Метазоа. Зарождение разума в животном мире бесплатное чтение

Питер Годфри-Смит
Метазоа. Зарождение разума в животном мире

Переводчик Галина Бородина

Научные редакторы Анна Винкельман, Михаил Никитин

Редактор Андрей Захаров

Издатель П. Подкосов

Руководитель проекта А. Тарасова

Арт-директор Ю. Буга

Корректоры О. Петрова, Е. Рудницкая, Е. Сметанникова

Компьютерная верстка А. Фоминов

Обработка иллюстраций А. Фридберг

Иллюстрация обложки Getty Images


Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.


© Peter Godfrey-Smith, 2020

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2023

* * *

Посвящается всем погибшим в австралийских лесных пожарах 2019–2020 годов и героям, которые боролись с огнем

Я должен также от всей души предупредить вас, о судовладельцы Нантакета! Остерегайтесь нанимать на ваши промысловые корабли бледных юношей с высоким лбом и запавшими глазами; юношей, склонных совершенно некстати погружаться в задумчивость…

– Эй ты, мартышка, – сказал однажды гарпунщик одному такому юноше. – Мы уж скоро три года как промышляем, а ты еще ни одного кита не поднял. Когда ты стоишь наверху, киты попадаются реже, чем зубы у курицы.

Может быть, они в самом деле не попадаются, а может быть, наоборот, плавают целыми стаями; но, убаюканный согласным колыханием волн и грез, этот задумчивый юноша погружается в такую сонную апатию смутных, рассеянных мечтаний, что под конец перестает ощущать самого себя; таинственный океан у него под ногами кажется ему олицетворением глубокой, синей, бездонной души, единым дыханием наполняющей природу и человека; и все необычное, еле различимое, текучее и прекрасное, что ускользает от его взора, всякий смутно мелькнувший над волнами плавник невидимого подводного существа, представляется ему лишь воплощением тех неуловимых дум, которые в своем неустанном полете посещают на мгновение наши души. В этом сонном очаровании дух твой уносится назад, к своим истокам; он растворяется во времени и в пространстве, подобно развеянному пантеистическому праху Крэнмера[1], и под конец становится частью каждого берега по всему нашему земному шару.

Герман Мелвилл.
Моби Дик, или Белый кит[2]

1. Одноклеточные

Вниз по ступенькам

Лесенка, сложенная из валунов волнолома, спускается в море. Прилив достиг максимальной высоты, и поверхность моря тиха и спокойна. Миновав десяток ступеней, вы погружаетесь в воду. Гравитация слабеет, звуки глохнут, краски выцветают в бледно-зеленый. Вы слышите только свое дыхание.

Минута – и вы уже в саду губок самых причудливых форм и расцветок. Одни торчат из морского дна, словно лампочки или веера, другие неровными слоями расползаются по любой доступной поверхности. Есть губки, похожие на перья и цветы, а рядом с ними растут асцидии – бледно-розовые структуры, подобные расписным кувшинчикам. Они напоминают выходы воздушных шахт, буквой Г возвышающиеся на палубе корабля, вот только носики их глядят в разные стороны. Они бывают так плотно покрыты всевозможными организмами, что кажутся скорее частью природного ландшафта, местом обитания живых существ, чем собственно живыми существами.

Но если вы подбираетесь достаточно близко, асцидии вздрагивают, смутно, словно сквозь пелену сна, ощущая ваше приближение. Иногда – и всегда немного неожиданно – тело асцидии сокращается и выталкивает воду из внутренней полости, как будто животное пожимает плечами и вздыхает. Когда вы проплываете мимо, ландшафт оживает, отзываясь на ваше появление.

Рядом с асцидиями растут актинии и мягкие кораллы. Некоторые кораллы выглядят как скопления крошечных ручек. Каждая ручка похожа на цветок – цветок, который ловит воду вокруг себя. Ручки сжимаются в кулачки и медленно раскрываются снова.

Вы будто очутились в странном, кишащем жизнью лесу. Однако в лесу земном вас по большей части окружают продукты иного эволюционного пути – пути растений. В саду губок, однако, почти всё, что вы видите, – это животные. У большинства из них (за исключением самих губок) имеется нервная система: их тела пронизывают нервные тяжи, передающие электрические сигналы. Они двигаются и чихают, вытягиваются и колеблются. Некоторые резко реагируют на ваше появление. Черви-серпулиды выглядят как пучки оранжевых перьев, приклеенных к рифу, но эти перышки покрыты глазами, и, если вы подберетесь слишком близко, серпулида моментально спрячется. Постарайтесь вообразить себе лес, в котором деревья чихают и кашляют, вытягивают руки и следят за вами невидимыми глазами.

Постепенно удаляясь от берега, вы встречаетесь с реликтами и родственниками ранних форм жизни. Но не стоит думать, будто вы плывете в прошлое: губки, асцидии и кораллы живут в наши дни, сформировавшись на том же отрезке эволюционного времени, что и люди. Вы сейчас не среди предков – вы в кругу дальних кузенов, ныне живущих родичей. Сад вокруг вас состоит из самых верхних ветвей вашего общего семейного древа.

Дальше, под уступом, виднеется пучок усиков и клешней – это полосатая креветка-боксер. Ее полупрозрачное тельце всего несколько сантиметров длиной, но усики и прочие отростки увеличивают его почти в три раза. Это животное – первое из упомянутых здесь, которое способно увидеть вас как объект, а не просто отреагировать на волну света и смутную массу. Еще немного дальше, на верхушке рифа, словно кот на солнышке – хорошо замаскированный кот, – развалился осьминог: одни щупальца вытянуты, другие свернуты в кольца. Это животное тоже следит за вами, причем, в отличие от креветки, делает это явно: когда вы проплываете мимо, он, насторожившись, поднимает голову.

Материя, жизнь и разум

В 1857 году фрегат британского королевского флота «Циклоп» поднял со дна Северного Атлантического океана нечто необычное. На первый взгляд образец напоминал илистый океанский грунт. Его заспиртовали и отослали биологу Томасу Генри Гексли{1}[3].

Образец передали Гексли не потому, что он выглядел каким-то особенным, но из-за интереса, как научного, так и практического, который в то время вызывало океанское дно. Практическая заинтересованность стимулировалась проектом прокладки глубоководных телеграфных кабелей. Первый такой кабель, который должен был посылать сообщения через Атлантику, проложили в 1857 году, однако прослужил он всего три недели, после чего изоляция нарушилась, и передающий сигналы электрический ток стал уходить в воду.

Гексли изучил полученный донный грунт, обнаружил в нем несколько одноклеточных организмов и загадочных круглых телец, а затем убрал его подальше почти на десятилетие.

Через десять лет, вооружившись новым мощным микроскопом, Гексли решил изучить образец заново. На этот раз ему удалось разглядеть диски и сферы неизвестного происхождения, а также окружающую их склизкую субстанцию, «прозрачную желеобразную массу». Гексли подумал, что обнаружил новый организм, какую-то простейшую форму жизни. Он осторожно предположил, что твердые частички – диски и сферы – продукт жизнедеятельности самой этой желеобразной живой материи. Гексли назвал вновь открытый организм в честь Эрнста Геккеля, немецкого биолога, философа и иллюстратора. Новая форма жизни получила имя «батибиус Геккели» (Bathybius Haeckelii).

Геккель пришел в восторг – как от открытия, так и от его названия{2}. Он уже давно говорил, что нечто подобное должно существовать. Геккель, как и Гексли, был ярым приверженцем эволюционной теории Дарвина, явленной миру в 1859 году в книге «Происхождение видов». Гексли и Геккель были ведущими приверженцами дарвинизма в своих странах, Англии и Германии соответственно. Обоих весьма интересовали вопросы{3}, о которых сам Дарвин, если не считать нескольких мимолетных ремарок, распространяться не хотел, а именно происхождение жизни и начало процесса эволюции. Единожды ли возникла жизнь на Земле, или она зарождалась несколько раз? Геккель был убежден в возможности спонтанного возникновения жизни из неживой материи и считал, что такой процесс должен идти постоянно{4}. Он приветствовал батибиус как изначальную форму жизни, которая, вероятно, покрывает большие участки морского дна; он считал ее звеном или мостом, соединяющим царство живого и царство мертвой, неорганической материи.

Традиционное представление об организации жизни, царившее со времен древних греков, признавало только два вида живых существ: животных и растения. Все живое следовало относить либо к одному, либо к другому из этих двух царств. Когда в XVIII веке шведский ботаник Карл Линней создал новую систему классификации, он поместил царства растений и животных рядом с третьим, неживым – «царством минералов», или Lapides{5}. Об этом тройственном делении до сих пор напоминает известный вопрос: «Животное, растение или минерал?»[4]

Во времена Линнея было уже известно о существовании микроскопических организмов. Воочию их впервые увидел голландский галантерейщик Антони ван Левенгук, который собрал самый мощный по тем временам микроскоп. Линней не обошел вниманием заметные только под микроскопом крохотные организмы и включил их в свою классификацию живых существ, определив в категорию «черви». (Десятую редакцию своей «Системы природы», в которой Линней занялся классификацией не только растений, но и животных, он завершает группой, которую называет Monas – «бесконечно малые тельца».)

По мере развития биологии ученым все чаще стали встречаться неочевидные случаи, особенно на микроскопическом уровне. Как правило, их пытались разместить либо по одну, либо по другую сторону четкой границы – в царстве растений (водоросли) или в царстве животных (одноклеточные). Но зачастую определение того, какому царству принадлежит новое существо, оказывалось нелегким делом, и тогда стандартная классификация начинала давать сбои.

В 1860 году британский натуралист Джон Хогг заявил, что разумней всего было бы прекратить попытки впихнуть в классификацию то, что туда явно не лезет, а вместо этого стоило бы дополнить ее четвертым царством, предназначенным для крошечных организмов – не растений и не животных, которых все чаще относили к простейшим{6}. Хогг назвал их «протоктистами» (Protoctista) и поместил в разряд Regnum Primigenum, или «первоначальное», которому надлежало дополнить царства животных, растений и минералов. (Предложенный Хоггом термин «протоктисты» Геккель позже сократил до более современного «протисты»{7}.) Хогг был убежден, что границы между различными царствами живого расплывчаты, в отличие от жесткой границы, отделяющей царство минералов от живой материи.

Жонглирование категориями, о котором я здесь пишу, касалось живой материи, но не разума. Однако испокон веков считалось, что жизнь и разум каким-то образом связаны, несмотря на отсутствие устоявшегося мнения об их соотношении друг с другом. В концепции Аристотеля, сформулированной более двух тысячелетий назад, представление о живом и разумном объединяется в понятии души{8}. Согласно Аристотелю, душа – это некое внутреннее образование, которое управляет жизнедеятельностью тела; душой обладают все живые существа, хотя и в различной мере. Растения поглощают питательные вещества, чтобы поддерживать свое существование, – это одна разновидность души. Животные тоже это умеют, но сверх того они еще воспринимают окружающую среду и реагируют на нее – это другой вид души. Люди, вдобавок к двум предыдущим способностям, наделены способностью к рассуждению – и это душа третьего типа. По Аристотелю, даже неживые, лишенные души объекты часто ведут себя целенаправленно, стремясь занять собственное место в мире.

Научная революция XVII века, подтолкнувшая к отказу от аристотелевской картины мира, заставила пересмотреть отношения между жизнью и разумом. В рамках нового подхода оформилось приземленное представление о материальном и укоренился механистический взгляд на материю как на нечто инертное, не имеющее ни целей, ни намерений, а душа, напротив, превозносилась и объявлялась сущностью нематериальной. Душа, которую Аристотель считал неотъемлемым атрибутом всего живого, стала представляться явлением редким, связанным сугубо с интеллектом. Кроме того, душа, спасенная милостью Божией, могла обрести жизнь вечную.

Для Рене Декарта, весьма влиятельной фигуры своего времени, между физическим и ментальным существовала четкая граница. Однако люди, по мнению этого мыслителя, комбинируют в себе и то и другое: мы и физические, и мыслящие существа{9}. Нам удалось стать такими из-за того, что две упомянутые сферы сообщаются друг с другом в каком-то небольшом органе в мозге человека. Таков знаменитый «декартовский дуализм». Иные животные, как считал Декарт, лишены души, оставаясь чисто механическими системами, – чувства у собаки не появятся, что бы с ней ни происходило. Душа – отличительное свойство человека, и ни животные, ни растения не обладают даже ее зачатками.

В XIX веке, в эпоху Дарвина, Геккеля и Гексли, развитие биологии и других наук все убедительнее показывало несостоятельность декартовского дуализма. Труды Дарвина рисовали картину, согласно которой водораздел между людьми и другими животными не так уж и непреодолим. Формы жизни, обладающие интеллектуальными способностями различного уровня, могли появиться на свет в процессе эволюции, прежде всего путем приспособления к внешним условиям и благодаря разветвлению вида-прародителя. Теперь отношения тела и разума представлялись вполне постижимыми – оставалось только понять, с чего же все началось.

Но в том-то и была загвоздка. Геккель, Гексли и другие подходили к проблеме следующим образом: они думали, что у живых существ должна наличествовать некая субстанция (stuff), которая давала бы начало и жизни, и разуму. Эта субстанция должна быть вещественной, а не сверхъестественной, но при этом, скорее всего, отличающейся от обычной материи. Если мы сможем ее выделить, ее можно будет зачерпнуть ложкой, но при этом она все равно останется особенной. Они назвали ее протоплазмой{10}.

Идея кажется странной, но отчасти она была мотивирована пристальным изучением клеток и простых организмов. Заглядывая внутрь клетки, ученые видели там довольно слабую организацию: в ней явно не хватало обособленных и дифференцированных деталей, позволявших клетке делать все то, что она, очевидно, делать умела{11}. Внутреннее наполнение клетки казалась им однородной субстанцией, прозрачной и мягкой. Английский физиолог Уильям Бенджамин Карпентер, восхищаясь способностями одноклеточных организмов, отмечал в 1862 году, что «жизненно важные операции», которые у животных «осуществляются с помощью развитого аппарата», на этом уровне жизни выполняются «крошечными частичками очевидно гомогенного желе». Комочек такого желе «захватывает пищу без конечностей, проглатывает безо рта, переваривает без желудка» и «перемещается с места на место без мускулов». Подобные наблюдения навели Гексли и других на мысль о том, что жизнедеятельность организмов объясняется не сложной организацией обычной материи, но совершенно иным ингредиентом, живым по самой своей природе: «организация материи есть результат жизни, а не жизнь есть результат организации материи».

На этом фоне батибиус казался невероятно многообещающим. Это же чистый образец материи жизни, материи, которая, возможно, возникает спонтанно и непрерывно, образуя постоянно обновляющийся органический ковер, покрывающий морское дно. Были исследованы и другие образцы. Сообщалось, например, что батибиус, взятый со дна Бискайского залива, умел самостоятельно передвигаться. Тем не менее другие биологи скептически отнеслись к этой якобы изначальной форме жизни, вокруг которой сгущался туман предположений и догадок. «Как батибиус выживает на глубине и чем он там питается?» – размышляли они.

В 1870-х годах был дан старт экспедиции «Челленджер» – проекту, организованному Лондонским королевским обществом{12}. За четыре года экспедиция собрала массу проб в сотнях точек океанского дна по всему миру. Перед учеными стояла задача составить первую развернутую опись живых существ, обитающих в глубоких водах. Возглавлявший экспедицию Чарльз Уайвилл Томсон стремился разрешить загадку батибиуса, хотя и относился к нему с недоверием. Несмотря на все усилия, участникам экспедиции не удалось раздобыть никаких новых образцов, и двое ученых на борту судна по зрелом размышлении начали подозревать, что ничего общего с живыми организмами батибиус не имеет. Проведя серию экспериментов, они показали, что нашумевший батибиус, не исключая и самого первого образца, полученного Гексли с фрегата «Циклоп», не что иное, как продукт химической реакции между морской водой и спиртом, который использовался для консервации проб.

Таким образом, батибиус испустил дух. Гексли немедленно признал свою ошибку. К несчастью, Геккель, сильнее увлеченный идеей батибиуса как недостающего звена, упирался еще как минимум десяток лет{13}. И все же этот мостик провалился.

Некоторые ученые какое-то время еще лелеяли надежду отыскать связующее звено подобного типа – особую субстанцию (substance), которая соединит жизнь и материю, но с годами такие идеи теряли популярность. Их заменил постепенный процесс открытий, который со временем разрешил загадку жизнедеятельности организмов. В конце концов объяснение жизни было найдено именно там, где Гексли и Геккель отказались его искать, – в невидимой глазу организации обычной материи.

Как мы увидим далее, упомянутую материю отнюдь не во всех отношениях можно назвать «обычной», но по базовой композиции она действительно самая обыкновенная. Живые организмы состоят из тех же химических элементов, что и все остальное во Вселенной, и ведут себя в соответствии с теми же законами физики, которым подчиняется и царство неживого. Нам до сих пор неизвестно, как зародилась жизнь на Земле, но ее происхождение перестало быть загадкой такого рода, что заставляет нас верить, будто живой мир породила некая особая субстанция.

Это был триумф материалистического взгляда на жизнь – мировоззрения, не допускающего никаких сверхъестественных вмешательств. Столь же триумфально утвердилось и представление о том, что мироздание целиком построено из одних и тех же основных компонентов. Жизнедеятельность организмов теперь следует объяснять не в терминах некоего мистического ингредиента, но в терминах сложной организации на микроскопическом уровне – таком крошечном, что его практически невозможно себе представить. Взять хотя бы рибосомы – это важные для клетки органы, станции, где собираются белковые молекулы. Рибосомы и сами по себе имеют довольно сложное строение, однако на поверхности точки, которая стоит в конце этого предложения, может уместиться больше 100 миллионов рибосом{14}.

Жизнь, в общем, нашла свое место в структуре нашего знания. Но если говорить о разуме, тут еще далеко не все понятно.

Разрыв

С конца XIX века и далее, по мере того как революция Дарвина набирала обороты, становилось все сложнее придерживаться дуалистического взгляда на разум, сформулированного Декартом. Дуализм имеет некоторый смысл в рамках общей картины, определяющей человека как уникальную, особенную часть природы, в каком-то смысле приближенную к Богу. При таком подходе все остальное, живое и мертвое, предстает чисто материальным, а вот в нас обнаруживается некий добавочный ингредиент. Придерживаясь эволюционного представления о человечестве, утверждающего неразрывную связь между нами и другими животными, отстаивать дуализм непросто, хотя все-таки возможно. Это, в свою очередь, мотивирует к формированию материалистического представления о разуме, которое могло бы объяснить мышление, память и чувства в терминах физических и химических процессов. Впрочем, несмотря на то что сам факт рассмотрения жизни в материалистических терминах вдохновляет, это отнюдь не означает, что от него будет какой-то толк и в нашем случае, поскольку далеко не ясно, какое отношение успехи материализма в биологии имеют к разгадке тайны разума.

Вновь обратившись к истории, мы можем отыскать два альтернативных подхода, здравствующих и по сей день. Аристотель, как уже было показано, выделял несколько уровней души, присущих растениям, животным и людям. То, что мы называем «разумом», он считал естественным продолжением или разновидностью жизнедеятельности организма. И хотя Аристотель не был эволюционистом, его взгляды довольно легко переформулировать в эволюционных терминах. Эволюция сложных форм жизни естественным образом порождает разум, стимулируя развитие целенаправленных действий и поощряя чувствительность к окружающей среде.

Декарт, напротив, считал, что жизнь – это одно, а разум – совершенно другое. Руководствуясь этим вторым подходом, нет оснований думать, будто прогресс в понимании жизни внесет хоть какой-то вклад в разрешение загадки разума.

На протяжении последнего столетия или около того в этой области преобладали материалистические взгляды, но в одном отношении они все же сдвинулись чуть ближе к представлениям Декарта. С середины ХХ века ученые-теоретики начали отказываться от признания неразрывной связи между жизнью и разумом. Не в последнюю очередь это происходило благодаря появлению компьютеров. Компьютерные технологии, активно развивавшиеся с середины прошлого столетия, сулили навести новый мост между психическим и физическим – мост, построенный из логики, а не из живой материи. Автоматизация мышления и памяти – вычисление – казалась более перспективным путем. По мере развития систем искусственного интеллекта (ИИ) некоторые из них стали казаться в какой-то степени разумными, но не было никаких оснований считать их живыми. Физические тела, как представлялось, не так уж и нужны разуму, более того, они стали выглядеть вовсе не обязательными. Душой материи стало программное обеспечение: мозг запускает программу, которая в свою очередь запускает другие механизмы (или, напротив, не-механизмы).

В эти же годы обострилась проблема физического и ментального, тела и разума. На смену былой «загадке разума» пришла более специфичная головоломка. В рамках сложившегося недавно нового подхода считается, что какую-то часть разума можно довольно убедительно объяснить с материалистической точки зрения, но зато ряд других его аспектов подобной трактовке не поддается. Прежде всего в этот разряд попадает субъективный опыт, или сознание. Возьмем, к примеру, память. Мы без труда обнаруживаем, что памятью обладают самые разные животные; их мозг регистрирует прошлый опыт и использует его в дальнейшем для выбора подходящего варианта поведения. Не так уж сложно вообразить, как это может быть устроено. Эта проблема еще далеко не решена, но выглядит она абсолютно решаемой; со временем наверняка удастся выяснить, как работает эта сторона памяти. Но люди, однако, не только запоминают свой опыт, но еще и некоторым образом переживают его. Как сказал Томас Нагель в 1974 году, обладать разумом – это на что-то похоже; это как-то ощущается{15}. Приятное воспоминание как-то ощущается, и неприятное – тоже. «Обрабатывающая информацию» сторона памяти – способность хранить и извлекать полезное знание – может либо сопровождаться этой добавочной характеристикой, либо нет. Сложная часть проблемы тела-разума – объяснить эту черту нашей психики, растолковать в биологических, физических или же в компьютерных понятиях, каким образом в материальном мире может существовать субъективный опыт.

Эту проблему по-прежнему нередко изучают под одним из привычных углов зрения. Это либо материализм («физикализм»), либо дуализм. Существуют, однако, и более радикальные подходы. Например, панпсихизм утверждает, что психическая сторона присуща любой материи, включая ту, из которой состоят объекты вроде столов{16}. Не путайте панпсихизм с идеализмом – представлением, согласно которому вся вселенная состоит из субъективного опыта. Панпсихисты принимают физическое существование мира как данность, но добавляют, что материи, из которой мир состоит, неизменно свойственна некая невообразимо простая форма сознания. Именно это свойство материи дает начало субъективному опыту и самосознанию, при условии что некоторая часть этой материи организуется в виде мозга. Несмотря на явную экстравагантность, у панпсихизма есть авторитетные последователи. По мнению Томаса Нагеля, которого я упоминал выше, панпсихизм не стоит сбрасывать со счетов, потому что у каждого подхода к проблеме есть свои собственные недостатки, и недостатки панпсихизма ничем не хуже прочих. Эрнст Геккель, расставшись с батибиусом, тоже склонялся к панпсихизму. Гексли же выбрал другой нетрадиционный подход{17}. Он предполагал, что сознательный опыт может возникать как продукт материального процесса, но не может выступать его причиной. Это оригинальный подвид дуализма, у которого есть сторонники и в наши дни.

Из приведенной подборки альтернативных взглядов на вселенную, как и из традиционных дискуссий, ясно одно: существует невероятное разнообразие представлений о том, где следует искать разум. Для одних разум повсюду – ну или почти повсюду. Другие считают, что им наделены только люди – и, возможно, кое-какие животные, похожие на нас. Кто-то, глядя на одноклеточную инфузорию, энергично барахтающуюся в пленке воды, скажет: «То, что происходит внутри этого создания, наделяет его чувствами. Инфузория реагирует и стремится к цели. У нее есть опыт, пусть и крайне незначительный». Но другой не просто с ходу откажет инфузории в чувствах, но и, увидев сложно устроенное животное вроде рыбы, произнесет: «Рыба, вероятно, вообще ничего не чувствует. У нее есть рефлексы и инстинкты и какая-то достаточно сложная психическая активность, но большая часть этой активности происходит как бы "в потемках" и не осознается». Если этот второй человек не прав, то почему? И если ни одна песчинка не испытывает ни намека на чувства, а панпсихисты тоже ошибаются, то в чем именно их ошибка? Разве этого не может быть? Часто кажется, что таким рассуждениям не хватает обоснованности, какой-то твердой базы. Люди могут говорить, что им заблагорассудится. Но если бы меня попросили угадать, как мои современники ответят на вопрос, какие живые существа обладают чувственным опытом, то я бы сказал, что самым распространенным ответом будет «да» для млекопитающих и птиц, «может быть» для рыб и рептилий и «нет» для всех прочих. Но вот если кто-то захочет вдруг раздвинуть эти границы (включить, например, муравьев, растения и инфузорий) или сузить их (только до млекопитающих), то дискутирующие быстро потеряют почву под ногами. Как мы вообще можем определить, кто прав?

Это чувство необоснованности сродни тому, что философ Джозеф Левин назвал разрывом в объяснении{18}. Даже если мы окончательно удостоверимся, что разум должен иметь чисто материальную основу, и ничего больше, мы все равно захотим узнать, почему такое физическое устройство порождает именно такой, а не какой-то другой вид опыта. Почему обладание разумом, которым мы наделены и в котором происходят все те процессы, что происходят в данный конкретный момент, ощущается именно так, а не иначе? Даже если трудности, с которыми сталкиваются другие подходы, убеждают нас в правоте материализма, трудно понять, почему конкретно он прав и почему все устроено именно так, а не как-то по-другому.

К этому-то комплексу проблем я и хочу обратиться в своей книге. Моя цель не предполагает ответа на вопрос Левина о конкретном опыте и выяснения того, какие процессы в мозгу отвечают за различение цветов или ощущение боли. Это задача нейронауки. Я же хочу попытаться понять, почему мы переживаем свое существование, осознаем его, будучи физическими существами, какими мы и являемся. Причем это «мы» следует значительно расширить: меня интересуют не столько особенности человеческого самосознания, сколько опыт в широком смысле, нечто, свойственное и многим другим животным. Я хочу исследовать вопросы переживания опыта так, чтобы приглушить ощущение необоснованности, о котором я писал выше, – чувство, будто можно приписать разум бактерии или отказать в нем птице в зависимости от того, что вам больше нравится.

Исследуя проблему тела-разума, я буду придерживаться биологического подхода, который не противоречит материалистической картине мира. Многие считают, что «материализм» предполагает узко практический и негибкий подход: мир меньше, чем вы думаете, он не настолько удивителен и не так свят; это просто атомы, бьющиеся друг о друга. Сталкивающиеся атомы – это, конечно, важно, но я не собираюсь рассказывать свою историю под гнетом запретов и ограничений. «Физический» или «материальный» мир есть нечто большее, чем соударение частиц и сухие формулы. Это мир энергий, полей и скрытых взаимодействий. Я уверен, он нас еще не раз удивит.

Позиция, которой я придерживаюсь в этой книге, называется биологическим материализмом, но в основе моих убеждений – более широкий подход, который иногда называют монизмом. Монизм утверждает фундаментальное единство в природе{19}. Материализм же лишь одна из разновидностей монизма, поскольку он ставит во главу угла мысль о том, что все психические феномены, включая субъективный опыт, суть проявление фундаментальных процессов, описанных в биологии, химии и физике. Идеализм – представление, что все сущее вокруг есть идеи, являет еще один вид монизма – он лишь иначе постулирует единство. (Идеалисту нужно как-то объяснить, почему то, что кажется нам физическими объектами и явлениями, на самом деле остается проявлением духа или разума.) Еще один способ быть монистом – считать, что и «физическое», и «психическое» – проявления одной и той же лежащей в их основе реальности; такой подход называется нейтральным монизмом. Вместо того чтобы объяснять психику в терминах физики или физику в терминах психики, мы объясняем и то и другое в терминах чего-то еще. Это «что-то еще» по-прежнему сохраняет налет таинственности. Если бы я не был материалистом, то стал бы нейтральным монистом, хотя это все-таки не моё{20}. Путь, на который я ступаю, начнется с самих основ жизни – понятой в материалистическом ключе; дальше я попытаюсь показать, как в процессе эволюции живых систем может зародиться разум. Мне хотелось сократить, хотя бы отчасти, разрыв в объяснении физического и психического.

Но, прежде чем начать, давайте присмотримся к психической стороне этой головоломки и к словам, которыми мы ее описываем. Свойство разума, которое пытался определить Нагель, сказав: «Это на что-то похоже…», сегодня обычно называют сознанием. (Сам Нагель тоже так его называл.) В указанном смысле вы обладаете сознанием, если ощущаете, что значит «быть вами». Но термин «сознание» часто сбивает с толку, потому что может показаться, будто он предполагает нечто более сложное. Фраза «нечто, на что похоже…» предполагает наличие неких ощущений. Быть вами – или рыбой, или мотыльком – на что-то похоже, если смутные, едва уловимые волны ощущений являются частью вашей жизни. Тот факт, что в слово «сознание» часто вкладывают более широкий смысл, может нам помешать.

Нейробиологи, например, часто говорят, что сознание возникает в коре больших полушарий, складчатом верхнем отделе головного мозга, который имеется только у млекопитающих и у ряда других позвоночных. В одной из своих статей врач и писатель Оливер Сакс рассказывает о пациенте, который перенес инфекцию мозга, в результате чего потерял всякую способность удерживать в памяти новые события{21}. Сакс спрашивает: «Какая связь существует между, с одной стороны, моделями поведения и процедурной памятью, которые ассоциируются со сравнительно примитивными частями нервной системы, а с другой стороны – сознанием и чувствительностью, которые связаны с корой больших полушарий?» Сакс здесь не только задает вопрос, он еще и делает допущение: сознание и чувствительность связаны с корой больших полушарий. Подразумевает ли Сакс, что если некто или нечто не имеет коры больших полушарий, то у него не будет и сознания во всем его «вот-он-я» богатстве, но при этом такое существо все же сможет иметь какие-то чувства? Или же Сакс думает, что в отсутствие коры свет гаснет полностью и любое лишенное ее создание будет вовсе лишено всякого опыта, даже если оно обладает какими-то моделями поведения? У большинства животных, особенно животных, описанных в этой книге, нет коры больших полушарий. Вопрос стоит следующим образом: их опыт в корне отличается от нашего или же они вообще никакого опыта не имеют?

Некоторые люди действительно думают, что в отсутствие коры больших полушарий невозможен и опыт. Что ж, может, в итоге мы все придем к такому выводу, однако я в этом сомневаюсь{22}. Нам нужно целенаправленно избегать привычки думать, будто все формы опыта должны быть во всех отношениях похожи на человеческий. Когда слово «сознание» используют для описания крайне широкого понятия чувственного опыта, запутаться очень легко. Однако термин «сознание» или какую-нибудь его модификацию («феноменальное сознание») сегодня чаще всего используют именно в этом широком смысле. Ладно, не буду привередничать, тем более что идеальной терминологии не существует. Хотя, наверное, «чувствительность» была бы хорошим термином для отсылки к этой более широкой концепции. Мы могли бы спросить: «Какие животные обладают чувствительностью?» – и это было бы не то же самое, что поинтересоваться, какие из них обладают сознанием. Но «чувствительность» часто употребляют в отношении отдельных видов опыта: удовольствия, боли и близких к ним ощущений, которые могут оцениваться как приятные или неприятные. Этот опыт, безусловно, важен, и, вероятно, есть смысл предполагать, что он может иметь место и в отсутствие высших уровней сознания. Однако не исключено, что это не единственная разновидность элементарного, простого опыта. В последующих главах я рассмотрю вероятность того, что чувственная и оценочная сторона опыта в некотором роде разные вещи: фиксировать то, что происходит, вовсе не то же самое, что оценивать, плохо это или хорошо. Слово «чувствительность» не всегда обозначает чувственный аспект опыта.

Есть еще один, причем довольно неуклюжий, термин – «субъективный опыт». Определение кажется избыточным (разве есть какой-то другой вид опыта?), и от него не произведешь удобного прилагательного вроде «сознающий» или «чувствующий». Но само понятие «субъективный опыт» указывает в верном направлении, обращая к идее субъекта. В каком-то смысле эта книга посвящена эволюции субъективности – что это такое и откуда взялось. Субъект – то место, где размещается опыт.

Иногда я буду говорить исключительно о разуме; думаю, именно это нам предстоит осмыслить в процессе повествования – эволюцию разума и его место во вселенной. Я буду переключаться между терминами без какой-то особой системы. Существующее сегодня понимание еще не позволяет настаивать на выборе конкретного языка.

Теорию, которую я пытаюсь развить, можно описать по-разному, но это непросто, с какой стороны ни посмотри. Своей работой я намереваюсь показать, что совокупность процессов – не психических и не сознательных в своей основе – каким-то образом способна организоваться так, что из нее начинает произрастать чувственный опыт. Иначе говоря, часть бессмысленной активности, которой кишит наша вселенная, как-то складывается в разум.

Дуализм, панпсихизм и многие другие философские течения считают это невозможным: нельзя создать разум – и, уж конечно, разум во всей его полноте – из чего-то другого, из элементов, которые вообще не имеют никакого отношения к психике. Либо разум у нас пронизывает все сущее, либо же его нужно добавить «сверху» – не в буквальном смысле сверху, но приплюсовать к физической системе, которая, в принципе, и без него была бы законченной. Однако я уверен, что создать разум из чего-то иного возможно – такое вполне под силу эволюции. Из слияния и соединения объектов, которые сами по себе неразумны, может появиться разум. Разум – продукт эволюции, порожденный организацией других, неразумных природных элементов. Тема этой книги – зарождение разума.

Я сказал, что разум – продукт эволюции и нечто созданное (something built), но я хочу с самого начала предостеречь от распространенной ошибки. Материалистическое мировоззрение отнюдь не подразумевает, что разум – результат физических процессов, которые происходят в мозге, их следствие или их продукт. (А вот Гексли, кажется, именно так и думал.) Напротив, смысл в том, что опыт и другие психические проявления – по сути своей биологические, то есть физические, процессы определенного рода. Наш мозг есть особая конфигурация материи, а также происходящей в ней энергетической активности. Такое устройство – продукт эволюции; формировалось оно постепенно. Но это устройство и эти процессы не основа разума – именно они и есть разум. Процессы, которые происходят в мозге, не порождают мышление и опыт; они сами – мышление и опыт.

Мне предстоит осуществить проект биологический и материалистический – показать, что описанная выше точка зрения имеет право на существование, и вполне вероятно, что все устроено именно так. Цель моей книги – продвинуться по этому пути как можно дальше. Конечно же, я не надеюсь, что загадка разрешится одним лишь росчерком пера или ответ на нее появится, как кролик из шляпы фокусника. По ходу повествования я хочу наметить перспективный путь, набросать решение, которое в первом приближении сложит три детали головоломки в картину, по моему мнению, имеющую смысл. Однако не на все вопросы найдется ответ, и не все загадки будут решены. А что будет дальше, образно описывает цитата, которая вдохновляла меня все годы моего писательства и которая послужила бы прекрасным эпиграфом к этой книге. Она вышла из-под пера Александра Гротендика, математика:

Море наступает незаметно и тихо; кажется, что ничего не происходит и ничего не меняется. … Но в конце концов оно окружает упрямый объект, который постепенно становится полуостровом, потом островом, затем островком и в итоге полностью уходит под воду, словно растворившись в океане, простирающемся вдаль насколько хватает глаз{23}.

Гротендик работал над крайне абстрактной проблемой – абстрактной даже по стандартам чистой математики. Приведенный выше абзац описывает подход, которого он придерживался в своей области исследований. Кажется, что задачу, стоящую перед нами, не решить обычными методами. Но тогда мы будем решать ее, накапливая знания в смежных областях, надеясь, что в итоге загадка трансформируется и растворится. Задача будет переформулирована и со временем станет постижимой. Образ, который Гротендик выбрал для описания этого процесса, – погружение объекта в воду.

Я держал его в голове довольно долго. Я не считаю, подобно некоторым из философов, что загадки, с которыми мы сталкиваемся, исследуя разум, – чистые иллюзии, разрешить которые можно, всего лишь думая о них иначе. Нам необходимы новые знания. И пока мы их накапливаем, сама проблема меняет форму и исчезает.

Найденный Гротендиком образ кажется таким удачным, что поначалу я даже хотел взять его в качестве эпиграфа. Но сейчас, во времена, когда тающие полярные льды быстро нагревающейся Земли крадут у нас драгоценные тихоокеанские острова, он обрел новые, малоприятные коннотации{24}. Теперь мне уже не хочется начинать им книгу. Тем не менее метафора Гротендика по-прежнему направляет ход моих мыслей, а перспектива, описанная в ней, подсказывает, как наилучшим образом выстроить повествование. «Метазоа» подходит к проблеме тела-разума, изучая природу жизни, историю животного мира и образ жизни животных, которые сегодня сосуществуют с нами бок о бок. Изучая животный мир, мы наращиваем знания вокруг центральной проблемы и наблюдаем, как она трансформируется и оседает.

Эта книга – продолжение проекта, начатого в другой моей книге, которая называется «Чужой разум». В ней я изучал эволюционный путь и разум конкретной группы животных – головоногих, в сообщество которых входят и осьминоги. «Чужой разум» начинается с описания встреч с этими животными в воде, во время погружений с аквалангом и маской. Знакомство с осьминогами в их естественной среде обитания, во всей их изменчивой и текучей сложности, пробудило во мне желание понять, что происходит у них в голове. Я принялся изучать их эволюционный путь, который уходит вглубь веков к ключевому событию в истории животных, давнему разветвлению генеалогического древа жизни. Эта развилка, наметившаяся более полумиллиарда лет назад, направила одну ветвь к осьминогу (и не только), а другую – к нам.

Некоторые идеи касательно разума, тела и опыта были очерчены уже в книге «Чужой разум», вдохновленной наблюдениями за осьминогами. Здесь эти идеи будут развиты и дополнены. Это стало возможно благодаря более пристальному вниманию к философским граням проблемы, изучению отдаленных ветвей древа жизни, а также часам погружений и наблюдений за другими нашими меньшими братьями. В «Чужом разуме» я все время возвращался к осьминогам, но в этой книге буду продвигаться вперед в компании других видов; одни находятся ближе к нам на эволюционном древе, а другие – дальше. Для некоторых из них я тоже был существом, за которым они могли наблюдать и узнавать его, для других мое присутствие было лишь смутным сном. К концу книги мы перейдем к изучению наших ближайших родичей, чьи тела и разумы напоминают наши собственные. Но все-таки в моем историческом повествовании основное внимание будет уделено ранним стадиям эволюции, и цель его – понять, как на Земле появился опыт – сначала в воде, а затем на суше.

Таким и будет наше путешествие. Мы пойдем – поползем, полетим, поплывем – сквозь историю животного мира с самого ее начала, следуя по стопам ряда ныне живущих созданий. Мы будем учиться у них, постигая, что ощущают и как функционируют их тела, как они взаимодействуют с миром. С их помощью мы попытаемся понять не только происхождение, но и различные формы субъективности, существующие в наши дни. Я не претендую на то, чтобы объять необъятное и описать все разнообразие животного мира. Я сфокусируюсь на тех его представителях, которые отмечают собой ступени эволюции разума, прежде всего те, на которых он впервые появился. Большая часть этих животных – обитатели морей. Так давайте же спустимся по этим ступеням.

2. Стеклянная губка

Башни

Сад губок обычно начинается на небольшой глубине{25}, куда легко проникают солнечные лучи, особенно в местах, где ощущается течение. Здесь, где тают краски, открывается вид на заросли неподвижных живых организмов. Одни напоминают чашечки, лампочки, вазы или ветвистые деревья, другие похожи на ручки в толстых варежках – как будто что-то огромное, спрятанное на дне морском, выпростало наружу свои мягкие лапы.

Нежась на мелководье, представьте себе море, которое гораздо холоднее: на сцену ложится тьма, сверху опускаются редкие мерцающие пылинки. На дне океана, в 1000 метров от поверхности, возвышается бледная башня цилиндрической формы примерно 30 сантиметров высотой. Ее окружает группа таких же башенок; все они крепко держатся за дно и немного расширяются кверху, частично приоткрываясь. При такой нежной наружности внутри у каждой губки жесткий каркас, собранный из крошечных деталек. Самые маленькие из них выглядят как звездочки, крючочки и неровные крестики, сплетающиеся в форме башни. Башни держатся за морское дно хрупкими якорьками. Якорьки и крестики состоят из диоксида кремния, из которого делают стекло. Губка, живущая на рифах умеренного климатического пояса или глубоко на дне океана, кажется пассивной и безжизненной, но, если присмотреться, это совсем не так. Стеклянная губка – тихий насос, прокачивающий воду сквозь свое тело. Она ощущает внешнюю среду и реагирует на нее. Тело глубоководной башни – стеклянной губки – проводит свет и электрический заряд, мерцая словно лампочка («эврика!») на дне морском.

Клетка и шторм

Основа эволюции разума – сама жизнь; не все, что с ней связано, не механизм ДНК, но другие ее свойства. Все началось с клетки.

Первобытная жизнь, до появления животных и растений, была одноклеточной. Растения и животные – это огромные конгломераты клеток. Но и до того, как эти конгломераты сформировались, клетки, скорее всего, не были полностью автономными и жили колониями и группами. Тем не менее каждая клетка была отдельной крошечной сущностью.

Клетка ограничена, у нее есть внутреннее пространство и внешний мир. Граница, отделяющая клетку от внешней среды, называется мембраной; она изолирует клетку не полностью: мембрану пронизывают каналы и отверстия. Через границу в обе стороны без остановки транспортируются различные вещества, а внутри клетки кипит бурная деятельность.

Клетка состоит из материи, из набора молекул. Я точно не знаю, что приходит вам на ум при слове «материя», но зачастую оно вызывает образ чего-то инертного и неповоротливого, а на память приходят всякие тяжелые объекты, которые приходится толкать, чтобы сдвинуть с места. В целом на суше и на соразмерном человеку уровне объектов среднего размера типа столов и стульев дела примерно так и обстоят. Но, когда мы думаем о веществе клеток, нам нужно думать иначе.

Внутри клетки события разворачиваются в наномасштабе, где объекты измеряются в миллионных долях миллиметра, а среда, в которой все происходит, – это вода{26}. Материя в этой среде ведет себя иначе, чем в нашем сухом мире объектов среднего размера. На микроуровне активность возникает спонтанно, и подталкивать события не требуется. Говоря словами биофизика Питера Хоффмана, внутри каждой клетки бушует «молекулярный шторм» – бесконечная сумятица столкновений, притяжений и отталкиваний.

Представляя себе клетку, полную замысловатых механизмов со своими функциями, нужно помнить, что эти механизмы безостановочно бомбардируются молекулами воды. Объект внутри клетки сталкивается со стремительными молекулами воды примерно каждую десятитриллионную долю секунды. Это не опечатка; уровень событий в клетке практически невозможно себе представить. Подобные столкновения отнюдь не безобидны: сила каждого превосходит силу, которую способны приложить органеллы клетки. Все, что может сделать в этой ситуации аппарат клетки, так это подтолкнуть события в одном либо в другом направлении, придавая шторму какую-то когерентность.

Вне водной среды шторм тотчас бы прекратился. На воздухе многие из объектов такого масштаба слипаются в комки, но в воде этого не происходит – там они без остановки двигаются, и активность в клетке возникает как бы сама по себе. Как я уже говорил, мы часто думаем о «материи» как о пассивной и инертной. Однако главная проблема, с которой приходится иметь дело клетке, – не подтолкнуть события, но навести в них порядок, установить некий ритм и смысл в их спонтанном потоке. В подобной ситуации материя вовсе не застывает в безделье, напротив, она рискует сделать слишком много; поэтому задача клетки – упорядочить хаос.

Практически все ассоциации, которые привычно приходят нам на ум, когда мы думаем о материи, – ошибочны, если вопрос касается жизни и того, как она могла появиться. Если бы жизни пришлось эволюционировать на суше из составляющих таких габаритов, как стол или стул, то она никогда бы и не возникла. Но ей этого делать не пришлось: жизнь зародилась в воде – скорее всего, в тонкой пленке на ее поверхности, но тем не менее в воде – в попытках укротить молекулярный шторм.

В истории Земли жизнь появилась сравнительно рано; вероятно, это случилось около 3,8 миллиарда лет назад, тогда как сейчас нашей планете уже 4,5 миллиарда лет от роду{27}. Скорее всего, изначально жизнь была не клеточной, однако все равно должен был найтись какой-то способ удержать, обособить и не дать рассеяться в пространстве некоторой цепи химических превращений. Затем на каком-то этапе появились клетки, поначалу, вероятно, проницаемые и слабо оформленные; со временем, однако, они превратились в нечто вроде бактерий – клеток, которые способны сохранять свою структуру и размножаться.

Но среди всех умений, которые обрели клетки, чтобы поддерживать процесс жизнедеятельности – преобразовывать материю, наводить порядок и методично подчинять себе хаос, ключевым достижением стало укрощение заряда.

Укрощение заряда{28}

Укрощение электрического заряда стало поворотным событием в новейшей истории человечества. В XIX веке электричество перестало быть загадочной, опасной силой, непосредственно проявляющейся в ударах молний, превратившись в технологию, которая вскоре сделала современный мир таким, каким мы его знаем. Если вы читаете эту книгу при электрическом свете или с экрана компьютера, сам акт чтения осуществляется при помощи электричества. Однако этот прорыв в сфере электричества стал не первым в истории. Впервые электрический заряд был укрощен за миллиарды лет до этого, на ранних стадиях эволюции жизни. В клетках и организмах электричество служит средством, с помощью которого осуществляется большая часть внутренних процессов. Это основа активности мозга – ведь наш мозг электрическая система, – да и любой другой активности.

Что же такое электричество? Даже многие физики считают этот вопрос трудным. Электрический заряд – базовое свойство материи. Заряд может быть положительным или отрицательным. Объекты с одинаковыми зарядами (положительным и положительным, например) отталкиваются, а с разными (положительным и отрицательным) притягиваются. Вещество обычных объектов содержит как положительные, так и отрицательные заряды. Любой атом – это набор элементарных частиц, причем одни из них заряжены положительно (протоны), другие отрицательно (электроны), а все остальные (нейтроны) не имеют заряда. Обычно атом содержит равное количество электронов и протонов, поэтому сам по себе он заряда не имеет, поскольку положительные и отрицательные заряды внутри него уравновешивают друг друга.

Способность электричества притягивать и отталкивать чрезвычайно сильна. Вот как об этом в своих лекциях по физике говорит неподражаемый Ричард Фейнман:

…все вещество является смесью положительных протонов и отрицательных электронов, притягивающихся и отталкивающихся с неимоверной силой. Однако баланс между ними столь совершенен, что, когда вы стоите возле кого-нибудь, вы не ощущаете никакого действия этой силы. А если бы баланс нарушился хоть немножко, вы бы это сразу почувствовали. Если бы в вашем теле и в теле вашего соседа (стоящего на расстоянии вытянутой руки от вас) электронов оказалось бы всего на 1 % больше, чем протонов, то сила вашего отталкивания была бы невообразимо большой. Насколько большой? Достаточной, чтобы поднять небоскреб? Больше! Достаточной, чтобы поднять гору Эверест? Больше! Силы отталкивания хватило бы, чтобы поднять «вес», равный весу нашей Земли![5]{29}

В смеси заряженных частиц, из которых состоит обычное вещество, электроны – отрицательно заряженные частицы – находятся снаружи атомов, а протоны (вместе с нейтронами) внутри. Атом может приобретать или терять электроны, и тогда он становится ионом. Ион – это атом (а иногда молекула, состоящая из нескольких атомов), заряд которого не сбалансирован из-за такого приобретенного или потерянного электрона, а следовательно, у него есть собственный заряд. Многие химические вещества, растворяясь в воде, испускают ионы, которые отправляются в самостоятельное плавание. Соленая вода – это вода с растворенными в ней ионами. Каждая капелька морской воды содержит бесчисленное множество ионов, взаимодействующих друг с другом и с молекулами воды, притягиваясь и отталкиваясь.

Электрический ток – это движение положительно либо отрицательно заряженных частиц. Когда по металлическим проводам пропускают ток, движутся только электроны, а все остальные частицы, из которых состоят атомы проводов, остаются на месте. Электрический ток, на котором основаны современные технологии (освещение, двигатели, компьютеры), по большей части работает именно так. Но ток может выглядеть и как движение целых ионов. Если положительно или отрицательно заряженные ионы, растворенные в воде, подтолкнуть к движению в определенном направлении, мы получим электрический ток. Движение ионов не запускает ток, оно само и есть ток. Любая емкость с соленой водой может проводить ток, если вам каким-то образом удастся заставить ионы нужного вида двигаться в заданном направлении. В живых системах, в отличие от человеческих изобретений, электрический ток выглядит именно так.

Электрический заряд – это еще не жизнь и не разум, но он порождает множество событий как в неживой, так и в живой природе. Все живое работает на электричестве, улавливая, всасывая, группируя и высвобождая ионы.

Клеточная мембрана отделяет внутреннюю среду клетки от внешней, не давая им смешиваться, но в мембране имеются каналы, избирательно пропускающие некоторые вещества. В основном это ионные каналы. Иногда канал просто позволяет ионам пересекать границу (возможно, при соблюдении определенных условий), но иногда клетка активно всасывает ионы через мембрану.

Та или иная разновидность ионных каналов – общая черта всех клеточных форм жизни, включая бактерии. Зачем бактериям понадобилось создавать особые проходы для ионов, не совсем понятно. Первоначально каналы могли появиться, чтобы позволить клетке регулировать уровень своего электрического заряда относительно внешней среды – настраивать его, а не только укрощать. Но коль скоро трафик сквозь границу живой системы налажен, он начинает исполнять и другие функции. Поток ионов, например, способен служить простейшей формой восприятия: предположим, контакт с неким химическим веществом снаружи клетки открывает канал, сквозь который проникают ионы; попав внутрь, эти заряженные частицы запускают в клетке определенную цепь событий.

Кроме того, ионные каналы, осуществляющие транспортировку веществ в обе стороны сквозь клеточную мембрану, одарили клетку новой, причем очень важной способностью. Она называется раздражимостью. Каналы контролируют поток заряженных частиц, но ими самими тоже можно управлять – открывать их и закрывать. Клетка контролирует активность каналов с помощью химического либо физического воздействия, но также и посредством самого электрического заряда. Потенциал-зависимые ионные каналы открываются в ответ на электрические явления, к которым они чувствительны. В результате запускается цепная реакция – поток заряженных частиц усиливается и выходит за пределы клеточной мембраны.

Новая способность не кажется какой-то особенно значимой, сфера ее применения не так очевидна, как у описанного выше механизма, в рамках которого поток ионов реагирует на химические вещества, встречающиеся на ее пути. Но потенциал-зависимые ионные каналы помогают клетке сделать следующий шаг в развитии, обеспечивая ее потенциалом действия. Потенциал действия представляет собой непрерывную цепную реакцию изменений в мембране клеток, в частности клеток человеческого мозга. Проникая в клетку, положительно заряженные ионы воздействуют на ионные каналы по соседству, те открываются, внутрь клетки проникает еще больше ионов – и так далее. По мембране распространяется волна электрической пульсации. Потенциал действия – явление сродни электрическому разряду, и клетки мозга, задетые им, как говорят нейробиологи, «вспыхивают». Это становится возможным благодаря потенциал-зависимым ионным каналам.

В потенциал-зависимых ионных каналах на внутренний контроллер клетки воздействуют электрические заряды – электрический ток контролируется электрически. Это принцип работы транзистора. В начале раздела я упоминал технологические прорывы XIX века, которые поставили электричество на службу человеку. Еще один такой прорыв случился в XX веке благодаря изобретению транзистора. Кремниевые микросхемы в компьютерах и смартфонах – это как раз набор транзисторов, крошечных переключателей. Транзистор был изобретен около 1947 года в лабораториях Белла в США, хотя их первенство и оспаривается. Первый транзистор лаборатории Белла был размером около 2,5 см, но с тех пор его постоянно дорабатывали и уменьшали. И точно такой же девайс был изобретен миллиарды лет тому назад в процессе эволюции бактерий.

Если бактерии изобрели транзисторы, что они с ними делали?{30} Зачем им-то нужно было контролировать электричество с помощью электричества? Насколько я знаю, научное сообщество не пришло к общему мнению по этому вопросу. Бактерии могли использовать свои биотранзисторы для поддержания электрохимического баланса в клетке – или для контроля передвижения в водной среде. Каналы, чувствительные к химическому составу внешней среды, могли оказаться чувствительными и к электрическому заряду, и бактерии, формирующие колонии в виде «биопленок», научились передавать сигналы от клетки к клетке с помощью ионов. Но у бактерий нет потенциала действия, подобного цепной реакции в мозге человека, и ситуация кажется мне довольно странной. Несколько миллиардов лет тому назад природа изобрела электронное устройство, без которого невозможны современные компьютерные технологии, – сложное и требующее ресурсов устройство – и оснастила им бактерии, но бактерии, похоже, не так чтобы часто используют его для вычислений.

Как бы там ни было, появление потенциал-зависимого ионного канала – поворотный момент в укрощении заряда. Как я уже говорил, у этих каналов нет какого-то одного очевидного применения. В каком-то смысле то же самое касается и транзистора; как раз в этом и заключается одно из основных преимуществ того и другого. Транзистор – простой инструмент контроля, устройство, с помощью которого можно сделать так, чтобы событие в одном месте гарантированно и быстро вызывало событие в другом. О каких событиях идет речь, не так уж важно, – сгодится все. Благодаря потенциал-зависимым ионным каналам, обеспечивающим потенциал действия, активность клетки приобретает «цифровое» качество; нейрон либо вспыхивает, либо не вспыхивает: да или нет, единица или ноль. Не у всех животных есть нейроны, способные так вспыхивать; существуют и другие типы нервных систем, которые работают на низком уровне раздражимости, но эта цифровая характеристика определенно полезна. Примечательно, что это регулировочное устройство было изобретено так давно, когда сфера его современного применения эволюции даже не мерещилась.

В дни вездесущих компьютеров и искусственного интеллекта отношения между живыми системами и электронными устройствами неизбежно вызывают интерес. Неужели живые существа и компьютеры различаются только материалом, из которого сделаны? Сходство между ними есть, и оно бывает довольно неожиданным, но не менее важно признавать и отличия. И одно из них заключается в том, что компьютеру никогда не придется заботиться о том, чем прежде всего занята живая клетка. Основная задача клетки – поддерживать свое существование, заботиться о непрерывном поступлении энергии, осуществлять привычную жизнедеятельность в условиях распада и изменения веществ. В живых системах активность, которой заняты и компьютеры, – переключение электрических цепей и «обработка данных» – только малая часть множества взаимосвязанных химических процессов. Все, что происходит в клетках, происходит в жидкой среде и подвержено превратностям молекулярного шторма; клетка вынуждена отвлекаться на химические процессы, которыми заняты все живые системы. А когда мы собираем компьютер, мы хотим, чтобы он выполнял операции унифицированные и однообразные, – мы собираем систему, которая в идеале вообще не должна отвлекаться на непродуктивные химические процессы.

Вышесказанное актуально и в том случае, если посмотреть на ситуацию шире. В первых главах книги я стараюсь описать всю сложность строения клеток и простых организмов, а также процессов, происходящих внутри них. В этой связи меня нередко посещал объяснимый соблазн использовать слово «механизм» – ведь мы изучаем механизмы восприятия, механизмы раздражимости. Я пишу и каждый раз сомневаюсь: не стереть ли его? Несомненно, в широком смысле слова потенциал-зависимые ионные каналы – это детали механизма; то же самое можно сказать как о нервах, так и о мозге. Отрицая этот постулат, мы уклоняемся в сторону дуалистических (душа плюс тело) или виталистических (жизненная сила) взглядов. Поэтому я разрешил себе его использовать. Однако нельзя упускать из виду и отличия машин от живых систем. Жизненные процессы клетки подразумевают укрощение молекулярного шторма и хаотичного движения ионов. Это совершенно не похоже на то, что происходит в любой спроектированной человеком машине. Собирая машины, мы стремимся сделать их предсказуемыми, хотим, чтобы они выполняли строго определенные функции, пусть даже потом мы используем их для симуляции хаотических событий. Ссылаться на хитроумное устройство клетки как на «механизм» в каких-то случаях уместно, а в каких-то нет.

В арсенале свойств тех форм жизни, что существовали до появления животных, есть одно, которое мне хотелось бы выделить особо. Я его уже касался, но теперь хочу поместить в центр внимания. Это свойство – двустороннее сообщение между живыми системами и средой. Здесь имеется в виду и уже упоминавшийся поток ионов, и поглощение органических веществ, и удаление отходов. Клетки обособлены, но не изолированы от мира. Клеточные формы жизни сообщаются с внешней средой, и это крайне важно.

У этого двустороннего обмена есть как метаболическая сторона – клетка получает энергию и использует ее для поддержания жизни, – так и информационная. Какие-то поступления извне важны сами по себе (прежде всего пища), зато другие могут предостеречь, подсказать или сообщить некую важную информацию. Метаболическая сторона этого двустороннего обмена – непременное условие продолжения жизни. Жизнедеятельность организма невозможна в отрыве от энергетического потока, который начинается и заканчивается вовне{31}. Моя коллега Маурин О'Мэлли великолепно сформулировала эту мысль; соединив химический термин с образом из совершенно другой области, она сказала: чтобы жить, нужно научиться существовать «на окислительно-восстановительных американских горках, постоянно отдавая и получая»{32}. (В процессе окислительно-восстановительной реакции молекулы обмениваются электронами.) О'Мэлли хотела подчеркнуть, что чувствительность к событиям и изменениям во внешней среде – неотъемлемая характеристика живых организмов. У них нет возможности задраить все люки, они открыты миру в силу своей потребности в энергии. Открывшись миру, живые системы неизбежно будут испытывать на себе его влияние. А так как происходящее снаружи влияет на живую систему, эволюция обязательно попытается как-то эту чувствительность использовать: организмам часто удается отыскать способ реагировать на происходящее так, чтобы поставить его на службу своим целям, какими бы примитивными они ни были. Все известные клеточные формы жизни, не исключая и крошечных бактерий, обладают способностью ощущать мир и реагировать на него. Ощущение, как минимум в самых его базовых формах, старо как мир и встречается повсеместно{33}.

Многоклеточные

Перечисленные идеи составляют одну из двух основных тем второй главы. Живые клетки – физические объекты, но они не похожи ни на один другой знакомый нам объект. Они окружают себя мембраной, чтобы сдержать шторм активности и придать ему форму. Они заключены внутри своих границ, но вся их жизнь зависит от того, что проникает сквозь эти границы. Самоопределяющаяся и самоподдерживающаяся клетка – это самость. Следующий поворот истории подводит нас к новой разновидности объектов и к новому виду самости, а именно к животным.

Думая о животных, мы первым делом вспоминаем тех, что похожи на нас: других млекопитающих, кошек и собак, может быть, птиц. Но животный мир простирается гораздо дальше. Животные – метазоа (многоклеточные) – формируют единую массивную ветвь на общем древе жизни, генеалогической системе, объединяющей все живое на Земле. Термин «метазоа» в конце XIX века ввел в оборот Эрнст Геккель, немецкий биолог, с которым мы познакомились в первой главе{34}. Он противопоставлял многоклеточных животных (Metazoa) одноклеточным существам (Protozoa). Корень zoa здесь тот же, что в словах зоология и зоопарк. Греческая приставка «мета» первоначально означала нечто вроде «после» или «рядом», затем приобрела смысл «выше», а сегодня часто употребляется в значении «над» – этакий взгляд сверху. Геккель, вероятно, вкладывал в свое определение такие смыслы, как «высший» и «последующий». Но одноклеточных сегодня больше не причисляют к животным, поэтому zoa в слове Protozoa может запутать. Сегодня животные – это исключительно Metazoa.

Тело животного состоит из множества клеток, существующих как единое целое{35}; более того, образ жизни различных животных может кардинально различаться. К животным относятся кораллы и жирафы, крохотные осы, которые меньше некоторых одноклеточных организмов, а также киты массой в пятьдесят тонн. Есть животные, внешне неотличимые от растений. Сегодня в биологии словом «животное» называют любой организм, располагающийся на определенной ветви генеалогического древа, независимо от того, какую жизнь он ведет и как выглядит. Коралл – не менее животное, чем волк. Это не единственный способ дать определение слову «животное», но он, в отличие от всех прочих, недвусмысленный и однозначный.

Животных не разместишь на шкале от «низших» к «высшим», хотя от привычки рассуждать о них в подобном ключе избавиться непросто. На генеалогическом древе некоторые животные расположены ниже, потому что появились раньше, но насекомые, например, которые здравствуют и поныне, не ниже нас; все, что живет сегодня, – это верхушка дерева. Поэтому нет смысла рассуждать об эволюционной «шкале» или «лестнице»: животный мир устроен иначе. Есть животные, которые в самых разных отношениях сложнее других (больше органов и конечностей, шире спектр поведения, более сложный жизненный цикл), но в биологии нет места для общей шкалы от низших к высшим – такой, которая казалась естественной до открытий Дарвина.

Генеалогическая система, частью которой оказываются животные, – «древо жизни» – не всегда похожа на дерево; на множестве ее участков не все так однозначно{36}. Но для простоты я продолжу говорить о ней как о дереве. Это дерево связывает все известные формы жизни на Земле в цепь предков и потомков. Оно уже очень старое, но все еще растет – благодаря эволюционному процессу, действующему на огромных промежутках времени. Какой-то вид однажды делится на два. Каждый из них идет по своему пути развития и приобретает свои особенности. Какие-то виды вымирают, но каждое звено – новый вид – если уж не вымерло, то может в дальнейшем опять разделиться на два. От изначальной развилки отделятся еще несколько веток, и на каждой будет представлен не один вид, а целое семейство.

Много лет назад, когда дерево было моложе и меньше, проклюнулась почка, давшая начало новой ветви. Ветвь уцелела, постоянно давая новые побеги, и стала особенно раскидистой и разнообразной. Организмы, помещающиеся на этой части генеалогического древа, называются животными. Эволюция бесконечна, и никто не знает, как далеко протянутся ветви древа – и ветвь животных, и все остальные. Но, хотя способы существования животных чрезвычайно разнообразны, всех их объединяет нечто общее, своего рода стиль, присущий исключительно животным, – образ жизни, изобретенный на нашей ветви дерева.

Животные произошли от одноклеточных организмов, которые превосходят бактерий по размерам и сложности внутреннего устройства. У этих клеток, эукариотов, есть особые приспособления для управления энергией – митохондрии – и развитый внутренний скелет (цитоскелет). Это сеть ниточек[6] и микротрубочек, которые движутся в согласии друг с другом, помогая клетке сохранять форму и контролировать движение.

Задолго до появления животных цитоскелет помог одноклеточным организмам выйти на новый уровень мобильности, в том числе начать активно охотиться{37}. Эта внутриклеточная структура позволила перейти от существования, которое, как у бактерий, поддерживается в основном химическими процессами, к существованию, основанному в первую очередь на поведении – движении и действии. Все это уже звучит очень похоже на свойства животных, но мы все еще говорим об одноклеточных организмах – протистах. Некоторые из них вырастают до довольно больших размеров. Амебы рода Chaos, например, охотятся не только на бактерий, но даже на мелких беспозвоночных.

Растения – это другая ветвь генеалогического древа, другой длительный многоклеточный эксперимент, они тоже состоят из эукариотических клеток. То же самое касается грибов. Эволюция постоянно создает новые, все более крупные единицы, сливая воедино более мелкие. Так появились и сами эукариотические клетки: одна простая клетка поглотила другую{38}; поглощенная клетка превратилась в митохондрию, которую эукариоты стали использовать в качестве электростанции.

В числе событий, благодаря которым на Земле появились растения и животные, был союз и другого типа – в этот раз не поглощение, но объединение. Например, клетка делится, а потом две ее дочерние клетки, вместо того чтобы отправиться каждая по своим делам, остаются вместе – в результате мутации, повлиявшей на их химическое устройство. Когда делятся эти клетки, их дочки тоже никуда не уходят. Поначалу из этого получился, скорее всего, просто живой объект более крупных размеров. Он не умел действовать как единое целое; непонятно, мог ли он размножаться или только увеличивался в размерах. Тем не менее это была еще одна ступенька на пути к новой форме жизни.

Многоклеточные организмы такого типа эволюционировали из одноклеточных не единожды. По линии животных это могло случиться около 800 миллионов лет назад (плюс-минус добрых 100 миллионов). Эти ранние формы не оставили следов в палеонтологической летописи, но мы можем представить себе, как они выглядели: дрейфующий в море клубок, сформированный поколениями клеток, отказавшихся расставаться со своими сестрами.

Но что же было дальше? Одна из популярных гипотез гласит, что следующим шагом в эволюции многоклеточных стало что-то вроде чаши, или полой сферы с отверстием. Клубок клеток сворачивается внутрь себя и становится полым. Впервые эту идею высказал все тот же Эрнст Геккель{39}.

Гипотеза чаши соблазнительна, и вот почему: эту форму можно обнаружить на ранних стадиях онтогенеза – развития отдельного организма из яйца во взрослую особь – у множества видов животных. Такая полая форма называется гаструла. Не стоит, конечно, думать, будто нечто, наблюдаемое на ранних стадиях индивидуального развития, обязательно должно было присутствовать и на ранних стадиях эволюции (как предполагал Геккель), но форма чаши кажется такой древней и широко распространенной, что здесь действительно может крыться важная подсказка. Геккель окрестил это гипотетическое животное «гастрея».

Эпизод с батибиусом, описанный в первой главе, не стал для Геккеля звездным часом, но вот гастрея – дело другое. Мысль о том, что самые ранние формы животной жизни могли бы выглядеть именно так, актуальна до сих пор. Незамкнутая сфера могла бы стать зачатком пищеварительной системы, а первое животное явилось бы на свет, сформировавшись вокруг желудка. Во внутренней полости гастрея могла бы удерживать пищу; туда же она выпускала бы пищеварительные ферменты, и их не уносило бы течением воды.

Человеческая пищеварительная система тоже удерживает пищу. Что интересно, в нашем кишечнике обитает бесконечное множество живых бактерий, которые – при условии их здорового баланса – приносят нам неоценимую пользу{40}. Такой вид сотрудничества очень распространен среди животных. Он мог бы наблюдаться и на ранней стадии эволюции животного мира. Геккель об этом не писал, да и позже эта мысль не была особенно популярной. Это новая идея, основанная на понимании того, что тело животного в нормальном состоянии предоставляет убежище огромным колониям бактерий, которые не только помогают ему перерабатывать пищу, но и выполняют другие функции. Признание тесного союза, связывающего наши тела с сосуществующими с ними микробами, серьезно поменяло угол, под которым биологи смотрят на животный мир. Скорее всего, союз этот уходит корнями вглубь веков. Припомните заодно историю поглощения в эволюции клетки – поглощения, благодаря которому появились митохондрии, а также хлоропласты у растений. Там метаболический союзник был перенесен внутрь клетки – или сначала попал туда, а уж затем был пристроен к делу. А здесь мы даем приют полезным микроорганизмам, которым не нужно проникать внутрь клеток, – можно сказать, что мы строим для них ферму. Различные пищеварительные экосистемы могли бы дать начало животной жизни.

Эта идея незамкнутой сферы (open-sphere idea) – оставим пока мысль о полезных микробах внутри – похожа на вторую итерацию в эволюции клеток. У клеток на этом этапе сформировалась граница с пронизывающими ее каналами, создавшая обособленную сущность, способную контролировать химические реакции. В случае животных перед нами конгломерат клеток, организовавший себя в полую сферу, – еще один объект, у которого есть внутренняя и внешняя стороны. Теперь отдельные клетки стали частью сферы и принялись контролировать движение внутрь и наружу этой новой, более крупной особи.

Начиная с этого момента – а может, откуда-нибудь еще – первые животные тела стали обретать форму. Хотелось бы представить себе следующий шаг наглядно, но, увы, палеонтологическая летопись по-прежнему ничем не может нам помочь, по крайней мере на момент, когда я это пишу. К счастью, есть животные, способные нам кое-что подсказать. Эти подсказки легко истолковать неверно; нынешние животные – это ведь не дожившие до наших дней предковые организмы, а всего лишь их дальние родственники. Они прошли через столь же длительную эволюцию, как и мы с вами. Но некоторые из них или сохраняют форму, в каких-то отношениях напоминающую древние формы, или, по крайней мере, могут сообщить о них нечто важное.

Животные, способные послужить подсказками, составляют трио – это губки, гребневики и пластинчатые{41}. Друг с другом они имеют мало общего. Губка, единожды выбрав себе место, уже никогда с него не сдвинется. В этом смысле губка больше напоминает растение. Некоторые губки вырастают до довольно крупных размеров. Пластинчатые, напротив, крошечные, плоские, бесформенные ползающие создания. Без микроскопа их толком не разглядишь. Ни губки, ни пластинчатые не имеют нервной системы. Гребневик[7], как предполагает его английское имя, напоминает медузу, но этих двоих разделяет значительная эволюционная дистанция. У гребневика имеется нервная система, а плавает он, шевеля ритмично колышущимися ресничками, крошечными волосками, расположенными по бокам животного. В общем, из наших подсказок одна – неподвижное донное существо, другая не имеет нервов и различима лишь под микроскопом, а третья прозрачная и плавает.

Почему же из всех животных именно эта троица может помочь нам раскрыть тайну ранних форм жизни? Во-первых, все они простые, однако просты они по-разному. У них не так много органов и не так много типов клеток. Во-вторых, они значительно отличаются от нас генетически. Они принадлежат к тем ветвям дерева эволюции, которые довольно рано отделились от нашей.

Здесь нам стоит остановиться и задуматься о комбинации этих двух характеристик – быть простыми и быть непохожими на нас. Эти две черты не обязательно должны быть как-то связаны. Не существует убедительной причины, по которой сегодня на Земле не могло бы жить очень сложное животное, эволюционный путь которого разошелся с нашим давным-давно. Все то время, что мы развивали наши сложные тела и мозги, они тоже могли бы предаваться этому занятию. Лучший пример иной комбинации характеристик – и сложно устроенный, и весьма далекий от нас – осьминог, с которым мы еще встретимся в конце этой книги. Но осьминоги все же не настолько далеко отстоят от нас на эволюционном древе, как губки и другие животные, о которых мы сейчас говорим.

Трудно избавиться от соблазна представить дело таким образом, будто самые древние наши предки выглядели как губки, на следующих этапах эволюции напоминали медуз, и так далее. Нельзя сказать, что это абсолютно невозможно, но при взгляде на эволюционное дерево понимаешь, что такая цепь событий неочевидна. Мыслить так – значило бы определить кого-то из троюродных братьев на роль прадедушек или же считать, что одни наши дальние родственники больше похожи на прадедушек, чем другие. Когда формулируешь эту мысль в терминах братьев и дедушек, становится очевидно, что такая цепь рассуждений не имеет смысла. Однако это не исключает вероятности, что какие-то из наших дальних родственников могут таить в себе определенные подсказки.

Человеческое тело оснащено массой эволюционных изобретений (мозг, сердце, позвоночник и так далее), которые должны были как-то возникнуть. Губки и медузы обходятся без них, хотя у нас с ними есть общие предки. Следовательно, они, во-первых, демонстрируют, какими могли бы быть мы сами, если бы вынуждены были обходиться без всех этих приспособлений. Во-вторых, губки, гребневики и пластинчатые расположены не на той эволюционной линии, которая на каком-то этапе имела эти черты, а потом от них избавилась, – очевидно, что им эти черты вообще никогда свойственны не были. Более того, отсутствующие у них черты – не просто какие-то малозначимые аксессуары. Симметричное тело, у которого есть правая и левая сторона, – это изобретение. Сложное строение тканей, из которых состоят наши внутренние органы, – это тоже изобретение эволюции. Изучая далеких от нас животных, которые всех этих характеристик лишены, принимая во внимание данные генетики и ископаемые остатки, мы сможем – хотя бы отчасти – понять, как выглядели наши очень дальние предки в нижней части дерева.

Свет сквозь стекло

Традиционно губки считались важнейшим из живых ключей к разгадке тайны самых ранних форм животной жизни{42}. Губки обширно представлены в палеонтологической летописи и отлично изучены. Давайте же, не делая далеко идущих предположений об их сходстве или несходстве с нашими эволюционными предками, рассмотрим губку внимательней как самостоятельное, ни на что не похожее животное.

Губки в море встречаются практически повсеместно: мягкие пальчики и пушистые деревца в умеренных водах, пышные веера на тропических рифах и башни на дне холодных морей, с которых начинается эта глава. Некоторые разрастаются поверх других организмов и не могут определять свою форму самостоятельно. Все, что они делают, так это всасывают воду своей нижней частью, прогоняют ее вверх по телу и выпускают через верхнее отверстие. Пищу, в основном бактерий, губки всасывают из воды. Есть губки, которые питаются чуть более разнообразно: в глубоких водах живут губки-хищники, которые ловят и едят мелких животных.

Тело губки сильно отличается от тел наподобие наших. Большая часть клеток, составляющих ее тело, находится в непосредственном контакте с водой, проходящей сквозь него. Тело губки представляет собой лабиринт тонких канальцев, выстеленных микробами-симбионтами, и оно проницаемо для внешней среды.

У губки нет ни мозга, ни нервной системы. Личинка (незрелая форма), похожая на крошечную толстенькую сигару, умеет плавать, и у нее есть кое-какие чувствительные органы, похожие на зачатки нервной системы. Чувствительные механизмы личинки обращены наружу, к миру, а не к другим клеткам тела. Личинка находит себе место, закрепляется и вырастает во взрослую особь. Но при всем том, что нервной системы у губки нет, ее не назовешь инертной. Внутри каждой клетки бушует шторм, о котором я писал выше. Губка как целое выглядит вялой, но есть у нее и активная сторона.

Вода проходит сквозь тело губки, а клетки с маленькими жгутиками (флагеллами) прогоняют ее через крошечные фильтры, отцеживая из нее бактерий. Режим всасывания может изменяться; если вода грязная, что грозит засорением канальцев, то оно может остановиться совсем. Конгломерату клеток, лишенному нервной системы, добиться этого не так-то просто. Это серьезное достижение. Видимо, трубочки, через которые проходит вода, изнутри выстелены особыми сенсорными клетками, передающими сигналы всем остальным. Учитывая, что представляет собой клетка, повлиять на другую – серьезная для нее задача. Происходит это так: клетка выделяет особые молекулы, на которые реагируют соседние клетки. В результате каналы сжимаются и закрываются. Процесс небыстрый, но торопиться губке некуда. Иногда, перед тем как сократиться, губка для начала немного расширяется, как будто бы «чихая» в полусне.

Все это напоминает нам как о возможностях, открывающихся перед многоклеточной жизнью, так и о трудностях, с которыми она сталкивается. Каждой отдельной клетке из тех, что составляют губку, не грозит опасность попасть на обед клетке покрупнее, как могло бы случиться, если бы она в одиночестве плавала в воде. Но, если бы клетка была просто прикована к одному месту вместе с группой других, перед ней замаячила бы вероятность умереть от голода. Кружево каналов и трубочек губки обеспечивает большинству ее клеток непосредственный контакт с водой. Но, если перед губкой встанет некая общая задача, ей будет очень сложно осуществить координированное действие, в особенности координированное движение. Из-за описанного устройства губка сильно напоминает растение. Большинство губок не имеют ничего против такого образа жизни и живут так же, как жили испокон веков. Но некоторые все же решились попробовать нечто новенькое.

Hexactinellida, или шестилучевая стеклянная губка, иллюстрирует собой две главных темы этой главы – единство и индивидуальность{43}. Стеклянная губка, как и все другие животные, – многоклеточный организм, но в процессе ее роста большинство клеток стеклянной губки сплавляются друг с другом, лишаясь границ. Конечно, они отказываются от границ не с внешним миром – только с соседними клетками. Со временем их тело превращается в единую сеть, которую часто описывают как «трехмерную паутину», натянутую поверх твердых элементов, на которые она опирается.

Эти твердые элементы сделаны из стекла. У разных видов губок они напоминают крестики, звездочки или снежинки.

Вместе они формируют структуры, напоминающие цветы или виноградные гроздья, но, по сути, это скелет, поддерживающий башню. (На рисунке этих крошечных структур, выполненном Ребеккой Гелернтер, воспроизведены гравюры, сделанные с образцов, собранных экспедицией «Челленджера» в XIX веке – в путешествии, которое прикончило батибиус{44}.)



Как и другие представители класса, шестилучевая губка существует в тесной связи с другими формами жизни. Внутри стеклянной губки, которая называется «корзинка Венеры», обычно живет пара маленьких креветок. Креветки проникают в башню, будучи совсем крошечными, и вырастают во взрослых особей, не выходя наружу. Со временем они становятся слишком большими, чтобы протиснуться сквозь отверстия в теле губки. В башне у креветок появляется потомство. Они содержат губку в чистоте, а в ответ пользуются защитой прочного скелета губки и питаются пищей, содержащейся в воде, которую губка пропускает сквозь свое тело.

У стеклянных губок нет нервной системы, но электрически они не инертны, и укрощение заряда принимает у них необычную форму. Эта живая паутина, натянутая на прочный скелет, проводит электрические сигналы и имеет некоторый «потенциал действия», что губкам в целом не свойственно. Как правило, стеклянная губка пропускает воду сквозь тело постоянным потоком. Однако в ответ на определенные стимулы, например если выломать из ее тела одну-единственную стеклянную звездочку, губка тут же перестает качать воду. Она делает это, запуская вдоль тела электрический разряд. Электрически губка ведет себя как одна огромная клетка – разряд в долю секунды без всяких помех пронизывает все ее тело. Стеклянная губка добивается координации действий не за счет координации сигналов между клетками, а за счет того, что в целом она является не совсем клеточной формой жизни. Она, безусловно, продукт эволюционного пути животных, но такой, который частично отказался от многоклеточной формы жизни, выбрав для себя иной вид единства.

Я говорил о заряде, коммуникации и координации внутри этих созданий. Но стеклянная губка – животное, состоящее в основном из стекла, и это не только паутина, проводящая ток, но и скелет под ней. Одна из важнейших характеристик стекла – способность пропускать свет. Скелет некоторых стеклянных губок напоминает оптоволоконный кабель, который проводит и фильтрует свет.

Интересно, делает ли губка со светом нечто биологически значимое, или это ее свойство – непреднамеренное следствие использования стекла в качестве строительного материала? Должна ли она проводить свет, или это вышло случайно? Тут открывается широкий простор для увлекательных спекуляций, и в отношении губок, принадлежащих к разным видам, высказывались и обсуждались самые разные вероятности{45}. Свет – если мы не говорим о мелководных видах губок – должен вырабатываться биомолекулами того или иного типа и может представлять собой еще один способ коммуникации внутри животного. К тому же светом могли бы питаться микроорганизмы, живущие в симбиозе с губкой: крохотные диатомы и другие создания собираются внутри губок, обитающих на такой глубине, что им не хватит света для продолжения жизни, если губка не будет проводит к ним его лучи. Свет, излучаемый стеклянной губкой, проникает даже в морское дно, пусть и неглубоко. Корзинка Венеры освещает окружающие воды, как слабая лампочка в океане, и, может, именно этим она привлекает креветок, которые селятся у нее внутри. Все это пока только предположения, и некоторые биологи думают, что испускаемый губкой свет слишком слаб, чтобы от него был какой-то прок. Намеренно ли это вышло или случайно, но стеклянная губка представляет собой накопитель и проводник биологического света.

3. Восхождение мягкого коралла

Восхождение

В заливе к северу от австралийского Сиднея, недалеко от тех самых ступенек, по которым мы спускались в первой главе, под водой есть песчаная равнина. Сформирован залив впадающей в Тихий океан извилистой рекой, которая берет начало в эвкалиптовых лесах материка.

Подводная равнина подвержена сильному влиянию приливно-отливных течений. Во время прилива морская вода заходит в реку, а с отливом возвращается в океан. Течение привлекает сюда самых разнообразных животных, но оно же ограничивает время возможного погружения с аквалангом лишь парой часов в день между приливом и отливом, когда вода спокойна. Каждая такая пауза длится примерно час. Погружаться можно в высшей точке прилива, и нужно успеть вернуться до того, как массы воды начнут двигаться.

Отлив наступает мгновенно – рывок, и вас уже куда-то уносит. Еще минута – и плыть против течения невозможно. Задержитесь немного – вас утянет в открытое море.

Там и сям на этой равнине растут поля фиолетовых и белых мягких кораллов. Они действительно мягкие и нежные, в отличие от шероховатых и окаменелых «жестких» кораллов, которые распространены в тропиках. Коралловые деревца напоминают кочанчики цветной капусты, хотя сравнение с капустой несправедливо по отношению к этому животному. Издалека кораллы похожи на белые и лиловые облачка, с близкого расстояния можно рассмотреть в них тонкие прожилки и волоконца. В ветках коралла обитают мелкие крабы и моллюски каури.

Если вы приближаетесь к кораллам со слабым течением воды – скажем, вас приносит последняя волна прилива, – кажется, будто вы летите на бесшумном планере навстречу облакам, растущим из земли на толстеньких бледных ножках. Эти деревца – не отдельные организмы, а колонии, состоящие из множества мелких животных – коралловых полипов. Из второй главы мы узнали, что внутри каждого бушует бесконечный микроскопический шторм. Но внешне коралл кажется неподвижным, лишь кое-какие животные поактивнее шныряют меж его ветвей.

Несколько лет назад местный дайвер и исследователь Том Дэвис, бессчетное число раз погружавшийся в залив в периоды затишья на вершине прилива, задался вопросом: а чем заняты мягкие кораллы, когда никто на них не смотрит? Конечно, большую часть суток течение слишком сильно, чтобы дайвер мог непосредственно наблюдать за кораллами, но ведь можно установить на дне камеры, которые будут снимать, что происходит, когда течение сильное, а людей поблизости нет.

С помощью жены Николы Том установил несколько камер в местах, где встречаются кораллы. Через какое-то время они их достали, просмотрели записи и обнаружили нечто удивительное: когда вода, сменив направление движения, ускоряется, кораллы медленно вытягиваются, раздуваясь, пока не станут раза в три больше, чем в спокойной воде{46}. Скорее всего, они встают во весь рост, чтобы уловить как можно больше пищи, которую несет с собой течение. Когда течение замедляется, кораллы сдуваются, и в те краткие часы, когда человек способен к ним вернуться, прижимаются ко дну.

В поисках первых действий

Кораллы относятся к книдариям, или стрекающим, – к той же группе животных, что и медузы и актинии{47}. Эта группа отделилась от нашей эволюционной линии на одном из самых ранних этапов истории животного мира. Последний наш общий предок жил около 650–700 миллионов лет назад. Точные цифры неизвестны, но он определенно жил позже, чем общий предок человека и губки.

Тело стрекающих мягкое, радиально симметричное, то есть имеет форму диска или чаши; часто оно обрамлено щупальцами, которые могут выглядеть и как длинная бахрома, и как короткие пальчики. У стрекающих есть мускулы и электризуемые нити нервной сети.

У многих стрекающих сложный жизненный цикл, по ходу которого они претерпевают ряд изменений{48}. Эти переходы немного похожи на метаморфозу, сопровождающую превращение гусеницы в бабочку, но аналогия не вполне точная, поскольку тело стрекающего не просто изменяется, но в несколько приемов размножается, как если бы из одной гусеницы получалось много бабочек, а из одной бабочки – множество гусениц. Во взрослом состоянии стрекающие выглядят либо как медузы, либо как полипы. Полип, как правило, прикрепляется к поверхности и часто имеет форму чашечки. Медуза выглядит как обычная медуза, плавающая в толще воды и окруженная развевающимися щупальцами. Многие книдарии поочередно принимают эти две формы. Кораллы и актинии существуют только в виде полипов.

На рифе, чуть дальше от похожих на облачка коралловых деревьев, обитает другой вид мягкого коралла. Эти кораллы тоже бывают похожи на кусты, но часто образуют и бесформенную массу. Каждый полип – словно белый цветочек с восемью длинными, похожими на пальчики щупальцами. От каждого пальчика, в свою очередь, отходят маленькие отростки. Пальчики на пальчиках! Они называются пиннулы. Нередко колония кораллов обрастает оранжевой губкой: губка укрывает ее как одеяло, а те части полипов, что напоминают цветочки, высовываются наружу.

Так как щупалец у такого коралла восемь, его еще называют восьмилучевым кораллом. Колонии восьмилучевого коралла напоминают лес крохотных ручек. Если проявить терпение, можно увидеть, как полипы медленно открываются, как будто разгибая и сгибая пальчики.

Иногда сворачивается какое-то одно щупальце, а остальные остаются выпрямленными, иногда кулачок сжимается полностью. Можно наткнуться на место, где все ручки сжаты, в то время как на соседних полях большинство ладошек раскрыты. Похоже, что щупальца коралла вытягиваются, будто пытаясь ухватить что-то, но долгое время было неясно, что же они ловят, если ловят вообще. Канадский биолог Джон Льюис, изучив тридцать видов восьмилучевых кораллов, обнаружил, что некоторые из них действительно ухватывают своими ручками пищу, причем не только планктон, но и крошечных беспозвоночных животных{49}. Когда я пишу, что коралл вытягивает щупальце и что-то там хватает, есть соблазн представить себе быстрое движение, какое мог бы совершить человек, но у коралла весь процесс происходит в замедленном темпе: быстрее, чем могло бы шевелиться растение, но гораздо медленнее, если сравнивать со знакомыми нам активными действиями животных. В этих движениях – попытках дотянуться и схватить – кроются важные намеки и подсказки, звучит далекое эхо самых первых и самых простых видов движений, свойственных животным.

Что заставляет меня так думать? Во-первых, книдарии – очень древние существа, а присущее им строение тела, скорее всего, можно отыскать и в далеком прошлом нашего собственного вида. Конечно, нельзя утверждать, что какое-то современное стрекающее – актиния, коралл или медуза – выглядит как наш общий предок, но их радиальное устройство, скорее всего, действительно напоминает строение тел животных, живших на заре времен.

Во-вторых, они способны к действию. Конечно, действие как таковое изобрели не книдарии. Многие одноклеточные организмы умеют плавать, используя в качестве пропеллера жгутики или реснички толщиной с волосок. Некоторые умеют обволакивать собой жертву и менять форму тела. Зачатки движения обнаруживаются у всех кандидатов на роль первых животных. В предыдущей главе мы читали, как губка прокачивает воду сквозь свое тело. Это умение, уже довольно близкое к действию, может быть очень древним.

Эволюция полна серых зон и неполных примеров – чаще всего трудно сказать наверняка, что было первым в некоторой цепи событий. Эволюция частенько изобретает нечто давно известное заново, но уже на новом уровне или в новом масштабе. В жизни одноклеточных движение уже присутствует: они плавают, ловят и поглощают. Появление таких действий могло быть важным шагом в эволюции многоклеточной жизни{50}. Мир до появления животных был миром одноклеточных хищников и жертв, а одна из возможностей избежать поглощения – увеличиться до размеров, которые поглощение затрудняют. Позже, когда клетки объединились в многоклеточное животное, эволюции пришлось изобретать действие заново – уже на новом уровне. Многоклеточному организму потребовались новые виды координации. Губки, стоявшие на пороге этого открытия, представляют собой как раз такой неполный пример. У книдарий действие опять появляется во всей его полноте, с движением и перегруппировкой частей тела животного.

Стрекающие умеют не только вытягиваться и хватать. Еще одна важная их способность – это древнее действие иного типа: активация стрекательных клеток нематоцитов. Стрекательные клетки есть у всех или почти у всех книдарий. У актиний, например, они так слабы, что человек может даже не почувствовать укола. Другие, например кубомедуза, способны убить на месте. Жала у стрекающих бывают разные, но все они достаточно похожи, чтобы допустить их происхождение от одного новшества, давным-давно появившегося в линии книдарий, а затем распространившегося по ветвям эволюционного древа.



Что же происходит в этих порой действительно опасных случаях, когда книдарии жалят? В спокойном состоянии жало стрекающего свернуто внутри клетки. Клетки с жалами окружены чувствительными клетками и вместе с другими «наводчиками огня» составляют единую батарею (это, кажется, артиллерийская метафора, но весьма подходящая). Выпущенное жало достигает невероятного ускорения и моментально преодолевает крошечную дистанцию. Но само это поведение – непосредственное движение – осуществляет одна-единственная клетка. Конечно, она окружена помощниками, чувствительными (и некоторыми другими) клетками, но никаких координированных усилий для производства действия от них не требуется. Сравните это с хватательным движением мягкого коралла. Здесь мы наблюдаем работу уже не одной-единственной клетки, но совокупность сокращений множества отдельных клеток – движений, которые должны осуществляться совместно и согласованно. Я хочу подчеркнуть здесь важность этого «изобретения» эволюции – действия, которое с точки зрения отдельной клетки требует масштабной координации{51}. В хватательном движении мягкого коралла прослеживается эволюция именно этого новшества.

Даже если поведение коралла хранит память о первых действиях, которым научились животные, почему я выбрал именно его? Почему не какое-нибудь другое координированное действие, плавание медузы например? Стадия медузы часто считается более поздним дополнением к образу жизни стрекающих: полипы появились раньше{52}. Но есть аргумент и поважнее: посмотрите, как плавает медуза и как ловит пищу мягкий коралл, и вы увидите, что, по сути, это одно и то же действие. И плавательные движения колокола медузы, и хватательные движения чашечки полипа – это сокращения тела радиальной формы. Кажется, что полип не похож на медузу, но по большому счету медуза – это полип вверх дном. Сокращения купола медузы помогают ей плавать; полип же – животное неподвижное, и у него то же самое движение превращается в хватательное.

Когда мы пытаемся отыскать «первое действие», возникает и другой вопрос: почему мы вообще фокусируемся именно на движении, а не на другом базовом умении живых организмов, а именно на химических реакциях? И меняя положение тела в пространстве, и осуществляя химические превращения, живое существо добивается эффектов, необходимых для достижения стоящих перед ним целей. Это верно; однако появление управляемого движения на уровне тела – все-таки серьезная веха. И хотя стрекающие создали действие не на пустом месте, именно у этих животных впервые возникает действие нового вида и иного масштаба. Тела, позволившие осуществлять такие действия, были для нашего мира в новинку и сами по себе стали фактором, подтолкнувшим развитие событий.

Тропою животных

Побег на древе жизни, ставший со временем ветвью животных, довольно быстро обзавелся целым рядом эволюционных новшеств. Вероятно, важнейшим из всех была нервная система.

Из тех, с кем мы уже знакомы, нервная система есть у стрекающих и у гребневиков, а вот губки и пластинчатые ее лишены. Нервная система появилась на ранних стадиях эволюции – возможно, однажды, а может быть, пару раз{53}. Работа нервной системы основывается на двух свойствах живых организмов, существовавших задолго до появления животных. Это, во-первых, электрическая «раздражимость» клеток – способность быстро изменять свои электрические характеристики, известная нам из второй главы, а во-вторых, умение клеток обмениваться химическими сигналами. Нервная система срастила две этих древних способности. Когда клетка возбуждается – внезапно меняет свои электрические свойства, это событие обычно ограничивается только ее внутриклеточным пространством, не выходя вовне{54}. Выходу мешают границы, выделяющие клетку в отдельную единицу. Однако такой спазм способен спровоцировать выделение химических веществ на мембране клетки, на которые может среагировать соседняя клетка. Это, в свою очередь, может повысить (или понизить) вероятность того, что она тоже претерпит какие-то электрические изменения. Обмен химическими сигналами вкупе с раздражимостью – основной механизм работы нервной системы.

Нервные системы состоят из клеток, которые специализируются на подобного рода взаимодействиях. Они похожи на раскидистое дерево, тонкие веточки которого обеспечивают одной клетке возможность вступить в химический контакт с конкретной группой других клеток. Считается, что нервная система есть только у животных (причем не у всех), однако клетки, способные возбуждаться и передавать химические сигналы, имеются и у других организмов. Что делает нервную систему животных особенной, так это те самые ветвящиеся клетки – нейроны{55}. Ими обладают исключительно животные. Наличие таких клеток полностью меняет способ передачи импульса в теле живого существа. Нейроны передают сигнал быстро и целенаправленно, в отличие от более размытых схем взаимодействия, в которых клетки рассеивают химические сигналы наудачу. Нервная система по-новому объединяет тело в единое целое. Ларс Читтка – биолог, изучающий пчел, – наглядно описывает ее возможности. Объем мозга пчелы не превышает кубического миллиметра. Он крошечный. Но, как добавляет Ларс, один-единственный нейрон пчелы ветвистее огромного дуба – и каждый способен контактировать с десятью тысячами других.

Нервная система – это вторичная разработка мощностей, присущих практически всему живому, но животные развили их и укрепили. Чтобы осознать, сколько всего делает для нас нервная система, полезно вспомнить о «нейротоксинах» – быстродействующих ядах, которыми пользуются и животные типа змей, и преступники. Зловещее оружие типа зарина, VX и «Новичка» – это нейротоксины, нервно-паралитические яды. В детстве, услышав о нейротоксинах, я подумал: и что же? Человек ничего не чувствует? Он цепенеет? Не может думать? Но нейротоксины блокируют не только эти функции. Смерть обычно наступает в результате асфиксии или остановки сердца. Наша уязвимость перед такими химическими веществами – которые объективно не так уж вредоносны, ведь они не разрушают ткани, а только препятствуют передаче сигнала между клетками – выразительно демонстрирует, как нервная система связывает тело животного в единое целое. Если нацелиться на службу передачи сообщений и, следовательно, помешать координации, это тело можно убить.

Еще одно приспособление, тесно связанное с нервной системой с точки зрения эволюции, – мускулатура{56}. Поведение стрекающих, которое разительно отличается от едва заметных движений морских губок, управляется мускулами. В предыдущей главе мы говорили об «изобретении» цитоскелета – подвижного каркаса из микротрубочек, который есть у некоторых одноклеточных организмов. Координация этих опорных конструкций, расположенных внутри множества связанных друг с другом клеток, лежит в основе эволюции мышечной системы животных. Мускулы отвечают за согласованное сокращение и расслабление обширных слоев клеток.

Какие-то действия животные могут осуществлять и без помощи мускулов. Тело гребневика расчерчено полосками, покрытыми тонкими ресничками, которые есть и у многих одноклеточных организмов. Реснички ориентированы вертикально, напоминая гребешок (в честь него животное и получило свое имя). Гребневик, как и многие одноклеточные, плавает, шевеля ресничками. (У гребневика есть и мускулы, которые он использует для руления, а также для захвата пищи.) Другие животные тоже осуществляют мелкие движения при помощи ресничек. Но крупные действия – захватывание пищи восьмилучевым кораллом, плавание медузы и другие, появляющиеся на более поздних этапах эволюции, – осуществляются при помощи мускулов.

Обсуждая приспособления, которые позволили животным со временем занять свою уникальную нишу, я делал упор на новых возможностях действия. Еще одно свойство животных, о котором я нечасто упоминал в этой главе, – способность ощущать (sensing). Ощущение дано не только животным – это общая характеристика всех известных форм клеточной жизни, но у нас есть серьезные основания полагать, что ключевым, поворотным событием первых этапов эволюции животных стало именно появление действия на многоклеточном уровне. То был поистине трансформирующий фактор.

У современных книдарий есть разные органы чувств – так же, как и у их вероятных предков на всех стадиях эволюции. Но способность стрекающих ощущать уступает их же способности действовать{57}. У кораллов и актиний нет глаз, а у других стрекающих они присутствуют разве что в зачаточном состоянии. (Из этого правила есть одно крупное исключение – кубомедуза, которая считается более поздним продуктом эволюции.) Полип ловит пищу, колония кораллов расширяется и сжимается, стрекающие клетки выстреливают жала – все эти действия представляют собой реакцию на стимулы определенного типа; кроме того, книдарии, похоже, обрели чувство равновесия или научились ощущать гравитацию. Медуза ориентируется в воде посредством особых органов, внутри которых есть маленькие кристаллы – статоцисты{58}. Эти кристаллы тяжелее воды; они смещаются, реагируя на меняющееся положение тела медузы, и их перемещение можно отследить. Может, у книдарий есть и другие слабые формы ощущения, но способность стрекающих ощущать нельзя назвать их сильной стороной, прорывом или отличительной чертой. Действительным достижением книдарий стал новый вид действия – крупное движение, осуществляемое посредством мускулов.

Не теряя из виду основной темы этой главы, которая, напомню, посвящена изменению образа жизни животных, давайте на минуту задумаемся о психофизиологической проблеме (mind-body problem), которая упорно маячит на заднем плане. Общепринятые подходы к ней обеспечивают нас рядом концепций, помогающих определить, что же делает разум. Одна из таких концепций – субъективность, которая тесно связана с идеей агентности. Субъективность касается «присвоения» опыта, ощущения самости. Она описывает опыт как нечто, что с человеком случается. Агентность же связана с активным действием и инициативой. Агентность – то, что происходит благодаря мне самому, это источник действия. Агентность фиксирует внимание на результатах действий человека. Интересно, что слово «субъект» (хотя и не субъективность) имеет и другой набор коннотаций, где субъект обозначает инициатора, автора действия – субъект здесь противопоставлен объекту. И это не единственный пример того, как переплетены эти понятия.

В общепринятом понимании субъективность и агентность указывают на разные аспекты бытия животного или человека – на то, что он ощущает, и на то, что он делает. Однако с эволюционной точки зрения субъективность и агентность тесно связаны. Задача ощущения – контролировать действие{59}. С биологической точки зрения нет никакого смысла воспринимать информацию, которую нельзя использовать. В эволюции разума агентность и субъективность развивались параллельно, хотя и не обязательно в жесткой сцепке друг с другом. На каких-то стадиях, вероятно, эволюция действий могла вырваться вперед. Новый вид агентности мог возникнуть и на фоне ограниченных сенсорных возможностей.

На мои взгляды, изложенные здесь, повлияли размышления голландского психолога и философа Фреда Кейзера, который уделяет особое внимание порождению действия как центральной задаче начального этапа эволюции нервной системы{60}. Все, что обсуждается в этой главе, – возникновение действия на многоклеточном уровне, роль и значение этого достижения и его связь со строением тела животных – написано под влиянием этого автора. Кейзер выдвинул интересное предположение о связи ощущения и действия у самых первых животных. Он думает, что какие-то новые виды ощущений могли достаться животным случайно, практически «в нагрузку», в качестве побочного эффекта эволюции сложного действия. Представьте, что вам нужно сконструировать систему, которая могла бы выполнять некое координированное, слаженное движение. Для этого потребуется, чтобы одни части системы были чувствительны к тому, чем заняты другие ее части. Но что случится, если такая система испытает на себе внешнее воздействие, скажем ее что-то коснется? Это событие будет автоматически зарегистрировано, поскольку вмешается в привычный сценарий взаимодействия отдельных частей системы. Чувствительность, обращенная внутрь системы, будет – или с легкостью может начать – фиксировать, что снаружи тоже что-то происходит. Даже если бы нервная система направляла свое внимание исключительно внутрь (Кейзер никогда не предполагал ничего подобного, но допустим), она неизбежно реагировала бы и на происходящее вне ее. Можно даже сказать, что такая система не могла бы этого не делать. Новые, крупные действия провоцируют расширение границ чувствительности.

Кажущаяся асимметрия сложного действия и простого ощущения на первых этапах эволюции животных может быть чистой иллюзией. Сложное ощущение может не лежать на поверхности. Но, если рассуждать о первых формах опыта или о том, чем располагали животные до опыта, было бы интересно представить себе существо, чьи моторные навыки развиты лучше сенсорных, и подумать, действительно ли, как утверждал Кейзер, ощущение автоматически подтянется до нужного уровня.

Давайте теперь вернемся к основной теме главы и посмотрим, как она выглядит в свете всех этих абстрактных рассуждений. Все живые существа что-то делают. Они приспосабливают свое поведение к среде и сами, в свою очередь, воздействуют на окружающий мир. Но у животных это происходит по-новому. На эволюционной линии животных появились многоклеточные существа, а с ними и многоклеточное действие – действие, осуществляемое слоями клеток, которые сокращаются, перекручиваются и хватают. Все это стало возможным благодаря нервам и мускулам; губка ничего подобного не умеет. Действие такого типа стало поворотным пунктом эволюции: оно изменило все.

Оно изменило все, но не сразу. Когда эта трансформация началась и что за животное стояло у ее истоков? Как оно выглядело – как стрекающее или как существо, жившее еще раньше? Как мы увидим далее, движок, запустивший эволюцию действия у животных и создавший Землю, какой мы ее знаем, завелся не с первого раза.

От авалона до намы

В предыдущей главе мы искали подсказки, способные навести нас на мысли о том, какими были древние формы животных, – с этой целью наше внимание было сосредоточено на современных животных, максимально отличающихся от человека. С того места, где мы с вами находимся сейчас, внешние побеги ветви животных видны плохо. Но, если посмотреть на ветки, расположенные ближе к нам, многое становится более ясным. На рисунке, где линия времени направлена вверх, некоторые эволюционные связи будут выглядеть примерно так.

Нервная система появилась где-то ниже того разветвления справа, что ведет к млекопитающим и головоногим, с одной стороны, и к стрекающим – с другой. Есть вероятность, что в ходе эволюции нервная система появлялась дважды, но, чтобы утверждать наверняка, нам нужно больше знать о тех сегментах дерева, которые на рисунке заменены пунктирными линиями.



Все разветвления и эволюционные новшества, о которых мы говорили прежде, случились задолго до того, как в палеонтологической летописи появились записи, касающиеся животных. Первый геологический период, сохранивший для нас ископаемые остатки животных, – это эдиакарий, начавшийся около 635 миллионов лет назад{61}. Занавес, медленно поднимающийся над первобытным миром, открывает взгляду сцены, которые совершенно не похожи на жизнь, окружающую нас сегодня.

Итак, место действия – морское дно, иногда мелководье, иногда океанские глубины, населенные различными мягкотелыми созданиями; среди них есть и совсем крошечные, и достигающие даже метра. Некоторым, несмотря на мягкое тело, удалось оставить ископаемые следы. Следы эти – самых причудливых форм: растительные узоры, завитки и диски, спирали и фракталы.

Но можем ли мы быть уверены, что эти следы действительно оставлены животными? В некоторых случаях это и вправду неясно: какие-то ископаемые могут представлять собой канувший в Лету эксперимент – или эксперименты – эволюции многоклеточных, не имеющий к животным никакого отношения. Но как минимум иногда это действительно останки животных. В 2018 году студент Илья Бобровский это подтвердил: он спускался по веревке со скалы на севере России, где были обнаружены крупные и отлично сохранившиеся окаменелости известного эдиакарского существа, дикинсонии{62}. Бобровский подозревал, что скала таит в себе не обычные окаменелости, но остатки, которые подверглись естественной мумификации и законсервировались более чем на полмиллиарда лет. Мумифицированные тела содержат холестерин – химическое вещество, которое производят только животные. Дикинсония – плоское создание длиною до метра, почти наверняка обитавшее на дне моря и похожее на коврик для ванной. У него не было ни глаз, ни конечностей, ни каких-то других знакомых нам органов, но для эдиакарских животных это типично. У них уже было тело определенной формы – листок или диск, трех- или пятилопастный, – но не было ни ног, ни плавников, ни когтей. Признаки сложных органов чувств типа глаз тоже отсутствовали.

Более того, среди эдиакарских животных не удалось отыскать таких, кого можно было бы без сомнений отнести к губкам или стрекающим, в которых мне виделся ключ к разгадке. Но обнадеживающие признаки все же есть. Некоторые эдиакарские существа весьма напоминают современное животное под названием «морское перо»{63}. Эти организмы, полностью оправдывающие свое имя, относятся к той же группе, что и мягкие кораллы, к которым мы спускались в начале главы, только напоминают они скорее не дерево, а старое перо для письма, воткнутое в морское дно.



Пока неясно, являются ли какие-то эдиакарские существа близкими родственниками морского пера, поскольку при ближайшем рассмотрении они во многом отличаются. Другие эдиакарские организмы были похожи на пальмовые ветви, а это также позволяет предположить, что их можно отнести к книдариям, однако сходство может быть обманчивым.

Поначалу многих обитателей эдиакария называли медузами – так их окрестил Рег Спригг, который первым обнаружил эдиакарские окаменелости в заброшенной шахте на юге Австралии в 1946 году{64}. Большую часть тех окаменелостей сегодня классифицируют иначе, но вполне вероятно, что в эдиакарских морях действительно обитали настоящие медузы; правда, тела их не сохранились, распавшись в прах.

Биологи обычно представляют себе эдиакарский период тихим и мирным временем, когда организмы очень мало взаимодействовали друг с другом. Нам практически не встречаются признаки хищничества – никаких покусов и погрызов, никаких намеков на средства защиты или нападения, которые есть у современных животных. Не было ни когтей, ни шипов. Не встречаются, кстати, и признаки половых различий (тут сложно утверждать наверняка, но пока еще ни одному эдиакарскому существу не определили пол). Скорее всего, половое размножение уже было, хотя и существовало, вероятно, наряду с различными формами размножения бесполого (как у сегодняшних губок и стрекающих){65}. Плотность жизни была высока; встречаются обломки камней, на которых хаотично отпечатались десятки или даже сотни организмов нескольких различных видов. Но даже в этих, достойных кисти Иеронима Босха, сценах незаметно, чтобы все эти животные хоть как-то взаимодействовали. Может, конечно, они контактировали посредством несохранившихся мягких частей тела, но большей части известных нам механизмов взаимодействия, которыми пользуются животные сейчас, в те времена, похоже, не существовало.

В общем и целом эта мирная картинка похожа на правду. Однако в последние годы ученым стало известно чуть больше, и мирный эдиакарий стал обретать несколько более драматичный вид; во всяком случае, превращения и изменения там присутствовали.

Сегодня принято выделять в эдиакарском периоде три отдела. Такое деление было предложено молодым биологом Беном Ваггонером около двадцати лет назад, и новые данные пока его теории не противоречат{66}. Отделы получили славные имена (спасибо Ваггонеру и географии). Я говорю «отделы», но формально они называются «комплексы» (уже не такое приятное имя); комплекс – это совокупность видов, представленных в окаменелостях, относящихся примерно к одному и тому же периоду.

Первый из этих комплексов – авалонский, он сложился примерно 575 миллионов лет назад. Но даже этот первый отдел расположен ближе к концу эдиакарского периода. Эдиакарий, который начался 635 миллионов лет назад, отсчитывается от окончания ледникового периода – обширного оледенения, которое, как считается, сковало Землю льдом от полюса до полюса. Сначала ничего не происходило, затем миновал очередной ледниковый период, и через некоторое время в палеонтологической летописи появляются первые многоклеточные ископаемые. После второго ледникового периода в атмосфере значительно вырос уровень кислорода. Тем не менее на протяжении всего эдиакария кислорода на Земле было все еще недостаточно. Это могло ограничивать активность животных вплоть до полной ее невозможности.

Авалонский комплекс, названный так по имени местечка в Канаде, представлен неподвижными организмами, похожими на растения, на ветки и листья. (Удачное этимологическое совпадение: слово «авалон» на древневаллийском означает «остров фруктовых деревьев»{67}.) Эти организмы чаще всего выглядели как крупные листья или пучки листьев, торчащие из морского дна. Если присмотреться, видно, что каждый такой лист представляет собой веер замысловато ветвящихся сегментов.

В авалонских отложениях найден даже кандидат на роль губки – существо подходящей конической формы, хотя и не похожее ни на один современный вид губок. Губки вообще загадка{68}. Химические свидетельства, которым вторят и генетические, предполагают, что губки тогда уже существовали и даже были распространены, но среди окаменелостей пока нашлось только одно конусовидное существо, и еще одно было обнаружено недавно – оно похоже на перевернутую старую телеантенну, из центра которой торчат какие-то прутики.

По всей видимости, авалонская биота жила на большой глубине, там, где слишком темно для фотосинтеза, в сотнях или даже тысячах метров от поверхности. Сегодня такие зоны плохо пригодны для жизни и малообитаемы, но когда-то давно они, видимо, послужили колыбелью для малоподвижных, но, безусловно, прогрессивных видов. Эти создания могли питаться растворенными в воде крошечными частичками органического углерода – их ветвящиеся сегменты организованы фрактально, что максимально увеличивает площадь поверхности, позволяя постоянно поглощать органический туман вместе с кислородом, необходимым для его сжигания{69}.

Затем случилось что-то вроде скачка. Беломорский комплекс, расположенный на территории России, сформировался примерно 560 миллионов лет назад. У местных ископаемых строение тел уже гораздо разнообразнее. У них по-прежнему нет плавников или ножек, но в ряде случаях строение тела ископаемых и оставленные ими следы позволяют с большой долей вероятности предположить, что эти животные умели передвигаться.

В отличие от авалонских, существа беломорского комплекса жили не на глубине, а на дне мелководных участков. Причем само это дно было в некотором роде живым. Его иногда называют «цианобактериальными матами», но Мэри Дроузер из Калифорнийского университета в Риверсдейле, авторитетнейший исследователь этого периода, говорит о них как о «текстурированных органических поверхностях». Они состояли не только из бактерий; скорее всего, в их состав входили водорослеподобные организмы и даже мелкие прикрепленные животные. Ископаемые остатки сохранили для нас их текстуру – «волнисто-складчатый пласт, напоминающий кожу слона». Мешанина мертвых и живых организмов образовывала практически двумерную поверхность, плоский мир морей.

Новые условия способствовали появлению новых тел и стилей жизни. В беломорском комплексе присутствуют и уже знакомые нам неподвижные организмы, прикрепленные вертикально, подобно морскому перу, но появляются и плоские формы, приспособленные пастись на живых коврах. Кое-кто из них даже умел передвигаться. Похоже, что дикинсония (найденная в России мумия которой содержит холестерин) паслась на одном месте, затем перемещалась на другое, оставляя за собой еле заметные следы, повторяющие форму ее тела. Два других существа вели более активный образ жизни. Кимберелла считается родственником моллюсков. Она выглядела как пирожное-макарон, ползала по поверхности мата и скребла его длинным хоботком в виде совка.

Другая загадка – гельминтоиды (Helminthoidichnites). Эту окаменелость, получившую свое труднопроизносимое имя еще в XIX веке, поначалу находили в отложениях помоложе и считали ходами мелких роющих животных, скажем червей или рачков{70}. Со временем, однако, похожие отпечатки отыскались и в эдиакарских отложениях: Мэри Дроузер и Джим Гелинг тщательно изучили образцы, найденные в Южной Австралии, недалеко от того места, где были обнаружены первые ископаемые эдиакарского периода.

Раскопки проводились новым способом, который позволяет изучать нижнюю поверхность огромных пластов горной породы одним куском. При ближайшем рассмотрении в некоторых пластах были обнаружены следы сложных передвижений. Некое животное пробиралось сквозь слои подводного мата, оставляя за собой холмики разрыхленного материала. Ходы ведут к телам других животных, в том числе дикинсоний. Это первое ископаемое свидетельство некрофагии, то есть поедания останков умерших организмов, а заодно и первый вещественный след ориентированного движения – движения в сторону цели, определенной ощущениями. Первоначально такой целью были мертвые тела, однако от падальщиков уже не так далеко и до хищников, особенно если жертвы неподвижны или передвигаются медленно.

Я назвал гельминтоиды загадкой. Вообще говоря, все эдиакарские существа до некоторой степени загадка, но гельминтоиды поистине тайна тайн. Долгое время в нашем распоряжении имелись одни только следы и никаких остатков самого животного. Но вот, когда я уже завершал работу над книгой, на эту роль появился кандидат – крошечное фасолеобразное существо, которое, возможно, и было автором следов, приписываемых гельминтоидам. Отыскалось существо в Южной Австралии, в этой колыбели эдиакария.

Таким образом, в период беломорской фоссилизации произошел качественный сдвиг: появились новые варианты строения тела животных, расширился их поведенческий репертуар, изменилась окружающая среда. Вероятно, некоторые другие обитатели этого периода тоже были способны к передвижению. Форма тела сприггины (Spriggina) полностью подтверждает это предположение: сприггина невероятно похожа на суетливого трилобита. О следах, оставленных сприггиной, ничего не известно, но это неудивительно, поскольку, чтобы оставить след, животное должно было рыть или скрести. Если же оно просто скользило по поверхности цианобактериального мата, никаких следов за миллионы лет не могло сохраниться.

В этот период уровень кислорода продолжал расти, медленно и неустойчиво. Вероятно, последовательность событий была такой: повышение уровня кислорода способствовало развитию текстурированных органических поверхностей. Поверхности превращались в пищевой ресурс, поощряя животных передвигаться вдоль мата. Кормление приводило к накоплению питательных веществ в телах животных, которые затем погибали. В результате окружающая среда становилась неоднородной – где-то пищи было больше, где-то меньше. В таких условиях движение, а также умение следовать запахам, распространяющимся в воде, становится просто необходимым.

Третий отдел эдиакария, следующий за авалонским и беломорским, называется намским, по имени места раскопок в Намибии, в Африке. Это ближайший к нам, завершающий период эдиакария. Учитывая, как развивались события до этого, можно было бы предположить, что в намском комплексе мы увидим еще больше следов сложного ползания. Ничего подобного, эти окаменелости спокойней. Ползающие существа, к нашему удивлению, исчезли. Гельминтоиды, однако, присутствуют, и иногда этот период даже называют миром червей: предполагается, что на этой стадии царили роющие и копающие твари. Однако крупные подвижные животные, смутно напоминавшие моллюсков, как будто испарились. Если не считать роющих организмов, жизнь в намском отделе вернулась к стадии колышущихся и прикрепленных ко дну существ, напоминающих листья (они, однако, отличались от тех, что жили прежде). Никто не знает, почему так произошло. Похоже, что намский комплекс представляет собой стадию, предвещавшую конец эдиакария.


Три отдела эдиакария. Организмы на рисунке: А – чарния (Сharnia); В – тектардис (Thectardis, возможно, губка); C – фрактофузус (Fractofusus); D – дикинсония (Dickinsonia); E – арборея (Arborea); F – коронколлина (Coroncollina, еще одна губка?); G – сприггина (Spriggina); H – гельминтоид (Helminthoidichnites); I – кимберелла (Kimberella); J – сварпунтия (Swarpuntia); K – клаудина (Cloudina); и L – рангея (Rangea). Чарнию и рангею часто сравнивают с морским пером


И какое отношение все это имеет к теме главы, к попыткам найти ключ к разгадке эволюции движения у животных? У нас есть стадия форм жизни, напоминавших растения и обитавших на глубине, – авалон; затем наблюдается переход к подвижным существам, жившим на мелководье. Генетические свидетельства предполагают, что нервная система появилась еще до того, как образовались какие-то из этих фоссилий, или, в крайнем случае, на первой, авалонской стадии; генетическая датировка очень приблизительна. Затем последовал этап, на котором появились новые виды ощущения и действия, – беломорский. Намский отдел, похоже, стал периодом упадка.

Если у известных нам авалонских существ (не считая тех, что могут быть губками) имелась нервная система, то как они ею пользовались? Заманчиво было бы предположить, что они координировали свои попытки дотянуться или схватить, как это делает современный нам мягкий коралл. Но даже в тех случаях, когда ископаемые остатки этих организмов прекрасно сохранились, нет никаких свидетельств того, что в их телах имелись какие-то отверстия, – в отличие от мягкого коралла, у них не была рта, к которому можно было бы поднести пищу. Скорее всего, они всасывали питательные вещества всей поверхностью тела – тогда, по крайней мере, понятно, зачем им нужны были тела с такой большой площадью поверхности.

Авалонские организмы типа листьев могли вообще не быть животными. Но, даже если так, нервная система, скорее всего, в каком-то виде существовала и до появления ползающих существ позднего эдиакария. Есть все основания полагать, что она эволюционировала в радиально-симметричном теле

Переводчик Галина Бородина

Научные редакторы Анна Винкельман, Михаил Никитин

Редактор Андрей Захаров

Издатель П. Подкосов

Руководитель проекта А. Тарасова

Арт-директор Ю. Буга

Корректоры О. Петрова, Е. Рудницкая, Е. Сметанникова

Компьютерная верстка А. Фоминов

Обработка иллюстраций А. Фридберг

Иллюстрация обложки Getty Images

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

© Peter Godfrey-Smith, 2020

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2023

* * *

Посвящается всем погибшим в австралийских лесных пожарах 2019–2020 годов и героям, которые боролись с огнем

Я должен также от всей души предупредить вас, о судовладельцы Нантакета! Остерегайтесь нанимать на ваши промысловые корабли бледных юношей с высоким лбом и запавшими глазами; юношей, склонных совершенно некстати погружаться в задумчивость…

– Эй ты, мартышка, – сказал однажды гарпунщик одному такому юноше. – Мы уж скоро три года как промышляем, а ты еще ни одного кита не поднял. Когда ты стоишь наверху, киты попадаются реже, чем зубы у курицы.

Может быть, они в самом деле не попадаются, а может быть, наоборот, плавают целыми стаями; но, убаюканный согласным колыханием волн и грез, этот задумчивый юноша погружается в такую сонную апатию смутных, рассеянных мечтаний, что под конец перестает ощущать самого себя; таинственный океан у него под ногами кажется ему олицетворением глубокой, синей, бездонной души, единым дыханием наполняющей природу и человека; и все необычное, еле различимое, текучее и прекрасное, что ускользает от его взора, всякий смутно мелькнувший над волнами плавник невидимого подводного существа, представляется ему лишь воплощением тех неуловимых дум, которые в своем неустанном полете посещают на мгновение наши души. В этом сонном очаровании дух твой уносится назад, к своим истокам; он растворяется во времени и в пространстве, подобно развеянному пантеистическому праху Крэнмера[1], и под конец становится частью каждого берега по всему нашему земному шару.

Герман Мелвилл.Моби Дик, или Белый кит[2]

1. Одноклеточные

Вниз по ступенькам

Лесенка, сложенная из валунов волнолома, спускается в море. Прилив достиг максимальной высоты, и поверхность моря тиха и спокойна. Миновав десяток ступеней, вы погружаетесь в воду. Гравитация слабеет, звуки глохнут, краски выцветают в бледно-зеленый. Вы слышите только свое дыхание.

Минута – и вы уже в саду губок самых причудливых форм и расцветок. Одни торчат из морского дна, словно лампочки или веера, другие неровными слоями расползаются по любой доступной поверхности. Есть губки, похожие на перья и цветы, а рядом с ними растут асцидии – бледно-розовые структуры, подобные расписным кувшинчикам. Они напоминают выходы воздушных шахт, буквой Г возвышающиеся на палубе корабля, вот только носики их глядят в разные стороны. Они бывают так плотно покрыты всевозможными организмами, что кажутся скорее частью природного ландшафта, местом обитания живых существ, чем собственно живыми существами.

Но если вы подбираетесь достаточно близко, асцидии вздрагивают, смутно, словно сквозь пелену сна, ощущая ваше приближение. Иногда – и всегда немного неожиданно – тело асцидии сокращается и выталкивает воду из внутренней полости, как будто животное пожимает плечами и вздыхает. Когда вы проплываете мимо, ландшафт оживает, отзываясь на ваше появление.

Рядом с асцидиями растут актинии и мягкие кораллы. Некоторые кораллы выглядят как скопления крошечных ручек. Каждая ручка похожа на цветок – цветок, который ловит воду вокруг себя. Ручки сжимаются в кулачки и медленно раскрываются снова.

Вы будто очутились в странном, кишащем жизнью лесу. Однако в лесу земном вас по большей части окружают продукты иного эволюционного пути – пути растений. В саду губок, однако, почти всё, что вы видите, – это животные. У большинства из них (за исключением самих губок) имеется нервная система: их тела пронизывают нервные тяжи, передающие электрические сигналы. Они двигаются и чихают, вытягиваются и колеблются. Некоторые резко реагируют на ваше появление. Черви-серпулиды выглядят как пучки оранжевых перьев, приклеенных к рифу, но эти перышки покрыты глазами, и, если вы подберетесь слишком близко, серпулида моментально спрячется. Постарайтесь вообразить себе лес, в котором деревья чихают и кашляют, вытягивают руки и следят за вами невидимыми глазами.

Постепенно удаляясь от берега, вы встречаетесь с реликтами и родственниками ранних форм жизни. Но не стоит думать, будто вы плывете в прошлое: губки, асцидии и кораллы живут в наши дни, сформировавшись на том же отрезке эволюционного времени, что и люди. Вы сейчас не среди предков – вы в кругу дальних кузенов, ныне живущих родичей. Сад вокруг вас состоит из самых верхних ветвей вашего общего семейного древа.

Дальше, под уступом, виднеется пучок усиков и клешней – это полосатая креветка-боксер. Ее полупрозрачное тельце всего несколько сантиметров длиной, но усики и прочие отростки увеличивают его почти в три раза. Это животное – первое из упомянутых здесь, которое способно увидеть вас как объект, а не просто отреагировать на волну света и смутную массу. Еще немного дальше, на верхушке рифа, словно кот на солнышке – хорошо замаскированный кот, – развалился осьминог: одни щупальца вытянуты, другие свернуты в кольца. Это животное тоже следит за вами, причем, в отличие от креветки, делает это явно: когда вы проплываете мимо, он, насторожившись, поднимает голову.

Материя, жизнь и разум

В 1857 году фрегат британского королевского флота «Циклоп» поднял со дна Северного Атлантического океана нечто необычное. На первый взгляд образец напоминал илистый океанский грунт. Его заспиртовали и отослали биологу Томасу Генри Гексли{1}[3].

Образец передали Гексли не потому, что он выглядел каким-то особенным, но из-за интереса, как научного, так и практического, который в то время вызывало океанское дно. Практическая заинтересованность стимулировалась проектом прокладки глубоководных телеграфных кабелей. Первый такой кабель, который должен был посылать сообщения через Атлантику, проложили в 1857 году, однако прослужил он всего три недели, после чего изоляция нарушилась, и передающий сигналы электрический ток стал уходить в воду.

Гексли изучил полученный донный грунт, обнаружил в нем несколько одноклеточных организмов и загадочных круглых телец, а затем убрал его подальше почти на десятилетие.

Через десять лет, вооружившись новым мощным микроскопом, Гексли решил изучить образец заново. На этот раз ему удалось разглядеть диски и сферы неизвестного происхождения, а также окружающую их склизкую субстанцию, «прозрачную желеобразную массу». Гексли подумал, что обнаружил новый организм, какую-то простейшую форму жизни. Он осторожно предположил, что твердые частички – диски и сферы – продукт жизнедеятельности самой этой желеобразной живой материи. Гексли назвал вновь открытый организм в честь Эрнста Геккеля, немецкого биолога, философа и иллюстратора. Новая форма жизни получила имя «батибиус Геккели» (Bathybius Haeckelii).

Геккель пришел в восторг – как от открытия, так и от его названия{2}. Он уже давно говорил, что нечто подобное должно существовать. Геккель, как и Гексли, был ярым приверженцем эволюционной теории Дарвина, явленной миру в 1859 году в книге «Происхождение видов». Гексли и Геккель были ведущими приверженцами дарвинизма в своих странах, Англии и Германии соответственно. Обоих весьма интересовали вопросы{3}, о которых сам Дарвин, если не считать нескольких мимолетных ремарок, распространяться не хотел, а именно происхождение жизни и начало процесса эволюции. Единожды ли возникла жизнь на Земле, или она зарождалась несколько раз? Геккель был убежден в возможности спонтанного возникновения жизни из неживой материи и считал, что такой процесс должен идти постоянно{4}. Он приветствовал батибиус как изначальную форму жизни, которая, вероятно, покрывает большие участки морского дна; он считал ее звеном или мостом, соединяющим царство живого и царство мертвой, неорганической материи.

Традиционное представление об организации жизни, царившее со времен древних греков, признавало только два вида живых существ: животных и растения. Все живое следовало относить либо к одному, либо к другому из этих двух царств. Когда в XVIII веке шведский ботаник Карл Линней создал новую систему классификации, он поместил царства растений и животных рядом с третьим, неживым – «царством минералов», или Lapides{5}. Об этом тройственном делении до сих пор напоминает известный вопрос: «Животное, растение или минерал?»[4]

Во времена Линнея было уже известно о существовании микроскопических организмов. Воочию их впервые увидел голландский галантерейщик Антони ван Левенгук, который собрал самый мощный по тем временам микроскоп. Линней не обошел вниманием заметные только под микроскопом крохотные организмы и включил их в свою классификацию живых существ, определив в категорию «черви». (Десятую редакцию своей «Системы природы», в которой Линней занялся классификацией не только растений, но и животных, он завершает группой, которую называет Monas – «бесконечно малые тельца».)

По мере развития биологии ученым все чаще стали встречаться неочевидные случаи, особенно на микроскопическом уровне. Как правило, их пытались разместить либо по одну, либо по другую сторону четкой границы – в царстве растений (водоросли) или в царстве животных (одноклеточные). Но зачастую определение того, какому царству принадлежит новое существо, оказывалось нелегким делом, и тогда стандартная классификация начинала давать сбои.

В 1860 году британский натуралист Джон Хогг заявил, что разумней всего было бы прекратить попытки впихнуть в классификацию то, что туда явно не лезет, а вместо этого стоило бы дополнить ее четвертым царством, предназначенным для крошечных организмов – не растений и не животных, которых все чаще относили к простейшим{6}. Хогг назвал их «протоктистами» (Protoctista) и поместил в разряд Regnum Primigenum, или «первоначальное», которому надлежало дополнить царства животных, растений и минералов. (Предложенный Хоггом термин «протоктисты» Геккель позже сократил до более современного «протисты»{7}.) Хогг был убежден, что границы между различными царствами живого расплывчаты, в отличие от жесткой границы, отделяющей царство минералов от живой материи.

Жонглирование категориями, о котором я здесь пишу, касалось живой материи, но не разума. Однако испокон веков считалось, что жизнь и разум каким-то образом связаны, несмотря на отсутствие устоявшегося мнения об их соотношении друг с другом. В концепции Аристотеля, сформулированной более двух тысячелетий назад, представление о живом и разумном объединяется в понятии души{8}. Согласно Аристотелю, душа – это некое внутреннее образование, которое управляет жизнедеятельностью тела; душой обладают все живые существа, хотя и в различной мере. Растения поглощают питательные вещества, чтобы поддерживать свое существование, – это одна разновидность души. Животные тоже это умеют, но сверх того они еще воспринимают окружающую среду и реагируют на нее – это другой вид души. Люди, вдобавок к двум предыдущим способностям, наделены способностью к рассуждению – и это душа третьего типа. По Аристотелю, даже неживые, лишенные души объекты часто ведут себя целенаправленно, стремясь занять собственное место в мире.

Научная революция XVII века, подтолкнувшая к отказу от аристотелевской картины мира, заставила пересмотреть отношения между жизнью и разумом. В рамках нового подхода оформилось приземленное представление о материальном и укоренился механистический взгляд на материю как на нечто инертное, не имеющее ни целей, ни намерений, а душа, напротив, превозносилась и объявлялась сущностью нематериальной. Душа, которую Аристотель считал неотъемлемым атрибутом всего живого, стала представляться явлением редким, связанным сугубо с интеллектом. Кроме того, душа, спасенная милостью Божией, могла обрести жизнь вечную.

Для Рене Декарта, весьма влиятельной фигуры своего времени, между физическим и ментальным существовала четкая граница. Однако люди, по мнению этого мыслителя, комбинируют в себе и то и другое: мы и физические, и мыслящие существа{9}. Нам удалось стать такими из-за того, что две упомянутые сферы сообщаются друг с другом в каком-то небольшом органе в мозге человека. Таков знаменитый «декартовский дуализм». Иные животные, как считал Декарт, лишены души, оставаясь чисто механическими системами, – чувства у собаки не появятся, что бы с ней ни происходило. Душа – отличительное свойство человека, и ни животные, ни растения не обладают даже ее зачатками.

В XIX веке, в эпоху Дарвина, Геккеля и Гексли, развитие биологии и других наук все убедительнее показывало несостоятельность декартовского дуализма. Труды Дарвина рисовали картину, согласно которой водораздел между людьми и другими животными не так уж и непреодолим. Формы жизни, обладающие интеллектуальными способностями различного уровня, могли появиться на свет в процессе эволюции, прежде всего путем приспособления к внешним условиям и благодаря разветвлению вида-прародителя. Теперь отношения тела и разума представлялись вполне постижимыми – оставалось только понять, с чего же все началось.

Но в том-то и была загвоздка. Геккель, Гексли и другие подходили к проблеме следующим образом: они думали, что у живых существ должна наличествовать некая субстанция (stuff), которая давала бы начало и жизни, и разуму. Эта субстанция должна быть вещественной, а не сверхъестественной, но при этом, скорее всего, отличающейся от обычной материи. Если мы сможем ее выделить, ее можно будет зачерпнуть ложкой, но при этом она все равно останется особенной. Они назвали ее протоплазмой{10}.

Идея кажется странной, но отчасти она была мотивирована пристальным изучением клеток и простых организмов. Заглядывая внутрь клетки, ученые видели там довольно слабую организацию: в ней явно не хватало обособленных и дифференцированных деталей, позволявших клетке делать все то, что она, очевидно, делать умела{11}. Внутреннее наполнение клетки казалась им однородной субстанцией, прозрачной и мягкой. Английский физиолог Уильям Бенджамин Карпентер, восхищаясь способностями одноклеточных организмов, отмечал в 1862 году, что «жизненно важные операции», которые у животных «осуществляются с помощью развитого аппарата», на этом уровне жизни выполняются «крошечными частичками очевидно гомогенного желе». Комочек такого желе «захватывает пищу без конечностей, проглатывает безо рта, переваривает без желудка» и «перемещается с места на место без мускулов». Подобные наблюдения навели Гексли и других на мысль о том, что жизнедеятельность организмов объясняется не сложной организацией обычной материи, но совершенно иным ингредиентом, живым по самой своей природе: «организация материи есть результат жизни, а не жизнь есть результат организации материи».

На этом фоне батибиус казался невероятно многообещающим. Это же чистый образец материи жизни, материи, которая, возможно, возникает спонтанно и непрерывно, образуя постоянно обновляющийся органический ковер, покрывающий морское дно. Были исследованы и другие образцы. Сообщалось, например, что батибиус, взятый со дна Бискайского залива, умел самостоятельно передвигаться. Тем не менее другие биологи скептически отнеслись к этой якобы изначальной форме жизни, вокруг которой сгущался туман предположений и догадок. «Как батибиус выживает на глубине и чем он там питается?» – размышляли они.

В 1870-х годах был дан старт экспедиции «Челленджер» – проекту, организованному Лондонским королевским обществом{12}. За четыре года экспедиция собрала массу проб в сотнях точек океанского дна по всему миру. Перед учеными стояла задача составить первую развернутую опись живых существ, обитающих в глубоких водах. Возглавлявший экспедицию Чарльз Уайвилл Томсон стремился разрешить загадку батибиуса, хотя и относился к нему с недоверием. Несмотря на все усилия, участникам экспедиции не удалось раздобыть никаких новых образцов, и двое ученых на борту судна по зрелом размышлении начали подозревать, что ничего общего с живыми организмами батибиус не имеет. Проведя серию экспериментов, они показали, что нашумевший батибиус, не исключая и самого первого образца, полученного Гексли с фрегата «Циклоп», не что иное, как продукт химической реакции между морской водой и спиртом, который использовался для консервации проб.

Таким образом, батибиус испустил дух. Гексли немедленно признал свою ошибку. К несчастью, Геккель, сильнее увлеченный идеей батибиуса как недостающего звена, упирался еще как минимум десяток лет{13}. И все же этот мостик провалился.

Некоторые ученые какое-то время еще лелеяли надежду отыскать связующее звено подобного типа – особую субстанцию (substance), которая соединит жизнь и материю, но с годами такие идеи теряли популярность. Их заменил постепенный процесс открытий, который со временем разрешил загадку жизнедеятельности организмов. В конце концов объяснение жизни было найдено именно там, где Гексли и Геккель отказались его искать, – в невидимой глазу организации обычной материи.

Как мы увидим далее, упомянутую материю отнюдь не во всех отношениях можно назвать «обычной», но по базовой композиции она действительно самая обыкновенная. Живые организмы состоят из тех же химических элементов, что и все остальное во Вселенной, и ведут себя в соответствии с теми же законами физики, которым подчиняется и царство неживого. Нам до сих пор неизвестно, как зародилась жизнь на Земле, но ее происхождение перестало быть загадкой такого рода, что заставляет нас верить, будто живой мир породила некая особая субстанция.

Это был триумф материалистического взгляда на жизнь – мировоззрения, не допускающего никаких сверхъестественных вмешательств. Столь же триумфально утвердилось и представление о том, что мироздание целиком построено из одних и тех же основных компонентов. Жизнедеятельность организмов теперь следует объяснять не в терминах некоего мистического ингредиента, но в терминах сложной организации на микроскопическом уровне – таком крошечном, что его практически невозможно себе представить. Взять хотя бы рибосомы – это важные для клетки органы, станции, где собираются белковые молекулы. Рибосомы и сами по себе имеют довольно сложное строение, однако на поверхности точки, которая стоит в конце этого предложения, может уместиться больше 100 миллионов рибосом{14}.

Жизнь, в общем, нашла свое место в структуре нашего знания. Но если говорить о разуме, тут еще далеко не все понятно.

Разрыв

С конца XIX века и далее, по мере того как революция Дарвина набирала обороты, становилось все сложнее придерживаться дуалистического взгляда на разум, сформулированного Декартом. Дуализм имеет некоторый смысл в рамках общей картины, определяющей человека как уникальную, особенную часть природы, в каком-то смысле приближенную к Богу. При таком подходе все остальное, живое и мертвое, предстает чисто материальным, а вот в нас обнаруживается некий добавочный ингредиент. Придерживаясь эволюционного представления о человечестве, утверждающего неразрывную связь между нами и другими животными, отстаивать дуализм непросто, хотя все-таки возможно. Это, в свою очередь, мотивирует к формированию материалистического представления о разуме, которое могло бы объяснить мышление, память и чувства в терминах физических и химических процессов. Впрочем, несмотря на то что сам факт рассмотрения жизни в материалистических терминах вдохновляет, это отнюдь не означает, что от него будет какой-то толк и в нашем случае, поскольку далеко не ясно, какое отношение успехи материализма в биологии имеют к разгадке тайны разума.

Вновь обратившись к истории, мы можем отыскать два альтернативных подхода, здравствующих и по сей день. Аристотель, как уже было показано, выделял несколько уровней души, присущих растениям, животным и людям. То, что мы называем «разумом», он считал естественным продолжением или разновидностью жизнедеятельности организма. И хотя Аристотель не был эволюционистом, его взгляды довольно легко переформулировать в эволюционных терминах. Эволюция сложных форм жизни естественным образом порождает разум, стимулируя развитие целенаправленных действий и поощряя чувствительность к окружающей среде.

Декарт, напротив, считал, что жизнь – это одно, а разум – совершенно другое. Руководствуясь этим вторым подходом, нет оснований думать, будто прогресс в понимании жизни внесет хоть какой-то вклад в разрешение загадки разума.

На протяжении последнего столетия или около того в этой области преобладали материалистические взгляды, но в одном отношении они все же сдвинулись чуть ближе к представлениям Декарта. С середины ХХ века ученые-теоретики начали отказываться от признания неразрывной связи между жизнью и разумом. Не в последнюю очередь это происходило благодаря появлению компьютеров. Компьютерные технологии, активно развивавшиеся с середины прошлого столетия, сулили навести новый мост между психическим и физическим – мост, построенный из логики, а не из живой материи. Автоматизация мышления и памяти – вычисление – казалась более перспективным путем. По мере развития систем искусственного интеллекта (ИИ) некоторые из них стали казаться в какой-то степени разумными, но не было никаких оснований считать их живыми. Физические тела, как представлялось, не так уж и нужны разуму, более того, они стали выглядеть вовсе не обязательными. Душой материи стало программное обеспечение: мозг запускает программу, которая в свою очередь запускает другие механизмы (или, напротив, не-механизмы).

В эти же годы обострилась проблема физического и ментального, тела и разума. На смену былой «загадке разума» пришла более специфичная головоломка. В рамках сложившегося недавно нового подхода считается, что какую-то часть разума можно довольно убедительно объяснить с материалистической точки зрения, но зато ряд других его аспектов подобной трактовке не поддается. Прежде всего в этот разряд попадает субъективный опыт, или сознание. Возьмем, к примеру, память. Мы без труда обнаруживаем, что памятью обладают самые разные животные; их мозг регистрирует прошлый опыт и использует его в дальнейшем для выбора подходящего варианта поведения. Не так уж сложно вообразить, как это может быть устроено. Эта проблема еще далеко не решена, но выглядит она абсолютно решаемой; со временем наверняка удастся выяснить, как работает эта сторона памяти. Но люди, однако, не только запоминают свой опыт, но еще и некоторым образом переживают его. Как сказал Томас Нагель в 1974 году, обладать разумом – это на что-то похоже; это как-то ощущается{15}. Приятное воспоминание как-то ощущается, и неприятное – тоже. «Обрабатывающая информацию» сторона памяти – способность хранить и извлекать полезное знание – может либо сопровождаться этой добавочной характеристикой, либо нет. Сложная часть проблемы тела-разума – объяснить эту черту нашей психики, растолковать в биологических, физических или же в компьютерных понятиях, каким образом в материальном мире может существовать субъективный опыт.

Эту проблему по-прежнему нередко изучают под одним из привычных углов зрения. Это либо материализм («физикализм»), либо дуализм. Существуют, однако, и более радикальные подходы. Например, панпсихизм утверждает, что психическая сторона присуща любой материи, включая ту, из которой состоят объекты вроде столов{16}. Не путайте панпсихизм с идеализмом – представлением, согласно которому вся вселенная состоит из субъективного опыта. Панпсихисты принимают физическое существование мира как данность, но добавляют, что материи, из которой мир состоит, неизменно свойственна некая невообразимо простая форма сознания. Именно это свойство материи дает начало субъективному опыту и самосознанию, при условии что некоторая часть этой материи организуется в виде мозга. Несмотря на явную экстравагантность, у панпсихизма есть авторитетные последователи. По мнению Томаса Нагеля, которого я упоминал выше, панпсихизм не стоит сбрасывать со счетов, потому что у каждого подхода к проблеме есть свои собственные недостатки, и недостатки панпсихизма ничем не хуже прочих. Эрнст Геккель, расставшись с батибиусом, тоже склонялся к панпсихизму. Гексли же выбрал другой нетрадиционный подход{17}. Он предполагал, что сознательный опыт может возникать как продукт материального процесса, но не может выступать его причиной. Это оригинальный подвид дуализма, у которого есть сторонники и в наши дни.

Из приведенной подборки альтернативных взглядов на вселенную, как и из традиционных дискуссий, ясно одно: существует невероятное разнообразие представлений о том, где следует искать разум. Для одних разум повсюду – ну или почти повсюду. Другие считают, что им наделены только люди – и, возможно, кое-какие животные, похожие на нас. Кто-то, глядя на одноклеточную инфузорию, энергично барахтающуюся в пленке воды, скажет: «То, что происходит внутри этого создания, наделяет его чувствами. Инфузория реагирует и стремится к цели. У нее есть опыт, пусть и крайне незначительный». Но другой не просто с ходу откажет инфузории в чувствах, но и, увидев сложно устроенное животное вроде рыбы, произнесет: «Рыба, вероятно, вообще ничего не чувствует. У нее есть рефлексы и инстинкты и какая-то достаточно сложная психическая активность, но большая часть этой активности происходит как бы "в потемках" и не осознается». Если этот второй человек не прав, то почему? И если ни одна песчинка не испытывает ни намека на чувства, а панпсихисты тоже ошибаются, то в чем именно их ошибка? Разве этого не может быть? Часто кажется, что таким рассуждениям не хватает обоснованности, какой-то твердой базы. Люди могут говорить, что им заблагорассудится. Но если бы меня попросили угадать, как мои современники ответят на вопрос, какие живые существа обладают чувственным опытом, то я бы сказал, что самым распространенным ответом будет «да» для млекопитающих и птиц, «может быть» для рыб и рептилий и «нет» для всех прочих. Но вот если кто-то захочет вдруг раздвинуть эти границы (включить, например, муравьев, растения и инфузорий) или сузить их (только до млекопитающих), то дискутирующие быстро потеряют почву под ногами. Как мы вообще можем определить, кто прав?

Это чувство необоснованности сродни тому, что философ Джозеф Левин назвал разрывом в объяснении{18}. Даже если мы окончательно удостоверимся, что разум должен иметь чисто материальную основу, и ничего больше, мы все равно захотим узнать, почему такое физическое устройство порождает именно такой, а не какой-то другой вид опыта. Почему обладание разумом, которым мы наделены и в котором происходят все те процессы, что происходят в данный конкретный момент, ощущается именно так, а не иначе? Даже если трудности, с которыми сталкиваются другие подходы, убеждают нас в правоте материализма, трудно понять, почему конкретно он прав и почему все устроено именно так, а не как-то по-другому.

К этому-то комплексу проблем я и хочу обратиться в своей книге. Моя цель не предполагает ответа на вопрос Левина о конкретном опыте и выяснения того, какие процессы в мозгу отвечают за различение цветов или ощущение боли. Это задача нейронауки. Я же хочу попытаться понять, почему мы переживаем свое существование, осознаем его, будучи физическими существами, какими мы и являемся. Причем это «мы» следует значительно расширить: меня интересуют не столько особенности человеческого самосознания, сколько опыт в широком смысле, нечто, свойственное и многим другим животным. Я хочу исследовать вопросы переживания опыта так, чтобы приглушить ощущение необоснованности, о котором я писал выше, – чувство, будто можно приписать разум бактерии или отказать в нем птице в зависимости от того, что вам больше нравится.

Исследуя проблему тела-разума, я буду придерживаться биологического подхода, который не противоречит материалистической картине мира. Многие считают, что «материализм» предполагает узко практический и негибкий подход: мир меньше, чем вы думаете, он не настолько удивителен и не так свят; это просто атомы, бьющиеся друг о друга. Сталкивающиеся атомы – это, конечно, важно, но я не собираюсь рассказывать свою историю под гнетом запретов и ограничений. «Физический» или «материальный» мир есть нечто большее, чем соударение частиц и сухие формулы. Это мир энергий, полей и скрытых взаимодействий. Я уверен, он нас еще не раз удивит.

Позиция, которой я придерживаюсь в этой книге, называется биологическим материализмом, но в основе моих убеждений – более широкий подход, который иногда называют монизмом. Монизм утверждает фундаментальное единство в природе{19}. Материализм же лишь одна из разновидностей монизма, поскольку он ставит во главу угла мысль о том, что все психические феномены, включая субъективный опыт, суть проявление фундаментальных процессов, описанных в биологии, химии и физике. Идеализм – представление, что все сущее вокруг есть идеи, являет еще один вид монизма – он лишь иначе постулирует единство. (Идеалисту нужно как-то объяснить, почему то, что кажется нам физическими объектами и явлениями, на самом деле остается проявлением духа или разума.) Еще один способ быть монистом – считать, что и «физическое», и «психическое» – проявления одной и той же лежащей в их основе реальности; такой подход называется нейтральным монизмом. Вместо того чтобы объяснять психику в терминах физики или физику в терминах психики, мы объясняем и то и другое в терминах чего-то еще. Это «что-то еще» по-прежнему сохраняет налет таинственности. Если бы я не был материалистом, то стал бы нейтральным монистом, хотя это все-таки не моё{20}. Путь, на который я ступаю, начнется с самих основ жизни – понятой в материалистическом ключе; дальше я попытаюсь показать, как в процессе эволюции живых систем может зародиться разум. Мне хотелось сократить, хотя бы отчасти, разрыв в объяснении физического и психического.

Но, прежде чем начать, давайте присмотримся к психической стороне этой головоломки и к словам, которыми мы ее описываем. Свойство разума, которое пытался определить Нагель, сказав: «Это на что-то похоже…», сегодня обычно называют сознанием. (Сам Нагель тоже так его называл.) В указанном смысле вы обладаете сознанием, если ощущаете, что значит «быть вами». Но термин «сознание» часто сбивает с толку, потому что может показаться, будто он предполагает нечто более сложное. Фраза «нечто, на что похоже…» предполагает наличие неких ощущений. Быть вами – или рыбой, или мотыльком – на что-то похоже, если смутные, едва уловимые волны ощущений являются частью вашей жизни. Тот факт, что в слово «сознание» часто вкладывают более широкий смысл, может нам помешать.

Нейробиологи, например, часто говорят, что сознание возникает в коре больших полушарий, складчатом верхнем отделе головного мозга, который имеется только у млекопитающих и у ряда других позвоночных. В одной из своих статей врач и писатель Оливер Сакс рассказывает о пациенте, который перенес инфекцию мозга, в результате чего потерял всякую способность удерживать в памяти новые события{21}. Сакс спрашивает: «Какая связь существует между, с одной стороны, моделями поведения и процедурной памятью, которые ассоциируются со сравнительно примитивными частями нервной системы, а с другой стороны – сознанием и чувствительностью, которые связаны с корой больших полушарий?» Сакс здесь не только задает вопрос, он еще и делает допущение: сознание и чувствительность связаны с корой больших полушарий. Подразумевает ли Сакс, что если некто или нечто не имеет коры больших полушарий, то у него не будет и сознания во всем его «вот-он-я» богатстве, но при этом такое существо все же сможет иметь какие-то чувства? Или же Сакс думает, что в отсутствие коры свет гаснет полностью и любое лишенное ее создание будет вовсе лишено всякого опыта, даже если оно обладает какими-то моделями поведения? У большинства животных, особенно животных, описанных в этой книге, нет коры больших полушарий. Вопрос стоит следующим образом: их опыт в корне отличается от нашего или же они вообще никакого опыта не имеют?

Некоторые люди действительно думают, что в отсутствие коры больших полушарий невозможен и опыт. Что ж, может, в итоге мы все придем к такому выводу, однако я в этом сомневаюсь{22}. Нам нужно целенаправленно избегать привычки думать, будто все формы опыта должны быть во всех отношениях похожи на человеческий. Когда слово «сознание» используют для описания крайне широкого понятия чувственного опыта, запутаться очень легко. Однако термин «сознание» или какую-нибудь его модификацию («феноменальное сознание») сегодня чаще всего используют именно в этом широком смысле. Ладно, не буду привередничать, тем более что идеальной терминологии не существует. Хотя, наверное, «чувствительность» была бы хорошим термином для отсылки к этой более широкой концепции. Мы могли бы спросить: «Какие животные обладают чувствительностью?» – и это было бы не то же самое, что поинтересоваться, какие из них обладают сознанием. Но «чувствительность» часто употребляют в отношении отдельных видов опыта: удовольствия, боли и близких к ним ощущений, которые могут оцениваться как приятные или неприятные. Этот опыт, безусловно, важен, и, вероятно, есть смысл предполагать, что он может иметь место и в отсутствие высших уровней сознания. Однако не исключено, что это не единственная разновидность элементарного, простого опыта. В последующих главах я рассмотрю вероятность того, что чувственная и оценочная сторона опыта в некотором роде разные вещи: фиксировать то, что происходит, вовсе не то же самое, что оценивать, плохо это или хорошо. Слово «чувствительность» не всегда обозначает чувственный аспект опыта.

Есть еще один, причем довольно неуклюжий, термин – «субъективный опыт». Определение кажется избыточным (разве есть какой-то другой вид опыта?), и от него не произведешь удобного прилагательного вроде «сознающий» или «чувствующий». Но само понятие «субъективный опыт» указывает в верном направлении, обращая к идее субъекта. В каком-то смысле эта книга посвящена эволюции субъективности – что это такое и откуда взялось. Субъект – то место, где размещается опыт.

Иногда я буду говорить исключительно о разуме; думаю, именно это нам предстоит осмыслить в процессе повествования – эволюцию разума и его место во вселенной. Я буду переключаться между терминами без какой-то особой системы. Существующее сегодня понимание еще не позволяет настаивать на выборе конкретного языка.

Теорию, которую я пытаюсь развить, можно описать по-разному, но это непросто, с какой стороны ни посмотри. Своей работой я намереваюсь показать, что совокупность процессов – не психических и не сознательных в своей основе – каким-то образом способна организоваться так, что из нее начинает произрастать чувственный опыт. Иначе говоря, часть бессмысленной активности, которой кишит наша вселенная, как-то складывается в разум.

Дуализм, панпсихизм и многие другие философские течения считают это невозможным: нельзя создать разум – и, уж конечно, разум во всей его полноте – из чего-то другого, из элементов, которые вообще не имеют никакого отношения к психике. Либо разум у нас пронизывает все сущее, либо же его нужно добавить «сверху» – не в буквальном смысле сверху, но приплюсовать к физической системе, которая, в принципе, и без него была бы законченной. Однако я уверен, что создать разум из чего-то иного возможно – такое вполне под силу эволюции. Из слияния и соединения объектов, которые сами по себе неразумны, может появиться разум. Разум – продукт эволюции, порожденный организацией других, неразумных природных элементов. Тема этой книги – зарождение разума.

Я сказал, что разум – продукт эволюции и нечто созданное (something built), но я хочу с самого начала предостеречь от распространенной ошибки. Материалистическое мировоззрение отнюдь не подразумевает, что разум – результат физических процессов, которые происходят в мозге, их следствие или их продукт. (А вот Гексли, кажется, именно так и думал.) Напротив, смысл в том, что опыт и другие психические проявления – по сути своей биологические, то есть физические, процессы определенного рода. Наш мозг есть особая конфигурация материи, а также происходящей в ней энергетической активности. Такое устройство – продукт эволюции; формировалось оно постепенно. Но это устройство и эти процессы не основа разума – именно они и есть разум. Процессы, которые происходят в мозге, не порождают мышление и опыт; они сами – мышление и опыт.

Мне предстоит осуществить проект биологический и материалистический – показать, что описанная выше точка зрения имеет право на существование, и вполне вероятно, что все устроено именно так. Цель моей книги – продвинуться по этому пути как можно дальше. Конечно же, я не надеюсь, что загадка разрешится одним лишь росчерком пера или ответ на нее появится, как кролик из шляпы фокусника. По ходу повествования я хочу наметить перспективный путь, набросать решение, которое в первом приближении сложит три детали головоломки в картину, по моему мнению, имеющую смысл. Однако не на все вопросы найдется ответ, и не все загадки будут решены. А что будет дальше, образно описывает цитата, которая вдохновляла меня все годы моего писательства и которая послужила бы прекрасным эпиграфом к этой книге. Она вышла из-под пера Александра Гротендика, математика:

Море наступает незаметно и тихо; кажется, что ничего не происходит и ничего не меняется. … Но в конце концов оно окружает упрямый объект, который постепенно становится полуостровом, потом островом, затем островком и в итоге полностью уходит под воду, словно растворившись в океане, простирающемся вдаль насколько хватает глаз{23}.

Гротендик работал над крайне абстрактной проблемой – абстрактной даже по стандартам чистой математики. Приведенный выше абзац описывает подход, которого он придерживался в своей области исследований. Кажется, что задачу, стоящую перед нами, не решить обычными методами. Но тогда мы будем решать ее, накапливая знания в смежных областях, надеясь, что в итоге загадка трансформируется и растворится. Задача будет переформулирована и со временем станет постижимой. Образ, который Гротендик выбрал для описания этого процесса, – погружение объекта в воду.

Я держал его в голове довольно долго. Я не считаю, подобно некоторым из философов, что загадки, с которыми мы сталкиваемся, исследуя разум, – чистые иллюзии, разрешить которые можно, всего лишь думая о них иначе. Нам необходимы новые знания. И пока мы их накапливаем, сама проблема меняет форму и исчезает.

Найденный Гротендиком образ кажется таким удачным, что поначалу я даже хотел взять его в качестве эпиграфа. Но сейчас, во времена, когда тающие полярные льды быстро нагревающейся Земли крадут у нас драгоценные тихоокеанские острова, он обрел новые, малоприятные коннотации{24}. Теперь мне уже не хочется начинать им книгу. Тем не менее метафора Гротендика по-прежнему направляет ход моих мыслей, а перспектива, описанная в ней, подсказывает, как наилучшим образом выстроить повествование. «Метазоа» подходит к проблеме тела-разума, изучая природу жизни, историю животного мира и образ жизни животных, которые сегодня сосуществуют с нами бок о бок. Изучая животный мир, мы наращиваем знания вокруг центральной проблемы и наблюдаем, как она трансформируется и оседает.

Эта книга – продолжение проекта, начатого в другой моей книге, которая называется «Чужой разум». В ней я изучал эволюционный путь и разум конкретной группы животных – головоногих, в сообщество которых входят и осьминоги. «Чужой разум» начинается с описания встреч с этими животными в воде, во время погружений с аквалангом и маской. Знакомство с осьминогами в их естественной среде обитания, во всей их изменчивой и текучей сложности, пробудило во мне желание понять, что происходит у них в голове. Я принялся изучать их эволюционный путь, который уходит вглубь веков к ключевому событию в истории животных, давнему разветвлению генеалогического древа жизни. Эта развилка, наметившаяся более полумиллиарда лет назад, направила одну ветвь к осьминогу (и не только), а другую – к нам.

Некоторые идеи касательно разума, тела и опыта были очерчены уже в книге «Чужой разум», вдохновленной наблюдениями за осьминогами. Здесь эти идеи будут развиты и дополнены. Это стало возможно благодаря более пристальному вниманию к философским граням проблемы, изучению отдаленных ветвей древа жизни, а также часам погружений и наблюдений за другими нашими меньшими братьями. В «Чужом разуме» я все время возвращался к осьминогам, но в этой книге буду продвигаться вперед в компании других видов; одни находятся ближе к нам на эволюционном древе, а другие – дальше. Для некоторых из них я тоже был существом, за которым они могли наблюдать и узнавать его, для других мое присутствие было лишь смутным сном. К концу книги мы перейдем к изучению наших ближайших родичей, чьи тела и разумы напоминают наши собственные. Но все-таки в моем историческом повествовании основное внимание будет уделено ранним стадиям эволюции, и цель его – понять, как на Земле появился опыт – сначала в воде, а затем на суше.

Таким и будет наше путешествие. Мы пойдем – поползем, полетим, поплывем – сквозь историю животного мира с самого ее начала, следуя по стопам ряда ныне живущих созданий. Мы будем учиться у них, постигая, что ощущают и как функционируют их тела, как они взаимодействуют с миром. С их помощью мы попытаемся понять не только происхождение, но и различные формы субъективности, существующие в наши дни. Я не претендую на то, чтобы объять необъятное и описать все разнообразие животного мира. Я сфокусируюсь на тех его представителях, которые отмечают собой ступени эволюции разума, прежде всего те, на которых он впервые появился. Большая часть этих животных – обитатели морей. Так давайте же спустимся по этим ступеням.

2. Стеклянная губка

Башни

Сад губок обычно начинается на небольшой глубине{25}, куда легко проникают солнечные лучи, особенно в местах, где ощущается течение. Здесь, где тают краски, открывается вид на заросли неподвижных живых организмов. Одни напоминают чашечки, лампочки, вазы или ветвистые деревья, другие похожи на ручки в толстых варежках – как будто что-то огромное, спрятанное на дне морском, выпростало наружу свои мягкие лапы.

Нежась на мелководье, представьте себе море, которое гораздо холоднее: на сцену ложится тьма, сверху опускаются редкие мерцающие пылинки. На дне океана, в 1000 метров от поверхности, возвышается бледная башня цилиндрической формы примерно 30 сантиметров высотой. Ее окружает группа таких же башенок; все они крепко держатся за дно и немного расширяются кверху, частично приоткрываясь. При такой нежной наружности внутри у каждой губки жесткий каркас, собранный из крошечных деталек. Самые маленькие из них выглядят как звездочки, крючочки и неровные крестики, сплетающиеся в форме башни. Башни держатся за морское дно хрупкими якорьками. Якорьки и крестики состоят из диоксида кремния, из которого делают стекло. Губка, живущая на рифах умеренного климатического пояса или глубоко на дне океана, кажется пассивной и безжизненной, но, если присмотреться, это совсем не так. Стеклянная губка – тихий насос, прокачивающий воду сквозь свое тело. Она ощущает внешнюю среду и реагирует на нее. Тело глубоководной башни – стеклянной губки – проводит свет и электрический заряд, мерцая словно лампочка («эврика!») на дне морском.

Клетка и шторм

Основа эволюции разума – сама жизнь; не все, что с ней связано, не механизм ДНК, но другие ее свойства. Все началось с клетки.

Первобытная жизнь, до появления животных и растений, была одноклеточной. Растения и животные – это огромные конгломераты клеток. Но и до того, как эти конгломераты сформировались, клетки, скорее всего, не были полностью автономными и жили колониями и группами. Тем не менее каждая клетка была отдельной крошечной сущностью.

Клетка ограничена, у нее есть внутреннее пространство и внешний мир. Граница, отделяющая клетку от внешней среды, называется мембраной; она изолирует клетку не полностью: мембрану пронизывают каналы и отверстия. Через границу в обе стороны без остановки транспортируются различные вещества, а внутри клетки кипит бурная деятельность.

Клетка состоит из материи, из набора молекул. Я точно не знаю, что приходит вам на ум при слове «материя», но зачастую оно вызывает образ чего-то инертного и неповоротливого, а на память приходят всякие тяжелые объекты, которые приходится толкать, чтобы сдвинуть с места. В целом на суше и на соразмерном человеку уровне объектов среднего размера типа столов и стульев дела примерно так и обстоят. Но, когда мы думаем о веществе клеток, нам нужно думать иначе.

Внутри клетки события разворачиваются в наномасштабе, где объекты измеряются в миллионных долях миллиметра, а среда, в которой все происходит, – это вода{26}. Материя в этой среде ведет себя иначе, чем в нашем сухом мире объектов среднего размера. На микроуровне активность возникает спонтанно, и подталкивать события не требуется. Говоря словами биофизика Питера Хоффмана, внутри каждой клетки бушует «молекулярный шторм» – бесконечная сумятица столкновений, притяжений и отталкиваний.

Представляя себе клетку, полную замысловатых механизмов со своими функциями, нужно помнить, что эти механизмы безостановочно бомбардируются молекулами воды. Объект внутри клетки сталкивается со стремительными молекулами воды примерно каждую десятитриллионную долю секунды. Это не опечатка; уровень событий в клетке практически невозможно себе представить. Подобные столкновения отнюдь не безобидны: сила каждого превосходит силу, которую способны приложить органеллы клетки. Все, что может сделать в этой ситуации аппарат клетки, так это подтолкнуть события в одном либо в другом направлении, придавая шторму какую-то когерентность.

Вне водной среды шторм тотчас бы прекратился. На воздухе многие из объектов такого масштаба слипаются в комки, но в воде этого не происходит – там они без остановки двигаются, и активность в клетке возникает как бы сама по себе. Как я уже говорил, мы часто думаем о «материи» как о пассивной и инертной. Однако главная проблема, с которой приходится иметь дело клетке, – не подтолкнуть события, но навести в них порядок, установить некий ритм и смысл в их спонтанном потоке. В подобной ситуации материя вовсе не застывает в безделье, напротив, она рискует сделать слишком много; поэтому задача клетки – упорядочить хаос.

Практически все ассоциации, которые привычно приходят нам на ум, когда мы думаем о материи, – ошибочны, если вопрос касается жизни и того, как она могла появиться. Если бы жизни пришлось эволюционировать на суше из составляющих таких габаритов, как стол или стул, то она никогда бы и не возникла. Но ей этого делать не пришлось: жизнь зародилась в воде – скорее всего, в тонкой пленке на ее поверхности, но тем не менее в воде – в попытках укротить молекулярный шторм.

В истории Земли жизнь появилась сравнительно рано; вероятно, это случилось около 3,8 миллиарда лет назад, тогда как сейчас нашей планете уже 4,5 миллиарда лет от роду{27}. Скорее всего, изначально жизнь была не клеточной, однако все равно должен был найтись какой-то способ удержать, обособить и не дать рассеяться в пространстве некоторой цепи химических превращений. Затем на каком-то этапе появились клетки, поначалу, вероятно, проницаемые и слабо оформленные; со временем, однако, они превратились в нечто вроде бактерий – клеток, которые способны сохранять свою структуру и размножаться.

Но среди всех умений, которые обрели клетки, чтобы поддерживать процесс жизнедеятельности – преобразовывать материю, наводить порядок и методично подчинять себе хаос, ключевым достижением стало укрощение заряда.

Укрощение заряда{28}

Укрощение электрического заряда стало поворотным событием в новейшей истории человечества. В XIX веке электричество перестало быть загадочной, опасной силой, непосредственно проявляющейся в ударах молний, превратившись в технологию, которая вскоре сделала современный мир таким, каким мы его знаем. Если вы читаете эту книгу при электрическом свете или с экрана компьютера, сам акт чтения осуществляется при помощи электричества. Однако этот прорыв в сфере электричества стал не первым в истории. Впервые электрический заряд был укрощен за миллиарды лет до этого, на ранних стадиях эволюции жизни. В клетках и организмах электричество служит средством, с помощью которого осуществляется большая часть внутренних процессов. Это основа активности мозга – ведь наш мозг электрическая система, – да и любой другой активности.

Что же такое электричество? Даже многие физики считают этот вопрос трудным. Электрический заряд – базовое свойство материи. Заряд может быть положительным или отрицательным. Объекты с одинаковыми зарядами (положительным и положительным, например) отталкиваются, а с разными (положительным и отрицательным) притягиваются. Вещество обычных объектов содержит как положительные, так и отрицательные заряды. Любой атом – это набор элементарных частиц, причем одни из них заряжены положительно (протоны), другие отрицательно (электроны), а все остальные (нейтроны) не имеют заряда. Обычно атом содержит равное количество электронов и протонов, поэтому сам по себе он заряда не имеет, поскольку положительные и отрицательные заряды внутри него уравновешивают друг друга.

Способность электричества притягивать и отталкивать чрезвычайно сильна. Вот как об этом в своих лекциях по физике говорит неподражаемый Ричард Фейнман:

…все вещество является смесью положительных протонов и отрицательных электронов, притягивающихся и отталкивающихся с неимоверной силой. Однако баланс между ними столь совершенен, что, когда вы стоите возле кого-нибудь, вы не ощущаете никакого действия этой силы. А если бы баланс нарушился хоть немножко, вы бы это сразу почувствовали. Если бы в вашем теле и в теле вашего соседа (стоящего на расстоянии вытянутой руки от вас) электронов оказалось бы всего на 1 % больше, чем протонов, то сила вашего отталкивания была бы невообразимо большой. Насколько большой? Достаточной, чтобы поднять небоскреб? Больше! Достаточной, чтобы поднять гору Эверест? Больше! Силы отталкивания хватило бы, чтобы поднять «вес», равный весу нашей Земли![5]{29}

В смеси заряженных частиц, из которых состоит обычное вещество, электроны – отрицательно заряженные частицы – находятся снаружи атомов, а протоны (вместе с нейтронами) внутри. Атом может приобретать или терять электроны, и тогда он становится ионом. Ион – это атом (а иногда молекула, состоящая из нескольких атомов), заряд которого не сбалансирован из-за такого приобретенного или потерянного электрона, а следовательно, у него есть собственный заряд. Многие химические вещества, растворяясь в воде, испускают ионы, которые отправляются в самостоятельное плавание. Соленая вода – это вода с растворенными в ней ионами. Каждая капелька морской воды содержит бесчисленное множество ионов, взаимодействующих друг с другом и с молекулами воды, притягиваясь и отталкиваясь.

Электрический ток – это движение положительно либо отрицательно заряженных частиц. Когда по металлическим проводам пропускают ток, движутся только электроны, а все остальные частицы, из которых состоят атомы проводов, остаются на месте. Электрический ток, на котором основаны современные технологии (освещение, двигатели, компьютеры), по большей части работает именно так. Но ток может выглядеть и как движение целых ионов. Если положительно или отрицательно заряженные ионы, растворенные в воде, подтолкнуть к движению в определенном направлении, мы получим электрический ток. Движение ионов не запускает ток, оно само и есть ток. Любая емкость с соленой водой может проводить ток, если вам каким-то образом удастся заставить ионы нужного вида двигаться в заданном направлении. В живых системах, в отличие от человеческих изобретений, электрический ток выглядит именно так.

Электрический заряд – это еще не жизнь и не разум, но он порождает множество событий как в неживой, так и в живой природе. Все живое работает на электричестве, улавливая, всасывая, группируя и высвобождая ионы.

Клеточная мембрана отделяет внутреннюю среду клетки от внешней, не давая им смешиваться, но в мембране имеются каналы, избирательно пропускающие некоторые вещества. В основном это ионные каналы. Иногда канал просто позволяет ионам пересекать границу (возможно, при соблюдении определенных условий), но иногда клетка активно всасывает ионы через мембрану.

Та или иная разновидность ионных каналов – общая черта всех клеточных форм жизни, включая бактерии. Зачем бактериям понадобилось создавать особые проходы для ионов, не совсем понятно. Первоначально каналы могли появиться, чтобы позволить клетке регулировать уровень своего электрического заряда относительно внешней среды – настраивать его, а не только укрощать. Но коль скоро трафик сквозь границу живой системы налажен, он начинает исполнять и другие функции. Поток ионов, например, способен служить простейшей формой восприятия: предположим, контакт с неким химическим веществом снаружи клетки открывает канал, сквозь который проникают ионы; попав внутрь, эти заряженные частицы запускают в клетке определенную цепь событий.

Кроме того, ионные каналы, осуществляющие транспортировку веществ в обе стороны сквозь клеточную мембрану, одарили клетку новой, причем очень важной способностью. Она называется раздражимостью. Каналы контролируют поток заряженных частиц, но ими самими тоже можно управлять – открывать их и закрывать. Клетка контролирует активность каналов с помощью химического либо физического воздействия, но также и посредством самого электрического заряда. Потенциал-зависимые ионные каналы открываются в ответ на электрические явления, к которым они чувствительны. В результате запускается цепная реакция – поток заряженных частиц усиливается и выходит за пределы клеточной мембраны.

Новая способность не кажется какой-то особенно значимой, сфера ее применения не так очевидна, как у описанного выше механизма, в рамках которого поток ионов реагирует на химические вещества, встречающиеся на ее пути. Но потенциал-зависимые ионные каналы помогают клетке сделать следующий шаг в развитии, обеспечивая ее потенциалом действия. Потенциал действия представляет собой непрерывную цепную реакцию изменений в мембране клеток, в частности клеток человеческого мозга. Проникая в клетку, положительно заряженные ионы воздействуют на ионные каналы по соседству, те открываются, внутрь клетки проникает еще больше ионов – и так далее. По мембране распространяется волна электрической пульсации. Потенциал действия – явление сродни электрическому разряду, и клетки мозга, задетые им, как говорят нейробиологи, «вспыхивают». Это становится возможным благодаря потенциал-зависимым ионным каналам.

В потенциал-зависимых ионных каналах на внутренний контроллер клетки воздействуют электрические заряды – электрический ток контролируется электрически. Это принцип работы транзистора. В начале раздела я упоминал технологические прорывы XIX века, которые поставили электричество на службу человеку. Еще один такой прорыв случился в XX веке благодаря изобретению транзистора. Кремниевые микросхемы в компьютерах и смартфонах – это как раз набор транзисторов, крошечных переключателей. Транзистор был изобретен около 1947 года в лабораториях Белла в США, хотя их первенство и оспаривается. Первый транзистор лаборатории Белла был размером около 2,5 см, но с тех пор его постоянно дорабатывали и уменьшали. И точно такой же девайс был изобретен миллиарды лет тому назад в процессе эволюции бактерий.

Если бактерии изобрели транзисторы, что они с ними делали?{30} Зачем им-то нужно было контролировать электричество с помощью электричества? Насколько я знаю, научное сообщество не пришло к общему мнению по этому вопросу. Бактерии могли использовать свои биотранзисторы для поддержания электрохимического баланса в клетке – или для контроля передвижения в водной среде. Каналы, чувствительные к химическому составу внешней среды, могли оказаться чувствительными и к электрическому заряду, и бактерии, формирующие колонии в виде «биопленок», научились передавать сигналы от клетки к клетке с помощью ионов. Но у бактерий нет потенциала действия, подобного цепной реакции в мозге человека, и ситуация кажется мне довольно странной. Несколько миллиардов лет тому назад природа изобрела электронное устройство, без которого невозможны современные компьютерные технологии, – сложное и требующее ресурсов устройство – и оснастила им бактерии, но бактерии, похоже, не так чтобы часто используют его для вычислений.

Как бы там ни было, появление потенциал-зависимого ионного канала – поворотный момент в укрощении заряда. Как я уже говорил, у этих каналов нет какого-то одного очевидного применения. В каком-то смысле то же самое касается и транзистора; как раз в этом и заключается одно из основных преимуществ того и другого. Транзистор – простой инструмент контроля, устройство, с помощью которого можно сделать так, чтобы событие в одном месте гарантированно и быстро вызывало событие в другом. О каких событиях идет речь, не так уж важно, – сгодится все. Благодаря потенциал-зависимым ионным каналам, обеспечивающим потенциал действия, активность клетки приобретает «цифровое» качество; нейрон либо вспыхивает, либо не вспыхивает: да или нет, единица или ноль. Не у всех животных есть нейроны, способные так вспыхивать; существуют и другие типы нервных систем, которые работают на низком уровне раздражимости, но эта цифровая характеристика определенно полезна. Примечательно, что это регулировочное устройство было изобретено так давно, когда сфера его современного применения эволюции даже не мерещилась.

В дни вездесущих компьютеров и искусственного интеллекта отношения между живыми системами и электронными устройствами неизбежно вызывают интерес. Неужели живые существа и компьютеры различаются только материалом, из которого сделаны? Сходство между ними есть, и оно бывает довольно неожиданным, но не менее важно признавать и отличия. И одно из них заключается в том, что компьютеру никогда не придется заботиться о том, чем прежде всего занята живая клетка. Основная задача клетки – поддерживать свое существование, заботиться о непрерывном поступлении энергии, осуществлять привычную жизнедеятельность в условиях распада и изменения веществ. В живых системах активность, которой заняты и компьютеры, – переключение электрических цепей и «обработка данных» – только малая часть множества взаимосвязанных химических процессов. Все, что происходит в клетках, происходит в жидкой среде и подвержено превратностям молекулярного шторма; клетка вынуждена отвлекаться на химические процессы, которыми заняты все живые системы. А когда мы собираем компьютер, мы хотим, чтобы он выполнял операции унифицированные и однообразные, – мы собираем систему, которая в идеале вообще не должна отвлекаться на непродуктивные химические процессы.

Вышесказанное актуально и в том случае, если посмотреть на ситуацию шире. В первых главах книги я стараюсь описать всю сложность строения клеток и простых организмов, а также процессов, происходящих внутри них. В этой связи меня нередко посещал объяснимый соблазн использовать слово «механизм» – ведь мы изучаем механизмы восприятия, механизмы раздражимости. Я пишу и каждый раз сомневаюсь: не стереть ли его? Несомненно, в широком смысле слова потенциал-зависимые ионные каналы – это детали механизма; то же самое можно сказать как о нервах, так и о мозге. Отрицая этот постулат, мы уклоняемся в сторону дуалистических (душа плюс тело) или виталистических (жизненная сила) взглядов. Поэтому я разрешил себе его использовать. Однако нельзя упускать из виду и отличия машин от живых систем. Жизненные процессы клетки подразумевают укрощение молекулярного шторма и хаотичного движения ионов. Это совершенно не похоже на то, что происходит в любой спроектированной человеком машине. Собирая машины, мы стремимся сделать их предсказуемыми, хотим, чтобы они выполняли строго определенные функции, пусть даже потом мы используем их для симуляции хаотических событий. Ссылаться на хитроумное устройство клетки как на «механизм» в каких-то случаях уместно, а в каких-то нет.

В арсенале свойств тех форм жизни, что существовали до появления животных, есть одно, которое мне хотелось бы выделить особо. Я его уже касался, но теперь хочу поместить в центр внимания. Это свойство – двустороннее сообщение между живыми системами и средой. Здесь имеется в виду и уже упоминавшийся поток ионов, и поглощение органических веществ, и удаление отходов. Клетки обособлены, но не изолированы от мира. Клеточные формы жизни сообщаются с внешней средой, и это крайне важно.

У этого двустороннего обмена есть как метаболическая сторона – клетка получает энергию и использует ее для поддержания жизни, – так и информационная. Какие-то поступления извне важны сами по себе (прежде всего пища), зато другие могут предостеречь, подсказать или сообщить некую важную информацию. Метаболическая сторона этого двустороннего обмена – непременное условие продолжения жизни. Жизнедеятельность организма невозможна в отрыве от энергетического потока, который начинается и заканчивается вовне{31}. Моя коллега Маурин О'Мэлли великолепно сформулировала эту мысль; соединив химический термин с образом из совершенно другой области, она сказала: чтобы жить, нужно научиться существовать «на окислительно-восстановительных американских горках, постоянно отдавая и получая»{32}. (В процессе окислительно-восстановительной реакции молекулы обмениваются электронами.) О'Мэлли хотела подчеркнуть, что чувствительность к событиям и изменениям во внешней среде – неотъемлемая характеристика живых организмов. У них нет возможности задраить все люки, они открыты миру в силу своей потребности в энергии. Открывшись миру, живые системы неизбежно будут испытывать на себе его влияние. А так как происходящее снаружи влияет на живую систему, эволюция обязательно попытается как-то эту чувствительность использовать: организмам часто удается отыскать способ реагировать на происходящее так, чтобы поставить его на службу своим целям, какими бы примитивными они ни были. Все известные клеточные формы жизни, не исключая и крошечных бактерий, обладают способностью ощущать мир и реагировать на него. Ощущение, как минимум в самых его базовых формах, старо как мир и встречается повсеместно{33}.

Многоклеточные

Перечисленные идеи составляют одну из двух основных тем второй главы. Живые клетки – физические объекты, но они не похожи ни на один другой знакомый нам объект. Они окружают себя мембраной, чтобы сдержать шторм активности и придать ему форму. Они заключены внутри своих границ, но вся их жизнь зависит от того, что проникает сквозь эти границы. Самоопределяющаяся и самоподдерживающаяся клетка – это самость

Сноски
1 В английской редакции здесь упоминается Уиклиф. Подробнее см. в примечаниях. – Прим. пер.
2 Перевод И. Бернштейн.
3 Эта книга снабжена множеством примечаний, размещенных в конце. Там приведены ссылки на источники, а также даются более подробные объяснения, отсылающие к конкретным фразам текста.
4 Фраза из популярной салонной игры «Двадцать вопросов». – Прим. пер.
5 Перевод с английского Г. И. Копылова и Ю. А. Симонова.
1 В английской редакции здесь упоминается Уиклиф. Подробнее см. в примечаниях. – Прим. пер.
2 Перевод И. Бернштейн.
3 Эта книга снабжена множеством примечаний, размещенных в конце. Там приведены ссылки на источники, а также даются более подробные объяснения, отсылающие к конкретным фразам текста.
4 Фраза из популярной салонной игры «Двадцать вопросов». – Прим. пер.
5 Перевод с английского Г. И. Копылова и Ю. А. Симонова.
Комментарии
1 Основным источником сведений об истории батибиуса для меня стала статья Филипа Ф. Рехбока "Huxley, Haeckel, and the Oceanographers: The Case of Bathybius haeckelii," Isis 66, no. 4 (1975): 504–33. Работа Гексли, опубликованная в 1868 году в Quarterly Journal of Microscopical Science (n. s.) 8 (1868): 203–12, называется «О некоторых организмах, живущих на большой глубине в Северном Атлантическом океане». В ней Гексли пишет, что эта самая субстанция и есть «протоплазма», и дает ей имя Bathybius Haeckelii (используя не строчную, как принято при наименовании видов, а заглавную – как и у меня в тексте).
2 Сведения о Геккеле я почерпнул из его биографии: Robert J. Richards, «The Tragic Sense of Life: Ernst Haeckel and the Struggle Over Evolutionary Thought» (Chicago: University of Chicago Press, 2008), а также из недавно опубликованного эссе: Georgy S. Levit, Uwe Hossfeld, "Ernst Haeckel in the History of Biology," Current Biology 29, no. 24 (2019): R1276–84. Там же (pp. R1272–76) вышла работа, посвященная известным иллюстрациям Геккеля: Florian Maderspacher, "The Enthusiastic Observer – Haeckel as Artist," где в том числе обсуждаются сомнения в их точности. Геккель, подобно многим другим биологам своего времени, верил в расовую иерархию, верхний этаж которой занимают белые европейцы. Порой ему приписывают определенную роль в становлении нацизма в Германии. Ричардс опровергает эти утверждения (не пытаясь доказать, будто взгляды Геккеля можно назвать полностью просвещенными) в работе "Ernst Haeckel's Alleged AntiSemitism and Contributions to Nazi Biology," Biological Theory 2 (2007): 97–103. К человеческим общностям высшего ранга Геккель причислял, например, евреев и берберов (ставя их в один ряд с романскими и германскими народами). Ричардс также замечает, что Геккель был близким другом одного из первых гей-активистов, исследователя сексуальности Магнуса Хиршфельда, который посвятил Геккелю свою книгу «Естественные законы любви».
3 Самое известное заявление Дарвина на эту тему – осторожное соображение, высказанное в письме 1871 года к Дж. Д. Гукеру: «Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время, но если (ох, какое это большое «если») представить себе, что в каком-то маленьком и теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и так далее образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался бы, чего не могло случиться до того, как появились живые существа» (Дарвин – Гукеру, Даун, Кент, 1 февраля 1871 г, Darwin Correspondence Project, darwinproject.ac.uk/letter/DCP-LETT-7471.xml).
4 Согласно Рехбоку, Гексли отрицал, что из его работ можно сделать такой вывод.
5 С 1735 года и далее «Systema Naturae» Линнея издавалась во множестве редакций. В последних редакциях в нее включены не только растения, но также животные и минералы.
6 См.: Hogg, "On the Distinctions of a Plant and an Animal and on a Fourth Kingdom of Nature," Edinburgh New Philosophical Journal (n. s.) 12 (July – Oct. 1860): 216–25. Хогг, как я уже говорил, считал границы между царствами живого расплывчатыми, но между живым и неживым проводил четкую грань; на своей схеме он разделил их особенно жирной линией.
7 Даже этот термин сегодня кажется спорным, поскольку не описывает какой-то определенной ветви дерева жизни (протисты – «парафилетическая» группа). Значительная доля терминологии, используемой в этой книге, является спорной по той же причине. Но освещать поднятые темы, не употребляя слова «рыба» или «ракообразное», которые вызывают те же вопросы, – непростая задача.
8 См., в частности, труд Аристотеля «О душе». Толкования этой работы противоречивы; я не считаю взгляды Аристотеля дуалистическими, но существует и дуалистическое прочтение Аристотеля; к тому же трактат «О душе» содержит немало темных мест. См.: Christopher Shields, "The First Functionalist," в Historical Foundations of Cognitive Science, ed. J-C. Smith (Dordrecht, The Netherlands: Kluwer, 1990), 19–33. Комментарий Джастина Смита: «До прихода Нового времени отрицание наличия души у животных оборачивалось неизбежным парадоксом. В конце концов, слово животное (animal) – производное от латинского существительного anima, что значит душа» (Justin E. H. Smith, "Machines, Souls, and Vital Principles," in The Oxford Handbook of Philosophy in Early Modern Europe, ed. Desmond M. Clarke and Catherine Wilson (Oxford, UK: Oxford University Press, 2011), 96–115).
9 Здесь я опираюсь на работу Гэри Хатфилда "René Descartes", The Stanford Encyclopedia of Philosophy, ed. Edward Zalta, Summer 2018, plato.stanford.edu/archives/sum2018/entries/descartes. Воззрения Декарта тоже толкуют по-разному; к тому же Декарт опубликовал не все свои размышления на данную тему. Хатфилд пишет: «Рассуждая о живых существах в механистическом ключе, Декарт не отрицал разницы между живым и неживым, но он действительно провел новую границу между одушевленными и неодушевленными существами. С его точки зрения, из всех земных созданий души есть только у людей. Таким образом, он уравнивал душу и разум: душа отвечала за интеллект и волю, в том числе осознаваемый чувственный опыт, осознанное восприятие образов и осознанные воспоминания». Здесь я хочу поблагодарить Элисон Симмонс, которая помогла мне разобраться в теме. В тексте я противопоставляю взгляды Декарта взглядам Аристотеля. Важной вехой между ними был «схоластический» подход, пытавшийся примирить Аристотеля с христианством, что, естественно, повлияло на представления о душе. Центральной фигурой схоластической философии был Фома Аквинский. Статья о Фоме Аквинском из Стэнфордской философской энциклопедии, написанная Ральфом Макинери и Джоном О'Каллаганом, очень мне помогла (plato.stanford.edu/entries/aquinas).
10 Здесь я многое позаимствовал из работы Тревора Пирса «'Protoplasm Feels': The Role of Physiology in Charles Sanders Peirce's Evolutionary Metaphysics», HOPOS: The Journal of the International Society for the History of Philosophy of Science 8, no. 1 (2018): 28–61. Номинально статья посвящена философу Ч. С. Пирсу, но охватывает более широкий круг проблем. Слова Уильяма Карпентера тоже взяты из текста Пирса. Слова Гексли, что «организация материи есть результат жизни, а не жизнь есть результат организации материи», процитированы в работе Рехбока, посвященной батибиусу, и взяты из курса лекций Гексли о беспозвоночных (1868), изданного Британским Медицинским журналом. Согласно Пирсу, Геккель поначалу с осторожностью подходил к вопросам о разуме, но начиная с середины 1870-х начал приписывать чувствительность самой материи: "У каждого атома есть ощущения и способность к передвижению», – цитирует Пирс.
11 Давняя философская традиция убеждает нас, что самая обычная материя содержит в себе скрытые миры – сложные и, вероятно, бесконечные. Философ XVII века Готфрид Лейбниц утверждал, что материя должна быть устроена именно так. Съездив в Голландию, Лейбниц заглянул в один из левенгуковских микроскопов, хотя и утверждал, что у него имеются и более общие резоны настаивать на существовании миров внутри миров. В общем, идея скрытой структуры микроскопического уровня лежала на поверхности. Но я подозреваю, что люди, рассматривавшие клетки в микроскоп во времена Дарвина и Гексли, даже если и знали о существовании подобных теорий, всерьез их не воспринимали. В конце концов, они смотрели на крошечную прозрачную кляксу, и эта прозрачная клякса вытворяла удивительные вещи. Ну как тут не подумать о протоплазме!
12 На некоторых из наилучших иллюстраций Геккеля изображены представители биологических видов, обнаруженных этой экспедицией; см.: «Art Forms from the Abyss: Ernst Haeckel's Images from the Challenger Expedition», ed. Peter J. le B. Williams et al. (Munich: Prestel, 2015). Эми Райс предполагает, что батибиус все-таки мог быть органическим веществом, скорее всего остатками планктона, но, конечно, не особой формой жизни ("Thomas Henry Huxley and the Strange Case of Bathybius haeckelii; A Possible Alternative Explanation," Archives of Natural History 2 (1983): 169–80).
13 См. труд Геккеля "Bathybius and the Moners," Popular Science Monthly 11 (October 1877): 641–52. Здесь он практически слово в слово повторяет за Гексли: «Следовательно, не жизнь есть результат организации – верно обратное».
14 В заметке "How You Consist of Trillions of Tiny Machines," The New York Review of Books, July 9, 2015, Тим Фланнери пишет: "Не менее 400 миллионов рибосом может уместиться в одной-единственной точке в конце предложения, напечатанного в The New York Review." Четыреста миллионов? Я не мог не попытаться пересчитать заново. Вот результаты моих вычислений. Если сравнивать площадь (проигнорировав наложения и пустое пространство), то диаметр рибосомы эукариотической клетки составляет примерно 25 нанометров – 25 миллионных миллиметра. Круг такого же диаметра имеет площадь примерно 500 нм2. Диаметр точки равен примерно трети миллиметра, а отсюда ее площадь равна примерно 85 миллиардам нм2. Исходя из величины площади, на одну точку придется примерно 170 миллионов рибосом. Учитывая, что точки могут немного отличаться по размеру, а рибосомы могут принимать разные формы, можно утверждать, что наши вычисления в целом верны.
15 См. статью Нагеля «What Is It Like to Be a Bat?», The Philosophical Review 83, no. 4 (1974): 435–50. [Русский перевод: Нагель Т. Каково быть летучей мышью? // Глаз разума / Сост.д. Хофштадтер, Д. Деннетт. – Самара: Бахрах-М, 2003. C. 349–360. – Прим. ред.]
16 Взгляды Нагеля изложены в эссе «Панпсихизм», опубликованном в его книге «Mortal Questions», (Cambridge, UK: Cambridge University Press, 1979), 181–95. Гален Стросон также горячий приверженец этого подхода; см.: "Realistic Monism: Why Physicalism Entails Panpsychism," Journal of Consciousness Studies 13, no. 10–11 (2006): 3–31. Дэвид Чалмерс больше склоняется к родственному течению, которое он называет «панпротопсихизм»; см.: "Panpsychism and Panprotopsychism," в Consciousness in the Physical World: Perspectives on Russellian Monism, ed. Torin Alter and Yujin Nagasawa (Oxford, UK: Oxford University Press, 2015). Простое и понятное толкование понятия предложено в интервью Филипа Гоффа Гарету Куку в журнале Scientific American, January 14, 2020, scientificamerican.com/article/does-consciousness-pervade-the-universe.
17 Он называется «эпифеноменализм». Гексли изложил свои аргументы в его защиту (которые не всегда легко понять) в заметке 1874 года «О гипотезе, что животные – это автоматы, и о ее истории», см: "On the Hypothesis that Animals Are Automata, and Its History," Collected Essays, vol. 1 (Cambridge, UK: Cambridge University Press, 2011), 199–250.
18 См.: "Materialism and Qualia: The Explanatory Gap," Pacific Philosophical Quarterly 64 (1983): 354–61. Гексли иногда приписывают первое обращение к этой проблеме, но я думаю, что он имел в виду нечто менее конкретное: «Почему нечто столь удивительное, как состояние сознания, возникающее в результате раздражения нервной ткани, так же непостижимо, как явление джинна из лампы Аладдина» (Lessons in Elementary Physiology (London: Macmillan, 1866), 193).
19 Термин применяется для описания целого ряда родственных философских течений. Геккель тоже называл себя монистом; его панпсихизм был скорее разновидностью монизма. См.: "Our Monism: The Principles of a Consistent, Unitary World-View," The Monist 2, no. 4 (1892): 481–86.
20 Этот вопрос подробнее обсуждается в моей работе «Материализм в прошлом и в настоящем», планирующейся к изданию в сборнике статей, посвященных теории разума Дэвида Армстронга и развитию материализма в XX веке.
21 См.: "The Abyss," The New Yorker, September 24, 2007.
22 Если не принимать в расчет животных и сосредоточиться исключительно на людях, интересные данные приводит нейроученый Бьёрн Меркер. Он изучал детей, которым приходится жить с тяжелым диагнозом гидранэнцефалии. В этом состоянии кора больших полушарий и многие другие области мозга практически полностью отсутствуют, часто из-за пережитого во внутриутробном периоде инсульта. Эти дети – глубокие инвалиды во многих отношениях, и, скорее всего, им не свойственна психическая жизнь, знакомая большинству из нас. Но неужели у них вообще нет никакого опыта? Меркер считает, что это маловероятно, и доказательство тому – их улыбки и смех, неустойчивая, но очевидная способность взаимодействовать с близкими людьми. Меркер считает, у нас нет оснований полагать, что отсутствие у этих детей коры мозга начисто лишает их переживания опыта. Аргументы Меркера кажутся мне убедительными. С ними можно подробнее ознакомиться в его статье "Consciousness Without a Cerebral Cortex: A Challenge for Neuroscience and Medicine," Behavioral and Brain Sciences 30, no. 1 (2007): 63–81. Антонио Дамасио также утверждает, что переживание опыта не обязательно связано с корой мозга; см.: Damasio and Gil B. Carvalho, "The Nature of Feelings: Evolutionary and Neurobiological Origins," Nature Reviews Neuroscience 14 (2013): 143–52.
23 Высказывание Гротендика см. в его работе Récoltes et Semailles, p. 553, написанной на французском языке. Французский текст выложен на веб-сайте ncatlab.org/nlab/show/Récoltes+et+semailles. В дискуссиях чаще всего ссылаются на английский перевод этого отрывка, приведенный в статье Colin McLarty, "The Rising Sea: Grothendieck on Simplicity and Generality," в сборнике Episodes in the History of Recent Algebra (1800–1950), ed. Jeremy J. Gray and Karen Hunger Parshall (Providence, RI: American Mathematical Society, 2007). Перевод, который даю я, несколько отличается (с ним мне помогала Джейн Шелдон). Я не математик и не претендую на развитие математической мысли Гротендика.
24 Расскажу чуть больше об отрывке из книги Мелвилла, который в итоге послужил эпиграфом к этой книге. Джон Уиклиф, английский богослов XIV века, был одним из первых критиков католической церкви. Он скончался от естественных причин и был похоронен, но тридцать лет спустя папа римский приказал выкопать его прах и сжечь, а пепел выбросить в реку. В первом американском издании «Моби Дика» Мелвилл упоминал на месте Уиклифа (Томаса) Крэнмера. Крэнмер – еще один английский реформатор, живший почти на столетие позже, как раз в эпоху Реформации; его сожгли на костре. Критики считают, что Мелвилл, во исправление ошибки, сам заменил Крэнмера на Уиклифа, который появляется в английской редакции. В английской редакции также отсутствует слово «пантеистический», но в некоторых поздних редакциях оно появляется снова, по сути объединяя английскую и американскую версии. Я благодарен Джону Брайанту за помощь в этом вопросе.
25 Я дал некоторым главам названия, повторяющие названия музыкальных композиций, которые вдохновляли меня в процессе работы над книгой. Название второй главы отсылает к альбому Лорена Шасса и Джима Хейнса (группа «Coelacanth»), вышедшему в 2003 году.
26 Большую часть материала следующих двух страниц я почерпнул в книге Питера Хоффмана «Life's Ratchet: How Molecular Machines Extract Order from Chaos» (New York: Basic Books, 2012), а также в следующих статьях: Peter B. Moore, "How Should We Think About the Ribosome?", Annual Review of Biophysics 41 (2012): 1–19, и Derek J. Skillings, "Mechanistic Explanation of Biological Processes," Philosophy of Science 82, no. 5 (2015): 1139–51.
27 Доступный разбор новейших научных взглядов в этой сфере представлен в книге Ника Лейна «The Vital Question: Why Is Life the Way It Is?» (London: Profile, 2015).
28 Заголовок этой части перекликается с названием классического труда Яна Хакинга «Taming of Chance» (Укрощение случая), посвященного истории теории вероятности (Cambridge, UK: Cambridge University Press, 1990). В каком-то смысле клетке тоже пришлось укрощать случай (эту тему затрагивает и Хоффман в книге «Life's Ratchet»).
29 Lectures on Physics, vol. 2, chap. 1, "Electromagnetism," feynmanlectures.caltech.edu/II_01.html. Фейнмановские лекции по физике полностью, легально и бесплатно доступны по ссылке feynman lectures.caltech.edu/index.html.
30 См.: Peter A. V. Anderson, Robert M. Greenberg, "Phylogeny of Ion Channels: Clues to and Function," Comparative Biochemistry and Physiology Part B 129, no. 1 (2001): 17–28; а также Kalypso Charalambous, B. A. Wallace, "NaChBac: Th e Long Lost Sodium Channel Ancestor," Biochemistry 50, no. 32 (2011): 6742–52. Сравнение с транзистором позаимствовано из работы Фреда Сигворта "Life's Transistors," Nature 423 (2003): 21–22; о передаче сигналов внутри биопленок см.: Arthur Prindle et al., "Ion Channels Enable Electrical Communication Within Bacterial Communities," Nature 527 (2015): 59–63.
31 На мое мнение по этому вопросу повлияло выступление Джона Аллена на коллоквиуме имени Артура Сэклера, организованном Национальной академией наук США в 2014 г. Природа живых систем – способ их существования в условиях бесконечного электрохимического движения – неизбежно одаривает их чувствительностью к внешним событиям.
32 В электронном письме в 2017 году.
33 Памела Лайон в своей работе детально и с неожиданной стороны рассматривает вопрос о базовых формах ощущения. Самый нижний уровень – это однофакторные системы преобразования сигнала у бактерий; внутренний контроллер клетки отвечает на стимулы, поступившие из внешнего мира в отсутствие рецептора или сенсора на ее поверхности. См. статью Памелы Лайон "The Cognitive Cell: Bacterial Behavior Reconsidered," в журнале Frontiers in Microbiology 6 (2015): 264.
1 Основным источником сведений об истории батибиуса для меня стала статья Филипа Ф. Рехбока "Huxley, Haeckel, and the Oceanographers: The Case of Bathybius haeckelii," Isis 66, no. 4 (1975): 504–33. Работа Гексли, опубликованная в 1868 году в Quarterly Journal of Microscopical Science (n. s.) 8 (1868): 203–12, называется «О некоторых организмах, живущих на большой глубине в Северном Атлантическом океане». В ней Гексли пишет, что эта самая субстанция и есть «протоплазма», и дает ей имя Bathybius Haeckelii (используя не строчную, как принято при наименовании видов, а заглавную – как и у меня в тексте).
2 Сведения о Геккеле я почерпнул из его биографии: Robert J. Richards, «The Tragic Sense of Life: Ernst Haeckel and the Struggle Over Evolutionary Thought» (Chicago: University of Chicago Press, 2008), а также из недавно опубликованного эссе: Georgy S. Levit, Uwe Hossfeld, "Ernst Haeckel in the History of Biology," Current Biology 29, no. 24 (2019): R1276–84. Там же (pp. R1272–76) вышла работа, посвященная известным иллюстрациям Геккеля: Florian Maderspacher, "The Enthusiastic Observer – Haeckel as Artist," где в том числе обсуждаются сомнения в их точности. Геккель, подобно многим другим биологам своего времени, верил в расовую иерархию, верхний этаж которой занимают белые европейцы. Порой ему приписывают определенную роль в становлении нацизма в Германии. Ричардс опровергает эти утверждения (не пытаясь доказать, будто взгляды Геккеля можно назвать полностью просвещенными) в работе "Ernst Haeckel's Alleged AntiSemitism and Contributions to Nazi Biology," Biological Theory 2 (2007): 97–103. К человеческим общностям высшего ранга Геккель причислял, например, евреев и берберов (ставя их в один ряд с романскими и германскими народами). Ричардс также замечает, что Геккель был близким другом одного из первых гей-активистов, исследователя сексуальности Магнуса Хиршфельда, который посвятил Геккелю свою книгу «Естественные законы любви».
3 Самое известное заявление Дарвина на эту тему – осторожное соображение, высказанное в письме 1871 года к Дж. Д. Гукеру: «Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время, но если (ох, какое это большое «если») представить себе, что в каком-то маленьком и теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и так далее образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался бы, чего не могло случиться до того, как появились живые существа» (Дарвин – Гукеру, Даун, Кент, 1 февраля 1871 г, Darwin Correspondence Project, darwinproject.ac.uk/letter/DCP-LETT-7471.xml).
4 Согласно Рехбоку, Гексли отрицал, что из его работ можно сделать такой вывод.
5 С 1735 года и далее «Systema Naturae» Линнея издавалась во множестве редакций. В последних редакциях в нее включены не только растения, но также животные и минералы.
6 См.: Hogg, "On the Distinctions of a Plant and an Animal and on a Fourth Kingdom of Nature," Edinburgh New Philosophical Journal (n. s.) 12 (July – Oct. 1860): 216–25. Хогг, как я уже говорил, считал границы между царствами живого расплывчатыми, но между живым и неживым проводил четкую грань; на своей схеме он разделил их особенно жирной линией.
7 Даже этот термин сегодня кажется спорным, поскольку не описывает какой-то определенной ветви дерева жизни (протисты – «парафилетическая» группа). Значительная доля терминологии, используемой в этой книге, является спорной по той же причине. Но освещать поднятые темы, не употребляя слова «рыба» или «ракообразное», которые вызывают те же вопросы, – непростая задача.
8 См., в частности, труд Аристотеля «О душе». Толкования этой работы противоречивы; я не считаю взгляды Аристотеля дуалистическими, но существует и дуалистическое прочтение Аристотеля; к тому же трактат «О душе» содержит немало темных мест. См.: Christopher Shields, "The First Functionalist," в Historical Foundations of Cognitive Science, ed. J-C. Smith (Dordrecht, The Netherlands: Kluwer, 1990), 19–33. Комментарий Джастина Смита: «До прихода Нового времени отрицание наличия души у животных оборачивалось неизбежным парадоксом. В конце концов, слово животное (animal) – производное от латинского существительного anima, что значит душа» (Justin E. H. Smith, "Machines, Souls, and Vital Principles," in The Oxford Handbook of Philosophy in Early Modern Europe, ed. Desmond M. Clarke and Catherine Wilson (Oxford, UK: Oxford University Press, 2011), 96–115).
9 Здесь я опираюсь на работу Гэри Хатфилда "René Descartes", The Stanford Encyclopedia of Philosophy, ed. Edward Zalta, Summer 2018, plato.stanford.edu/archives/sum2018/entries/descartes. Воззрения Декарта тоже толкуют по-разному; к тому же Декарт опубликовал не все свои размышления на данную тему. Хатфилд пишет: «Рассуждая о живых существах в механистическом ключе, Декарт не отрицал разницы между живым и неживым, но он действительно провел новую границу между одушевленными и неодушевленными существами. С его точки зрения, из всех земных созданий души есть только у людей. Таким образом, он уравнивал душу и разум: душа отвечала за интеллект и волю, в том числе осознаваемый чувственный опыт, осознанное восприятие образов и осознанные воспоминания». Здесь я хочу поблагодарить Элисон Симмонс, которая помогла мне разобраться в теме. В тексте я противопоставляю взгляды Декарта взглядам Аристотеля. Важной вехой между ними был «схоластический» подход, пытавшийся примирить Аристотеля с христианством, что, естественно, повлияло на представления о душе. Центральной фигурой схоластической философии был Фома Аквинский. Статья о Фоме Аквинском из Стэнфордской философской энциклопедии, написанная Ральфом Макинери и Джоном О'Каллаганом, очень мне помогла (plato.stanford.edu/entries/aquinas).
10 Здесь я многое позаимствовал из работы Тревора Пирса «'Protoplasm Feels': The Role of Physiology in Charles Sanders Peirce's Evolutionary Metaphysics», HOPOS: The Journal of the International Society for the History of Philosophy of Science 8, no. 1 (2018): 28–61. Номинально статья посвящена философу Ч. С. Пирсу, но охватывает более широкий круг проблем. Слова Уильяма Карпентера тоже взяты из текста Пирса. Слова Гексли, что «организация материи есть результат жизни, а не жизнь есть результат организации материи», процитированы в работе Рехбока, посвященной батибиусу, и взяты из курса лекций Гексли о беспозвоночных (1868), изданного Британским Медицинским журналом. Согласно Пирсу, Геккель поначалу с осторожностью подходил к вопросам о разуме, но начиная с середины 1870-х начал приписывать чувствительность самой материи: "У каждого атома есть ощущения и способность к передвижению», – цитирует Пирс.
11 Давняя философская традиция убеждает нас, что самая обычная материя содержит в себе скрытые миры – сложные и, вероятно, бесконечные. Философ XVII века Готфрид Лейбниц утверждал, что материя должна быть устроена именно так. Съездив в Голландию, Лейбниц заглянул в один из левенгуковских микроскопов, хотя и утверждал, что у него имеются и более общие резоны настаивать на существовании миров внутри миров. В общем, идея скрытой структуры микроскопического уровня лежала на поверхности. Но я подозреваю, что люди, рассматривавшие клетки в микроскоп во времена Дарвина и Гексли, даже если и знали о существовании подобных теорий, всерьез их не воспринимали. В конце концов, они смотрели на крошечную прозрачную кляксу, и эта прозрачная клякса вытворяла удивительные вещи. Ну как тут не подумать о протоплазме!
12 На некоторых из наилучших иллюстраций Геккеля изображены представители биологических видов, обнаруженных этой экспедицией; см.: «Art Forms from the Abyss: Ernst Haeckel's Images from the Challenger Expedition», ed. Peter J. le B. Williams et al. (Munich: Prestel, 2015). Эми Райс предполагает, что батибиус все-таки мог быть органическим веществом, скорее всего остатками планктона, но, конечно, не особой формой жизни ("Thomas Henry Huxley and the Strange Case of Bathybius haeckelii; A Possible Alternative Explanation," Archives of Natural History 2 (1983): 169–80).
13 См. труд Геккеля "Bathybius and the Moners," Popular Science Monthly 11 (October 1877): 641–52. Здесь он практически слово в слово повторяет за Гексли: «Следовательно, не жизнь есть результат организации – верно обратное».
14 В заметке "How You Consist of Trillions of Tiny Machines," The New York Review of Books, July 9, 2015, Тим Фланнери пишет: "Не менее 400 миллионов рибосом может уместиться в одной-единственной точке в конце предложения, напечатанного в The New York Review." Четыреста миллионов? Я не мог не попытаться пересчитать заново. Вот результаты моих вычислений. Если сравнивать площадь (проигнорировав наложения и пустое пространство), то диаметр рибосомы эукариотической клетки составляет примерно 25 нанометров – 25 миллионных миллиметра. Круг такого же диаметра имеет площадь примерно 500 нм2. Диаметр точки равен примерно трети миллиметра, а отсюда ее площадь равна примерно 85 миллиардам нм2. Исходя из величины площади, на одну точку придется примерно 170 миллионов рибосом. Учитывая, что точки могут немного отличаться по размеру, а рибосомы могут принимать разные формы, можно утверждать, что наши вычисления в целом верны.
15 См. статью Нагеля «What Is It Like to Be a Bat?», The Philosophical Review 83, no. 4 (1974): 435–50. [Русский перевод: Нагель Т. Каково быть летучей мышью? // Глаз разума / Сост.д. Хофштадтер, Д. Деннетт. – Самара: Бахрах-М, 2003. C. 349–360. – Прим. ред.]
16 Взгляды Нагеля изложены в эссе «Панпсихизм», опубликованном в его книге «Mortal Questions», (Cambridge, UK: Cambridge University Press, 1979), 181–95. Гален Стросон также горячий приверженец этого подхода; см.: "Realistic Monism: Why Physicalism Entails Panpsychism," Journal of Consciousness Studies 13, no. 10–11 (2006): 3–31. Дэвид Чалмерс больше склоняется к родственному течению, которое он называет «панпротопсихизм»; см.: "Panpsychism and Panprotopsychism," в Consciousness in the Physical World: Perspectives on Russellian Monism, ed. Torin Alter and Yujin Nagasawa (Oxford, UK: Oxford University Press, 2015). Простое и понятное толкование понятия предложено в интервью Филипа Гоффа Гарету Куку в журнале Scientific American, January 14, 2020, scientificamerican.com/article/does-consciousness-pervade-the-universe.
17 Он называется «эпифеноменализм». Гексли изложил свои аргументы в его защиту (которые не всегда легко понять) в заметке 1874 года «О гипотезе, что животные – это автоматы, и о ее истории», см: "On the Hypothesis that Animals Are Automata, and Its History," Collected Essays, vol. 1 (Cambridge, UK: Cambridge University Press, 2011), 199–250.
18 См.: "Materialism and Qualia: The Explanatory Gap," Pacific Philosophical Quarterly 64 (1983): 354–61. Гексли иногда приписывают первое обращение к этой проблеме, но я думаю, что он имел в виду нечто менее конкретное: «Почему нечто столь удивительное, как состояние сознания, возникающее в результате раздражения нервной ткани, так же непостижимо, как явление джинна из лампы Аладдина» (Lessons in Elementary Physiology (London: Macmillan, 1866), 193).
19 Термин применяется для описания целого ряда родственных философских течений. Геккель тоже называл себя монистом; его панпсихизм был скорее разновидностью монизма. См.: "Our Monism: The Principles of a Consistent, Unitary World-View," The Monist 2, no. 4 (1892): 481–86.
20 Этот вопрос подробнее обсуждается в моей работе «Материализм в прошлом и в настоящем», планирующейся к изданию в сборнике статей, посвященных теории разума Дэвида Армстронга и развитию материализма в XX веке.
21 См.: "The Abyss," The New Yorker, September 24, 2007.
22 Если не принимать в расчет животных и сосредоточиться исключительно на людях, интересные данные приводит нейроученый Бьёрн Меркер. Он изучал детей, которым приходится жить с тяжелым диагнозом гидранэнцефалии. В этом состоянии кора больших полушарий и многие другие области мозга практически полностью отсутствуют, часто из-за пережитого во внутриутробном периоде инсульта. Эти дети – глубокие инвалиды во многих отношениях, и, скорее всего, им не свойственна психическая жизнь, знакомая большинству из нас. Но неужели у них вообще нет никакого опыта? Меркер считает, что это маловероятно, и доказательство тому – их улыбки и смех, неустойчивая, но очевидная способность взаимодействовать с близкими людьми. Меркер считает, у нас нет оснований полагать, что отсутствие у этих детей коры мозга начисто лишает их переживания опыта. Аргументы Меркера кажутся мне убедительными. С ними можно подробнее ознакомиться в его статье "Consciousness Without a Cerebral Cortex: A Challenge for Neuroscience and Medicine," Behavioral and Brain Sciences 30, no. 1 (2007): 63–81. Антонио Дамасио также утверждает, что переживание опыта не обязательно связано с корой мозга; см.: Damasio and Gil B. Carvalho, "The Nature of Feelings: Evolutionary and Neurobiological Origins," Nature Reviews Neuroscience 14 (2013): 143–52.
23 Высказывание Гротендика см. в его работе Récoltes et Semailles, p. 553, написанной на французском языке. Французский текст выложен на веб-сайте ncatlab.org/nlab/show/Récoltes+et+semailles. В дискуссиях чаще всего ссылаются на английский перевод этого отрывка, приведенный в статье Colin McLarty, "The Rising Sea: Grothendieck on Simplicity and Generality," в сборнике Episodes in the History of Recent Algebra (1800–1950), ed. Jeremy J. Gray and Karen Hunger Parshall (Providence, RI: American Mathematical Society, 2007). Перевод, который даю я, несколько отличается (с ним мне помогала Джейн Шелдон). Я не математик и не претендую на развитие математической мысли Гротендика.
24 Расскажу чуть больше об отрывке из книги Мелвилла, который в итоге послужил эпиграфом к этой книге. Джон Уиклиф, английский богослов XIV века, был одним из первых критиков католической церкви. Он скончался от естественных причин и был похоронен, но тридцать лет спустя папа римский приказал выкопать его прах и сжечь, а пепел выбросить в реку. В первом американском издании «Моби Дика» Мелвилл упоминал на месте Уиклифа (Томаса) Крэнмера. Крэнмер – еще один английский реформатор, живший почти на столетие позже, как раз в эпоху Реформации; его сожгли на костре. Критики считают, что Мелвилл, во исправление ошибки, сам заменил Крэнмера на Уиклифа, который появляется в английской редакции. В английской редакции также отсутствует слово «пантеистический», но в некоторых поздних редакциях оно появляется снова, по сути объединяя английскую и американскую версии. Я благодарен Джону Брайанту за помощь в этом вопросе.
25 Я дал некоторым главам названия, повторяющие названия музыкальных композиций, которые вдохновляли меня в процессе работы над книгой. Название второй главы отсылает к альбому Лорена Шасса и Джима Хейнса (группа «Coelacanth»), вышедшему в 2003 году.
26 Большую часть материала следующих двух страниц я почерпнул в книге Питера Хоффмана «Life's Ratchet: How Molecular Machines Extract Order from Chaos» (New York: Basic Books, 2012), а также в следующих статьях: Peter B. Moore, "How Should We Think About the Ribosome?", Annual Review of Biophysics 41 (2012): 1–19, и Derek J. Skillings, "Mechanistic Explanation of Biological Processes," Philosophy of Science 82, no. 5 (2015): 1139–51.
27 Доступный разбор новейших научных взглядов в этой сфере представлен в книге Ника Лейна «The Vital Question: Why Is Life the Way It Is?» (London: Profile, 2015).
28 Заголовок этой части перекликается с названием классического труда Яна Хакинга «Taming of Chance» (Укрощение случая), посвященного истории теории вероятности (Cambridge, UK: Cambridge University Press, 1990). В каком-то смысле клетке тоже пришлось укрощать случай (эту тему затрагивает и Хоффман в книге «Life's Ratchet»).
29 Lectures on Physics, vol. 2, chap. 1, "Electromagnetism," feynmanlectures.caltech.edu/II_01.html. Фейнмановские лекции по физике полностью, легально и бесплатно доступны по ссылке feynman lectures.caltech.edu/index.html.
30 См.: Peter A. V. Anderson, Robert M. Greenberg, "Phylogeny of Ion Channels: Clues to and Function," Comparative Biochemistry and Physiology Part B 129, no. 1 (2001): 17–28; а также Kalypso Charalambous, B. A. Wallace, "NaChBac: Th e Long Lost Sodium Channel Ancestor," Biochemistry 50, no. 32 (2011): 6742–52. Сравнение с транзистором позаимствовано из работы Фреда Сигворта "Life's Transistors," Nature 423 (2003): 21–22; о передаче сигналов внутри биопленок см.: Arthur Prindle et al., "Ion Channels Enable Electrical Communication Within Bacterial Communities," Nature 527 (2015): 59–63.
31 На мое мнение по этому вопросу повлияло выступление Джона Аллена на коллоквиуме имени Артура Сэклера, организованном Национальной академией наук США в 2014 г. Природа живых систем – способ их существования в условиях бесконечного электрохимического движения – неизбежно одаривает их чувствительностью к внешним событиям.
32 В электронном письме в 2017 году.
33 Памела Лайон в своей работе детально и с неожиданной стороны рассматривает вопрос о базовых формах ощущения. Самый нижний уровень – это однофакторные системы преобразования сигнала у бактерий; внутренний контроллер клетки отвечает на стимулы, поступившие из внешнего мира в отсутствие рецептора или сенсора на ее поверхности. См. статью Памелы Лайон "The Cognitive Cell: Bacterial Behavior Reconsidered," в журнале Frontiers in Microbiology 6 (2015): 264.
Скачать книгу