоциты описывали по внешнему виду и по отношению к красителям. Почему? Чтобы увидеть лейкоциты в деталях, обнаруженные среди красных эритроцитов прозрачные клетки нужно было покрасить, и не только снаружи: требовалось обозначить контур мембраны, выделить внутренние элементы и ядро. Красители должны были проникнуть внутрь клетки и вступить в реакцию с различными веществами органелл и ядра.

Сейчас используются краски двух типов: кислые и щелочные. Клетки, которые окрашиваются только щелочным красителем, стали называть базофилами, от «базис» – основание (так химики называют щелочи)[21]. Если клетки любят только кислый эозин, то их называют эозинофилами. А если лейкоцит отлично окрашивается обеими красками или нейтральной (по Рh-уровню), то его называют нейтрофилом.

ПО РАЗМЕРАМ И ФОРМЕ ЯДЕР, А ТАКЖЕ ПО ОТНОШЕНИЮ К КРАСИТЕЛЯМ ЛЕЙКОЦИТЫ РАЗДЕЛИЛИ НА ДВА ВИДА: НЕЙТРОФИЛЫ И ЛИМФОЦИТЫ. НЕЙТРОФИЛЫ МЕЛЬЧЕ, ЛИМФОЦИТЫ КРУПНЕЕ.

Теперь несколько слов нужно сказать о жидкой части крови – этом «бульоне», в котором перечисленные форменные элементы путешествуют. Он называется плазмой крови и имеет очень сложный состав из белков, жиров в водорастворимой форме, то есть тоже связанных с белками, и углеводов – проще говоря, это в основном сахарá: глюкоза, фруктоза. Также там 0,9 % раствор поваренной соли Na+Cl- и в небольших количествах калий К+ и кальций Са2+, а еще совсем немного бикарбонатов COH- и фосфатов PO43-, которые относятся к так называемым буферам. В данном контексте буфер означает амортизатор. Обычно это соль, отдельные части которой в растворе могут, вступая в реакцию с ненужными агрессивными элемен-тами[22], гасить эту щелочную или кислотную агрессию и таким образом держать Ph в нужных пределах. Иными словами, они выравнивают кислотно-щелочной баланс в растворе. Это важно, поскольку плазма крови всегда должна сохранять стабильные параметры кислотно-щелочного баланса. Гемоглобин в эритроцитах и белки тоже тщательно следят, чтобы Ph крови не сильно отклонялся от нормы.

Спросите, а с чего это кровь вдруг будет или щелочной, или кислой?

Во время работы глюкоза сгорает, остается углекислый газ, а это что? Правильно, кислота! Но углекислый газ связан с гемоглобином, и если бы он поступал прямо в кровь, там была бы кока-кола с пузырьками! Ну или что-то вроде.

Кроме СО2 в крови оказываются органические кислоты, которые образуются, если тканям не хватает кислорода и глюкоза «не догорела». Это молочная кислота (МК), которую ненавидят спортсмены, пировиноградная (ПВК) и уксусная (УК). Для того чтобы эти хулиганки не отравляли кровь своим присутствием и нужны буферы, которые вступают с ними в реакцию и связывают их, лишая кислотных свойств. При этом временно образуются сложные соли. Почему временно? Потому что то, что может сгореть, обязательно сгорит в ближайшее время, как только найдется нужное количество молекул кислорода, а то, что сгореть не может, через почки или потовые железы обязательно удалится из организма.

ПОСЛЕ ЕДЫ В ЗАВИСИМОСТИ ОТ СОСТАВА СЪЕДЕННОГО В ОРГАНИЗМ МОЖЕТ ПОСТУПАТЬ НЕМАЛО ЩЕЛОЧНОЙ ПИЩИ, И ТОГДА В ДЕЛО ОПЯТЬ ВСТУПАЮТ БУФЕРЫ И ГАСЯТ ИЗБЫТОК PH ПЛАЗМЫ КРОВИ, СДВИГАЯ ЕГО В КИСЛУЮ СТОРОНУ.

Но важно знать, что Ph артериальной крови в норме чуть-чуть отклонен в щелочную сторону, а венозной – в кислую. К слову, в зависимости от части тела кислотность венозной крови тоже отличается: чем ниже, то есть ближе к ногам, тем кровь кислее, чем выше – тем ниже ее кислотность. Но значения эти в норме отличаются на сотые и тысячные доли. А вот если человек болеет или мало двигается, если мышцы не могут нормально гнать венозную кровь к сердцу и легким, то отличия Ph становятся значимыми и могут приводить к отравлению тех тканей, где кровь слишком кислая.

Кислая кровь сильнее и быстрее сворачивается, риск образования тромбов тем выше, чем кислее становится кровь.

Если кровь в артериях ближе к щелочной, а в венах к кислой, то бывает ли так, что артериальная тоже закисает, а венозная защелачивается?

Бывает. Артериальная кровь киснет чаще, и это намного вреднее, чем защелачивание венозной. Венозная стенка рассчитана на экстремальные отклонения, тогда как артерии в целом и выстилка их стенок в частности очень нежные и чувствительные к появлению лишних и довольно агрессивных кислот. Так же как и давление, они разрушают мембраны клеток и интимы сосудов, создавая в этих местах очаги для образования атеросклеротических бляшек и тромбов.

К кислотам нужно отнести сахарá – глюкозу и фруктозу, которые являются очень мощными окислителями и обжигают мембраны клеток, если их концентрация в крови выше 6,6 ммоль/л держится слишком долго, дольше 1–2 часов.

1 Стать хирургом, работать и при этом учиться в крупном городе в 1970–80-х было непросто. Многие интерны и ординаторы годами оставались ассистентами «на крючках», а получить доступ «к телу» можно было только во время дежурств, и то не всегда. – Здесь и далее, если не указано иное, примечания автора.
2 Как медицинская специальность в РФ трансфузиология появилась только в 1997 году.
3 Официально такой специальности и термина «служба крови» еще не было, поэтому по записи в трудовой книжке я потерял 11 лет врачебного стажа: был заведующим не пойми чего.
4 Здесь и дальше имеются в виду клетки крови, компоненты. Если речь идет о цельной крови, то это обязательно уточняется в тексте.
5 В те годы существовало правило заменяемости крови по принципу наличия агглютиногенов А, В. Получалось, что первую (нулевую) можно вливать любому реципиенту, вторую А – только в третью и четвертую (не считая своей), третью В – только в четвертую АВ, а четвертую – никому. Наличие агглютининов – антител в цельной крови – вообще не учитывалось. Их количество, вливаемое с дозой, считалось незначительным. Сейчас термин «агглютинины» не используется, есть групповые антитела или иммуноглобулины.
6 Доза (в стандартах 60-х годов ХХ века) – от 250 до 450 мл консервированной крови, в настоящее время – от 200–250 мл эритроцитной массы, что эквивалентно по количеству клеточной массы 400–500 мл цельной крови.
7 «Сказка странствий», режиссер А. Митта, 1983 г. Монолог Орландо в суде.
8 Круглогодичная погода на о. Таити в штате Гоа (Индия), Сан-Диего, Карибы, Канары, в общем субтропики-тропики.
9 Есть такой синдром, явление – тромбоэмболия легочной артерии (ТЭЛА). В большинстве случаев приводит к очень быстрой смерти. Причина: оторвавшийся в какой-нибудь вене тромб-эмбол, который закупоривает не основной ствол, а как раз одну из ветвей в одном из легких. И если эта ветвь слишком крупная, то резкий подъем давления в правой половине сердца и в его собственной венозной сети в момент систолы приводит к внезапной остановке автоматии сердца и смерти.
10 Эти события связаны с нарушением целости сосудистой стенки, в одном случае кровь выливается в полость или наружу – в случае ранения, а в другом, при кровоизлиянии, обычно кровь начинает пропитывать ткани. Так, из раны – кровотечение, а синяк (гематома) – кровоизлияние. Haemorragia на латыни обозначает оба эти понятия, поскольку акцент делается на вытекании крови из поврежденного сосуда, как при кровопотере, а не на том, куда она попадает: внутрь или наружу.
11 Обратите внимание на этот факт. Вены из голени берут для аортокоронарного шунтирования при ишемической болезни сердца. Это вынужденная мера, такие шунты, к сожалению, нормально работают максимум от двух до пяти лет, потом из-за слишком большой нагрузки и регулярных надрывов стенки воспаляются и зарастают – облитерируют.
12 Даже будучи отключенным от кровообращения и лишенным крови, сердце способно сокращаться примерно сутки.
13 Эти вещества выделяются клетками в качестве неспецифической защиты от микробов, и их можно сравнить с коровьими лепешками, в которые микроб вляпывается и начинает вонять. По этому запаху его быстрее находят лимфоциты и нейтрофилы.
14 Всего микроб выделяет два вида токсинов: экзо – это его прижизненные продукты, испражнения, и эндо – выделяющиеся в момент его гибели – его внутреннее содержимое. Часто эндотоксины намного ядовитее экзотоксинов. Поэтому с антибиотиками при серьезных воспалениях нужно быть осторожным, можно убить больного, спровоцировав выброс эндотоксинов при массовой гибели микробов.
15 Рожистое воспаление, вызванное гемолитическим стрептококком, может привести к закрытию лимфатических сосудов; травма или хирургическая операция при удалении подмышечных лимфоузлов (когда удаляют опухоль молочной железы) приводит к лимфостазу. Как результат – локальное ожирение руки или ноги. Единственный способ удержать конечность от этого – компрессионное белье, которое механически сжимает и не дает лимфе накапливаться в тканях. Выпускаются специальные латексные рукава и чулки для профилактики лимфостаза. Латексное компрессионное белье, как и вакуумный массаж, в несколько раз усиливает лимфодренаж (отток лимфы) из кожи и подкожных тканей, способствуя ускоренному сжиганию целлюлитных жиров и формированию подтянутого внешнего вида, удалению морщин и складок на коже.
16 Афферентный – приносящий, втекающий; эфферентный – выносящий, вытекающий. Эти термины пригодятся в будущем.
17 Антони ван Левенгук (1632–1723) – оптик, создавший первые микроскопы и тем самым открывший дорогу в микромир. Считается, что А. Левенгук изобрел микроскоп, но это не совсем верно: он изготавливал микролинзы, позволявшие давать увеличение в сотни раз. В 1673 году его письмо было опубликовано в журнале «Философские записки» Лондонского королевского общества. Ему не поверили, и в 1676 году он отправил вторично свои наблюдения одноклеточных организмов, о существовании которых до сих пор не было известно. Группа английских ученых специально поехала в Делфт и подтвердила истинность открытия Левенгука. В 1980 году Левенгук был избран действительным членом Лондонского Королевского общества.
18 Теория четырех типов организма, созданная Гиппократом, где четыре вида соков связаны с четырьмя типами темпераментов (холерики, флегматики, сангвиники и меланхолики). Соответственно, сангва – кровь, флегма – мокрота (слизь), холе – желчь, и меланхоле – черная желчь. По мнению Гиппократа, преобладание воздействия одного сока на сознание и характер над другими определяет особенности поведения и болезни человека. Мнение оказалось ошибочным.
19 В кавычках это выражение потому, что «клеточная стенка» как термин относится к одноклеточным организмам, и она сильно отличается от клеточной наружной мембраны, которая состоит из двух слоев фосфолипидов со встроенными белками-ферментами.
20 От ретикулум (лат. reticulum) – сетка.
21 Для окраски мазков крови используют обычно азур-эозин по Романовскому, эозин-метиленовый синий и фиксатор-краситель.
22 Которые попадают извне или из микробов.
Скачать книгу