Сотворение Земли. Как живые организмы создали наш мир бесплатное чтение

Андрей Журавлев
Сотворение Земли. Как живые организмы создали наш мир

Научные редакторы А. Марков, д-р биол. наук, профессор; Е. Самарин, д-р геол. — мин. наук, профессор

Редактор П. Суворова

Руководитель проекта А. Шувалова

Корректоры М. Миловидова, С. Чупахина

Компьютерная верстка А. Фоминов

Дизайн обложки Ю. Буга


Иллюстрация на обложке Shutterstock

В книге использованы иллюстрации из архива автора


© Журавлев А., 2018

© ООО «Альпина нон-фикшн», 2018

© Электронное издание. ООО «Альпина Диджитал», 2018


Рекомендовано к опубликованию решением учебно-методологического совета биологического факультета Московского государственного университета им. М. В. Ломоносова.

* * *

Моему отцу Юрию Журавлеву,

первому редактору этой книги


Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория» (при финансовой поддержке Н. В. Каторжнова).

Фонд поддержки научных, образовательных и культурных инициатив «Траектория» (www.traektoriafdn.ru) создан в 2015 году. Программы фонда направлены на стимулирование интереса к науке и научным исследованиям, реализацию образовательных программ, повышение интеллектуального уровня и творческого потенциала молодежи, повышение конкурентоспособности отечественных науки и образования, популяризацию науки и культуры, продвижение идей сохранения культурного наследия. Фонд организует образовательные и научно-популярные мероприятия по всей России, способствует созданию успешных практик взаимодействия внутри образовательного и научного сообщества.

В рамках издательского проекта Фонд «Траектория» поддерживает издание лучших образцов российской и зарубежной научно-популярной литературы.

Предисловие

Сегодня нам трудно представить мир, где нет глубоких озер и величественных рек, где не идут дожди и не валит снег, в недрах которого нет ни угля, ни железа, ни золота, в воздухе не хватает кислорода, а вместо шести континентов — один огромный суперконтинент или, наоборот, только острова. А ведь все это наша Земля, только такая, какой она была за 30, 350, 2500 млн лет до появления человека. Да и всего 12 000 лет назад она была совершенно другой — с обширными ледниковыми щитами, покрывавшими значительные пространства северных континентов, огромными, гораздо большими, чем сейчас, степными просторами.

Мир менялся всегда. И нынешнее его состояние тоже непостоянно. И виной тому не какие-то глобальные катаклизмы, вроде падения астероидов, землетрясений и вулканических взрывов, а деятельность существ — от мельчайших бактерий и одноклеточных водорослей до елей, слонов и, конечно, человека (это тоже один из видов организмов, занимающий на Земле определенную нишу).

Пока на планете не появились первые сообщества организмов, на ней не образовывались железорудные, золоторудные, урановые и многие другие месторождения, а атмосфера была лишена кислорода. Пока не сложились настоящие лесные массивы, не могло быть долговременных озер и полноводных рек с обширными долинами, красивыми излучинами — меандрами — и островами, и, конечно, не образовывался каменный уголь. Фитопланктон — обитающие в верхних слоях водной толщи одноклеточные водоросли — стал не только главным породообразователем морских и озерных осадочных толщ, но и в значительной степени повлиял на облачный покров и климат планеты. И поскольку состав фитопланктона постоянно менялся, вместе с ним постоянно менялись и все эти, казалось бы, вечные природные феномены. Даже динозавры и мамонты приложили определенные усилия, чтобы мир стал чуточку другим. Конечно, есть в этом непостоянстве и свои циклы, скажем глобальные потепления и похолодания, но и эти циклы не являются повторением уже пройденного. А нынешнее «глобальное потепление» с точки зрения геологии и палеонтологии и вовсе таковым не является, поскольку на событие, способное оставить заметный след в геологической летописи, пока претендовать не может. Но если на него не обращать внимания — не изучать, — это явление может принести кучу бед.

Узнать же о прошлом Земли позволяют современные методы геологии и палеонтологии. Любые ископаемые организмы — в руках профессионального палеонтолога — становятся собеседниками, способными поведать много интересного. Именно остатки организмов, включая ископаемые следы, изотопные и молекулярные свидетельства их жизнедеятельности, позволяют наиболее полно реконструировать историю Земли за последние 4 млрд лет. Об этом этапе и пойдет речь в книге.

Часть I. Как бактерии создали атмосферу и все прочее (4000–635 млн лет назад)


Глава 1. Слои времени

В этой книге есть страницы с буквами, складывающимися в слова и предложения, чтобы передать мысли ученых, чьи труды послужили основой для раскрытия ее темы, есть нумерация страниц и есть названия глав, в которых отражено содержание. Очень похоже устроена и каменная летопись Земли: каждый слой осадочных горных пород — это страница; заключенные в нем минералы, элементы, стабильные и радиоактивные изотопы и остатки органических веществ — это буквы; а организмы и геохимические процессы, когда-то предопределившие, что слой по содержанию (минералов и прочего) окажется именно таким, — авторы первоисточников наших знаний.

В каменной летописи есть и отдельные главы с названиями, и нумерация страниц. Конечно, все это существует для удобства пользования книгой (этой или земной). Так, «главы» — это подразделения Международной хроностратиграфической шкалы, смысл которой передает слово «стратиграфия» — «слоев описание» (от лат. stratum — слой и греч. γράφω — чертить, писать). А нумерация страниц — радиометрические датировки горных пород. Правда, отсчет ведется обратный: например, первая глава — «архей» — занимает страницы с 4-миллиардной по 2,5-миллиардную, а подглавка «голоцен» — последние 11 700.

Не следует думать, что это некое умозрительное удобство: «архей» (4,0–2,5 млрд лет назад) резко отличается по смыслу и содержанию от «протерозоя» (2,5–0,541 млрд лет назад) и оба они — от «фанерозоя» (0,541 млрд лет назад — ныне). Радиометрические датировки применяются уже более сотни лет (первые из них с использованием радиоактивных изотопов гелия и радия были получены в 1904 г. английским физиком Эрнстом Резерфордом) и постоянно совершенствуются. Даже породы возрастом в сотни миллионов лет теперь можно датировать с точностью до нескольких тысячелетий (рис. 1.2).



Наиболее распространенные методы радиометрического анализа — радиоуглеродный (в пределах 30 000 лет), аргон-аргоновый (40Ar/39Ar), рений-осмиевый (Re/Os), урано-свинцовые (238U/206Pb, 235U/207Pb, 232U/208Pb и 207Pb/206Pb); последние представляют собой совокупность четырех независимых измерений возраста для одного образца. Скепсис к подобному — «абсолютному» — выражению возраста Земли у профанов вызван тем, что они не догадываются о возможностях получения тех же возрастных характеристик сугубо геологическими методами.

Достаточно, например, пересчитать количество осадочных слойков, не любых, конечно, а таких, которые формируются в течение года. Например, слои льда — это тоже горная порода (равно как и вода) в ледяных щитах Гренландии и Восточной Антарктиды. Последний позволяет нам заглянуть в прошлое на 160 000 лет (толщина ледяного панциря достигает здесь 2000 м). А благодаря пузырькам и «пыли» (тонким минеральным частицам), вмороженным в каждом слое, можно подробно узнать, каков был состав воздуха в те годы, какие преобладали температуры на поверхности планеты и откуда дули ветры.

Ленточные глины, а также их уплотненные аналоги — варвиты (от швед. varv — слой), образующиеся в озерах и в некоторых морях, позволяют «копнуть» еще глубже — на миллионы лет. Эти осадочные горные породы образуются благодаря ежегодному чередованию весенне-летнего и осенне-зимнего слойков от нескольких миллиметров до нескольких сантиметров толщиной. (Далее вместо выражения «толщина» будет использоваться геологический эквивалент этой размерной характеристики — «мощность».) Весенне-летний слой осадка — обычно грубозернистый, светлый и содержит множество легко различимых скелетиков планктонных организмов (в этот сезон снос с суши усиливается, а жизнь во всех ее проявлениях процветает и расцветает), а осенне-зимний — тонкий и темный (сноса почти нет, лишь медленно оседает взвесь, а органика разрушается и уплотняется). Примерно также археологи подсчитывают годовые кольца у деревьев, чтобы получить дендрохронологические датировки. Правда, возраст отдельного дерева редко превышает первые тысячелетия, а варвиты образуют толщи в сотни метров, где число слойков доходит до нескольких миллионов. Чтобы получить хронологию Новгорода Великого, нужно создать дендрохронологическую шкалу всех наслоений его деревянных мостовых, а затем привязать к этой шкале прочие археологические находки (монеты, печати, берестяные грамоты). Чтобы выстроить хронологию Земли, можно точно так же переходить от одной толщи варвитов (геологического разреза) к другой, более древней…

Расчет возраста отложений по ленточным глинам (варвохронология) тоже имеет столетнюю историю: впервые возможности метода были показаны шведским геологом Герхардом Якобом де Геером на 11-й сессии Международного геологического конгресса, состоявшейся в Стокгольме в 1910 г. Просто радиометрическое датирование оказалось удобнее и дешевле (в том числе и радиоуглеродный метод в археологии вместо утомительного дендрохронологического). Точно так же, чтобы узнать, сколько страниц в этой книге, можно взглянуть на цифру, указанную на последней из них, а особо недоверчивые могут пересчитать все страницы. А если бы их было 4 млрд?

Когда же требуется узнать время, за которое сформировалась та или иная толща осадков, прибегают к варвохронологии или циклостратиграфии. Последний метод основан на выявлении повторяющихся ритмов в осадочных отложениях, связанных с периодичностью климатических колебаний. Связь такой периодичности с орбитальными циклами в Солнечной системе, где взаимное притяжение планет и крупных спутников искажает правильность орбит, предначертанную законами Кеплера — Ньютона, установил югославский физик Милутин Миланкович. Эти орбитальные циклы включают прецессию (примерно каждые 26 000 лет земная ось описывает коническую фигуру), нутацию (каждые 41 000 лет колеблется угол наклона оси к плоскости земной орбиты) и эксцентриситет — изменение формы орбиты с эллиптической на круговую и обратно, но в плоскости, перпендикулярной прежней, и снова на круговую каждые 400 000 лет (полный цикл) (рис. 1.3а — г).




Эти смены орбитальных конфигураций приводят к тому, что через строго определенное количество лет планета оказывается то ближе к Солнцу тем или иным полушарием (прецессия и нутация) или вся целиком (эксцентриситет), то дальше от светила. В первом случае она получает несколько больше тепла, во втором — охлаждается. При наступлении теплой эпохи с обильными осадками в карбонатных породах накапливается больше частиц тяжелых минералов. Очевидно, сосчитать бесконечное число почти невидимых, пылевой размерности кусочков минералов во всех осадочных слойках нереально. Но можно определить величину магнитной восприимчивости каждого из них, которая зависит от содержания окислов железа, обладающих магнитными свойствами, построить магнитную спектрограмму и выявить число орбитальных циклов, в течение которых и накопились данные отложения.

Есть и другие сугубо геологические методы расчета возраста отложений горных пород и отдельных геологических объектов. Например, вулканические конусы базальтовых вулканов благодаря периодическим напластованиям застывших потоков лавы растут со скоростью около метра за столетие (рис. 1.4).

Зная, что высочайшая гора на Земле Мауна-Кеа (остров Гавайи) возвышается над ее поверхностью на 10 200 м (из них на 4205 м — над уровнем океана в виде острова), можно определить, что этому вулкану стукнуло более миллиона лет. Тот же возраст получаем, датируя самые древние базальты этой горы радиометрическими методами. Базальтовая лава вообще очень благодатный материал. Поскольку новообразование базальтовых слоев в срединно-океанических хребтах связано с расширением океанов, по этим горным породам можно определить и возраст самых крупных планетарных водоемов. Так, Атлантическому океану исполнилось примерно 150 млн лет. Проверить датировку можно, используя данные высокоточных приемных устройств, расположенных на разных континентах и многократно замеряющих по атомным часам время прохождения спутниковых радиосигналов или лазерных лучей, отраженных от Луны и космических аппаратов (или просто данные GPS — глобальной системы определения координат). Согласно таким замерам скорость расширения Атлантики, скажем, между Северной Африкой и югом Северной Америки — 0,025 м в год. Разделим ширину океана между этими точками — 3 700 000 м — на данную величину и убедимся, что Атлантический океан родился 148 млн лет назад. (Возможно, именно в эту пятницу.) На небольших участках Атлантического океана возраст коры достигает 195 млн лет — она древнее, чем тихоокеанские плиты.


Глава 2. Как подвинуть Африку?

Океанические и тем более морские чаши постоянно меняют свои очертания. Когда не было современных океанов, существовали иные, ныне «вымершие»: Уральский на месте Уральских гор — более 320 млн лет назад, Япет на месте Аппалачей — свыше 450 млн лет назад. В этих горах навечно впаяны останцы прежних срединно-океанических хребтов — древние базальты, превратившиеся со временем в зеленокаменные комплексы — офиолиты. Типичная для такого комплекса горная порода офиолит (от греч. όφις — змея и λίθος — камень) известна среди уральских умельцев-камнерезов как змеевик из-за травянисто-зеленого цвета и чешуйчатой структуры.

Причиной грандиозных изменений лика Земли является тектоника литосферных плит. Тектоника (от греч. τέκτων — строитель, художник или τεκτονικός — искусный в строительном деле) — это, собственно, и есть строительство литосферы (от греч. λίθος — камень и σφαϊρα — оболочка) из отдельных блоков — плит. Последние состоят из твердой земной коры (совокупности осадочных, магматических и метаморфических горных пород) и подстилающих ее верхних слоев мантии, имеющих сходный химический состав. Скользят плиты, поднимаются и опускаются по вязкому и разуплотненному прослою верхней мантии — астеносфере (от греч. α — не, σφήν — клин и σφαϊρα — оболочка). Континентальная кора легче океанической (менее плотная), поэтому материки, образующие ядра континентальных литосферных плит, возвышаются над ложем океана и в областях столкновения этих плит с океаническими остаются «на плаву». Наоборот, более тяжелые океанические плиты подныривают под них, уходя в глубоководные желоба, подобные Курило-Камчатскому и Марианскому, и еще на 600–700 км дальше, пока полностью не расплавятся. Этот процесс называется субдукцией (от лат. sub — под и ductio — увод, отведение). Столкновение циклопических структур происходит с выделением огромного количества энергии, что выражается в формировании гигантских вулканических очагов, таких как Тихоокеанское вулканическое кольцо, включающее Анды, Кордильеры, Камчатку, Курильскую островную дугу, Японию и Новую Зеландию. Движение тихоокеанских плит в сторону континентальных на периферии океана обусловлено постоянным ростом подводного хребта, известного как Восточно-Тихоокеанское поднятие, за счет образования все новых слоев океанической коры в продольных глубоководных расселинах хребта — рифтах (от англ. rift — трещина, щель) в зоне подъема к поверхности горячих мантийных конвективных потоков. (Тысячекилометровый разлом Сан-Андреас в Калифорнии, прославленный многими блокбастерами и землетрясениями, тоже относится к тихоокеанскому рифту, хотя вклинивается в сушу.) Кора образуется из базальтовой лавы, которая, застывая вдоль рифтовой расселины, способствует раздвижению океанических плит. Это явление называется «спрединг» (от англ. spread — расширять). Атлантический океан, продолжением которого является Северный Ледовитый, ведет себя вроде бы более спокойно: никаких вулканических арок на периферии нет. Но спрединг происходит и там — вдоль хребтов Срединно-Атлантического и Рейкьянес. Только движутся здесь океанические плиты вместе с ближайшими континентами. Поскольку сам океан имеет S-образную конфигурацию, южная часть его хребта, раздвигаясь, толкает на север Африку, а северная — ей навстречу Европу. Там, где материки упираются друг в друга, происходит коллизия (от англ. collision — столкновение) континентальных плит, и, словно при ударе друг о друга гигантских льдин, начинается «торошение» — растут горные хребты, подобные Альпийскому поясу от Пиренеев до Кавказа с вулканами и сопутствующими периодическими землетрясениями. Так как вдоль срединно-океанических хребтов, а также вдоль любых рифтов литосферные плиты расходятся, а на границе континентов или разных плит сходятся, первый тип границ называется дивергентным, а второй — конвергентным.

Теория литосферных плит, верность которой доказывается не только наблюдением за вышеназванными геологическими явлениями, но и замерами движений плит благодаря спутниковому и наземному мониторингу, объясняет, почему на дне океанов бессмысленно искать самые древние отложения. Их и не нашли, несмотря на тысячи скважин, заложенных по проекту глубоководного бурения с корабля «Гломар Челленджер» и международной программе бурения океанического дна начиная с 1968 г. А вот на континентах, хотя и они претерпели существенные изменения, кое-что осталось. По большей части это кое-что — тоже морские отложения, поскольку материковый шельф является частью континентов, а порой целые материки «тонули», покрываясь на десятки миллионов лет обширными мелководными эпиконтинентальными морями, аналогов которых нет в современном мире. И это явление было обусловлено тектоникой литосферных плит, поскольку с ростом океанических хребтов огромные объемы воды выталкиваются из океанических чаш на сушу. Данный процесс называется тектоноэвстазией (от «тектоника» и греч. εΰ — совершенно, στάσις — стояние). Обусловленный тектоноэвстазией подъем уровня моря — на сотни метров — на порядок превышает рост уровня моря в результате таяния ледниковых шапок (гляциоэвстазия от лат. glacies — лед и эвстазия) — не более нескольких десятков метров. К слову, поскольку гигантские ледяные щиты Северной Америки и Европы растаяли около 12 000 лет назад, дальнейшее потепление к заметному повышению уровня моря уже не приведет. Впрочем, для исчезновения под волнами океана Нидерландов, Дании и Северной Сибири, наиболее богатой нефтегазовыми месторождениями части России, и этого будет достаточно.

Нас, однако, сейчас интересует не то, что исчезнет, а то, что осталось. Даже простые расчеты показывают: чем древнее земные породы, тем меньшие площади они должны занимать. Ведь любые горные хребты, будь то все еще величественный, но далеко не высотный Урал или Казахский мелкосопочник, когда-то вздымались Андами и Гималаями. Если мы, к примеру, возьмем горный кряж высотой 5 км и площадью 25 км2 (условный квадрат 5 × 5 км), то общий объем горных пород в нем составит 125 км3. Любой, бывавший в горах, легко представит, что кряж прорезают ручьи и реки, что мороз и жара, а также деятельность самых разных организмов — от невидимых глазу бактерий и одноклеточных грибов до лишайников и кустарников — со временем превращают самые прочные скалы в труху курумов и речных наносов. И все это измельчается и перемещается все дальше и дальше от кряжа. Такое преобразование горных пород на поверхности планеты за счет физико-химических и биохимических процессов называется выветриванием. Если с нашего условного кряжа стекают пять горных речек, способных унести десятую часть кубометра горных пород в день каждая (далеко не самые бурные потоки), то за год они размоют около 180 м3. Значит, чтобы сровнять весь горный кряж с землей, живым и неживым силам природы понадобится не более 700 млн лет. (Кстати, именно так пытался определить возраст Земли английский геолог и биолог Чарлз Дарвин, избрав для расчетов мощность меловых утесов на юго-востоке Англии.) Так что чем древнее отложения, тем меньше от них остается в результате выветривания.

Еще более действенны процессы, связанные с тектоникой плит, — субдукция и гранитный метаморфизм в зоне коллизии. Ведь и сами материки вместе с шельфами не всегда были такими, как сейчас. Осталось ли вообще что-нибудь от древнейших отложений? Да, осталось. Хотя при возрасте Земли 4,567 млрд лет от ее горных пород возрастом свыше 4,03 млрд лет не сохранилось ничего, кроме жалких крох: переотложенных в более молодых осадках обломков кристаллов циркона (ZrSiO4) — одного из самых устойчивых минералов — возрастом 4,2 и 4,4 млрд лет на кратоне Йилгарн (Западная Австралия). И даже эти крохи способны кое-что прояснить благодаря захваченным ими в момент кристаллизации частицам других минералов: например, наличие у планеты той поры земной коры, жидкой водной оболочки, где кристаллы сформировались, и магнитосферы. Данные о древнейшей водной оболочке особенно ценны, поскольку от нее не уцелело больше ничего: она полностью испарилась и развеялась в космосе во время мощных метеоритных бомбардировок, которым планеты земной группы подверглись 4,0–3,8 млрд лет назад. К этому интервалу приурочено большинство лунных и марсианских кратеров; земные же поглощены тектоническими процессами. (Появились сведения об обнаружении в зеленокаменном поясе Нуввуагиттук на Канадском щите — на северо-западе полуострова Лабрадор — связанных с гидротермами морских отложений возрастом 3,77–4,28 млрд лет и даже о следах бактериальной жизнедеятельности в них. Однако эти находки и их датировка требуют дальнейшего всестороннего изучения.) В результате всевозможных и непрекращающихся преобразований земных слоев 80 % из них имеет возраст менее 200 млн лет, а вот на Луне, где процесс тектоники плит не пошел, те же 80 % представлены горными породами древнее 4 млрд лет. Поэтому, чтобы заглянуть глубже, придется слетать на Луну и привезти образцы оттуда, благо это уже сделали в 1960–1970-е гг. бесстрашные американские астронавты и хитроумные советские спускаемые аппараты: возраст древнейших лунных пород оказался 4,417 млрд лет (отдельных кристаллов — до 4,51 млрд лет). Некоторые включения минералов в метеоритах, найденных на Земле, но представляющих собой остатки протопланетного вещества, могут быть и постарше нашей планеты — до 4,568 млрд лет (время образования Солнечной системы) (рис. 2.1). Утерянная глава каменной летописи Земли — 4,568–4,0 млрд лет — называется хадейским эоном (от греч. γάϊος — подземный мир).



Дальше речь пойдет исключительно о геологической истории Земли — о том огромном временном интервале (4 млрд лет), события которого можно восстановить с помощью седиментологических, геохимических, палеонтологических и других методов, применяемых в науках о Земле.

Уцелевшая, «первоначальная», летопись начинается с архейского эона (от греч. άρχαιος — первоначальный, древний). Архейские «материки», по площади больше напоминавшие крупные современные острова, ныне вкраплены в различные континенты, где выходят на поверхность в виде древних щитов. А щиты состоят в основном из метаморфических (измененных, местами довольно сильно) горных пород, подобных гнейсам и гранитам (рис. 1.1). Геологи, геохимики и палеонтологи, правда, и среди этих клочков умудряются высмотреть наименее покореженные временем и тектоническими процессами останцы. К ним и приковано внимание ученого мира, особенно к древнейшим комплексам Акаста на северо-западе Канады (4,03 млрд лет), Исуа и Акилия на западе Гренландии (>3,8 млрд лет) и более молодым областям Канадско-Гренландского, или Канадского, щита, кратонам Йилгарн и Пилбара (3,6 млрд лет) в северо-западной части Австралийского щита, зеленокаменному поясу Барбертон (3,5 млрд лет) и кратонам Зимбабве и Каапвааль (3,6 млрд лет) на Южно-Африканском щите, и Фенноскандинавскому щиту, охватывающему Скандинавию, Финляндию, Карелию и Кольский полуостров (3,5 млрд лет) (рис. 2.2). Кратоны (от греч. κρατΰνω — укреплять) — это самые древние стабильные участки коры, которые условно можно считать протоконтинентами.



Интересной геологической особенностью протоконтинентов являлось то, что они состояли из фрагментов океанической и континентальной коры. Иначе говоря, механизм тектоники плит уже был запущен. Не вдаваясь в подробности глубинного движителя этого механизма (процессы в мантии и ядре Земли), следует отметить, что необходимым условием его запуска является дифференциация коры на относительно тяжелую и плотную океаническую (2900 кг/м3) и легкую континентальную (2500–2700 кг/м3). В геологии их также именуют «темной» и «светлой» — по цвету основных породообразующих минералов. Океаническая кора по большей части состоит из темно-зеленых и иссиня-черных минералов, богатых магнием, железом и кремнием, — пироксенов (Ca,Na,Mg,Fe2+)(Mg,Fe3+,Al)Si2O6, оливинов (Mg,Fe)2SiO4, основных плагиоклазов (Na,Ca,)Al(Si,Al)Si2O8, а континентальная — из серых, белых и красноватых кремний- и алюминийсодержащих силикатов (таких как кварц — SiO2, калиевый полевой шпат — KAlSi3O8, альбитовый плагиоклаз — NaAlSi3O8). Отсюда и другое название этих главных минеральных комплексов: мафический (аббревиатура от лат. magnesium — магний, ferrum — железо и суффикс ic) и фельзитовый (от лат. ferrum — железо, alumen — квасцы, silex — кремень и тот же суффикс). Анализ распределения этих минералов в магматических источниках, земных слоях разного возраста и космических телах, включая астероиды, показывает, что «темная материя» здесь первична, а «светлая» — результат ее дифференциации, преобразования в недрах и на поверхности Земли.

Сами по себе ни минералы, ни состоящие из них горные породы, ни земная кора, которая из них, в свою очередь, построена, превращаться во что-то другое не будут: нужно либо отправить их обратно в недра на переплавку, либо изменить состав на поверхности. Первичная коматиит-магнезиально-базальтовая протокора, которая, вероятно, существовала 4,4 млрд лет назад, мало отличалась по составу от морских базальтов. Это и были базальты, только формировались они при более высоких температурах, чем современные, поскольку мантия в хадейском и архейском эонах была горячее. Из протокоры образовывались небольшие острова, которые хаотически перемещались конвекционными мантийными потоками и буквально таяли в них. Но если все слои земной коры были до поры до времени — до начала архейского эона — по составу, физическим и химическим свойствам почти одинаковыми, то можно ли заставить их погружаться и всплывать относительно друг друга? Тем более что главная фельзитовая порода — гранит — термодинамически несовместима с ультрамафическими мантийными минералами и не может напрямую выплавиться из последних, а слишком горячая мантия препятствует субдукции.

Оказывается, все-таки можно. В чем принципиальная разница Земли и несколько уступающего ей по размеру Марса? Не только в том, что на Голубой планете плиты движутся, а на Красной — нет, и даже не в наличии Мирового океана на первой из них и «Мировой суши» — на второй, но и в том, что на Земле открыто примерно 5000 разных минералов, а на Марсе — почти на порядок меньше. Про Луну и говорить нечего — их там около 150. Причем появление двух третей земных минералов (3000) прямо или косвенно связано с наличием на ней жизни. Жизнь — архейские бактериальные сообщества — и запустила, по сути, тектонику плит современного типа.

Во-первых, в поисках пропитания — необходимых микроэлементов и электронов — для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. χηλή — раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы — следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического углерода — керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe2+), как только базальтовая лава начинает остывать, первые же попавшие на ее поверхность бактериальные споры прорастают, и начинается бурное пиршество. (Каждый кубометр современного базальтового стекла — с содержанием до 17 % железа — может пропитать до 2,5 × 1016 анаэробных железобактерий.) Во-первых, бактерии ускоряют выветривание силикатных минералов (подобных вышеназванным пироксенам, оливинам, плагиоклазам) на порядок и проникают в них гораздо глубже, чем любые активные вещества под действием физических и химических сил. По прошествии всего нескольких лет горная порода превращается в насыщенное водой «нанорешето», разуплотняется, а такие продукты ее выветривания, как иллитовые и смектитовые глины, представляют собой субстрат-накопитель, ускоряющий в морской среде осаждение ионов калия. В дальнейшем новообразованная минеральная затравка способствует выплавке гранитного материала вместо базальтового.

Во-вторых, бактериальные сообщества принялись за создание совершенно новых горных пород и минералов — карбонатов, фосфатов, сульфидов, железных и других руд. В большинстве своем эти разности имеют меньшую плотность, чем мафические пироксены и оливины.

На протоконтинентах, подобных Акасте, разнообразие фельзитовых пород ограничивалось кварцевым диоритом, трондьемитом и гранодиоритом, образовавшимися при частичном плавлении толеитового базальта, из-за неглубокого заложения зон субдукции.

Когда же эти зоны, представляющие собой плавильный котел тектонических процессов, опустились в область более высоких давлений, то из исходного комплекса минералов стали выплавляться более легкие и плавучие граниты, а также связанные с их образованием вулканические породы (андезиты, риолиты) и гнейсы. Однако, чтобы зона субдукции ушла глубже в недра Земли, на нее нужно «надавить», скажем, положить сверху горную гряду: чем выше такая гряда, тем, благодаря явлению изостазии, сильнее продавится под ней астеносфера и дальше вниз нырнет под континентальную кору океаническая. Горы же образуются в результате столкновения участков континентальной коры, пусть это даже протоконтиненты, или последних с вулканическими арками. Далее из пород гранитного ряда и гнейсов с высоким разнообразием минералов и начинают складываться ядра континентов — древние кристаллические щиты. А гнейсы к тому же являются первыми свидетельствами, пусть и преобразованными, появления осадочных отложений (древнейшие — 3,85 млн лет, Исуа). Ни на Марсе, ни на Венере, ни на Луне граниты и гнейсы не появились: поверхность этих небесных тел застыла на стадии мафической протокоры. На Земле же вследствие воздействия биосферы на литосферу и преобразования мафических пород не только возник фельзитовый ряд, но и процесс (тектоника плит) пошел и значительно ускорился.

Названный выше зеленокаменный пояс Барбертон и кратоны Пилбара и Каапвааль и есть остатки древнейшей океанической и континентальной коры соответственно. В первых присутствуют подушечные базальтовые лавы (при застывании лавы в морской среде ее поверхность приобретает вид плотно уложенных подушек) и полосчатые железистые формации, во вторых — граниты и разнообразные мелководные осадочные породы. А самая древняя ископаемая тектоническая граница плит возрастом 2,7 млрд лет выявлена с помощью сейсмофизических методов под Канадским щитом — в провинциях Квебек и Онтарио.

Превзойти же геологические силы жизнь смогла, обретя иной источник энергии. Все тектонические процессы — движение плит, горообразование и др. — идут благодаря тепловому потоку, поступающему из недр Земли (радиоактивный распад и остаточное аккреционное тепло, выделившееся при столкновении планетезималей и протопланет). Этот поток оценивается в 8,7 × 10–5 Вт/м2, но тектоника успевает захватить не более десятой доли энергии (~1 × 10–5 Вт/м2). Остальное рассеивается в космосе. Жизненные силы через различные формы фотосинтеза подпитываются напрямую от энергии Солнца — 340 Вт/м2. Причем за время эволюции КПД организмов возрос: от анаэробного фотосинтеза, зависимого от различных соединений, как доноров электронов, живые существа перешли на кислородный его вариант. В этом случае используется неисчерпаемый океан электронов — вода. Быстрое истощение некоторых элементов (железо, азот, фосфор), необходимых для функционирования организмов, должно было бы ограничить дальнейший рост КПД, но благодаря ускорению круговорота этих элементов (за счет совершенствования трофической пирамиды и появления новых организмов — деструкторов отмершего органического вещества) и эта проблема была решена. На сегодняшний день биосфера потребляет в год 26,8 × 10–5 Вт/м2 только солнечной энергии. Это всего 0,07 % от энергии Солнца, поскольку 30 % рассеивается атмосферой и поверхностью Земли, а еще 69,93 % уходит на нагрев планеты и теряется в виде длинноволнового излучения.

И все равно организмы потребляют энергии на порядок больше, чем могут получить все континенты, горы и прочие геологические образования вместе взятые. Именно поэтому биосфера может себе позволить атмосферу, химически неравновесную с горными породами: это неравновесие и есть основа биохимического выветривания. [Названный выше уровень потребления энергии биосферой рассчитан исходя из данных по годовой фиксации углерода при фотосинтезе — 9 × 1015 моль; энергии, необходимой для связывания одного моля углерода с органической молекулой (пентоза), — 477 000 Дж; и площади планеты — 5,1 × 1014 м2, умноженной на 3,15 × 107 с в году.]

Перестройка планеты организмами стартовала в самом начале архейского эона.

Глава 3. Известковый океан

Архейский мир был совсем другим: суша составляла 4 % от общей площади планеты (ныне — 28 %); плато, поскольку континентальная кора была тоньше, возвышались не более чем на 2000 м (сейчас — 5500 м), а океаническая кора была толще, из-за чего вершины океанических хребтов отстояли от поверхности океана в среднем на 660–1200 м (теперь они запрятаны в два раза глубже).

Иным был и состав океана. Поскольку основным источником главного морского аниона — Cl — является глубинная дегазация Земли, а поглощается этот анион в результате геохимических преобразований океанической коры, то за последние 4 млрд лет его среднее содержание не очень сильно менялось. А вот соотношение катионов, преобладающих в морской воде, не могло не измениться: пока не появились кислородная атмосфера и достаточно большая фельзитовая суша, благодаря выветриванию которой усилился сток щелочных (Na+, К+) и некоторых щелочноземельных катионов (Mg2+), обильным и достаточно активным в водной среде был Са2+. Важнейший источник этого катиона — гидротермальная активность, связанная с высокотемпературными преобразованиями океанической коры, — уже существовал. И архейский океан, вероятно, представлял собой не концентрированный раствор хлорида натрия, как сейчас, а раствор хлорида кальция (СаCl2). Модель такого океана доступна (почти доступна): озеро Дон-Жуан в антарктической долине Райта, на дне которого формируется минерал антарктицит (СаCl2 × 6Н2О), а в гиперсоленой (44‰) воде обитают цианобактерии и некоторые одноклеточные эукариоты.

К выводу о солевом режиме архейского океана можно прийти и другим путем: сейчас общая масса карбонатов составляет 4,4±1,0 × 1020 кг, что приблизительно включает 1,8±0,4 × 1020 кг кальция. Это в 70 раз больше массы данного металла в Мировом океане, и, следовательно, значительная его часть (1,0 × 1020 кг), пребывавшая в архейском эоне в растворе, вошла ныне в состав горных пород. Анализ флюидных включений в осадочном кремнеземе и гидроокислах железа возрастом 3,5–3,2 млрд лет (Пилбара) также выявил СаCl2—NaCl солевой состав архейского океана. Там же и в поясе Барбертон обнаружены архейские морские эвапориты: пласты поваренной соли — галита (NaCl), перемежающиеся с троной [Na2(CO3) × Na(HCO3) × 2H2O] и нахколитом [Na(HCO3)]. Сейчас такие минералы формируются в щелочных (рН = 8,1) озерах, подобных Магади и Натрон в Восточно-Африканской рифтовой системе, прогревающихся до 70 °C. А вот сульфаты, такие как гипс (CaSO4 × 2H2O), характерные для наших дней и всего фанерозойского эона, в то время не образовывались, что указывает на низкий уровень содержания SO42--иона.

Еще более показательны для представления о составе архейского океана карбонаты кальция. По характерным шестоватым кристаллам с квадратным сечением, организованным в «ежики» — ботриоиды (рис. 3.1), известно, что весьма распространенным осадочным образованием был арагонитовый морской цемент (в кристаллической решетке арагонита наряду с кальцием присутствуют атомы стронция). Сами же ботриоиды были аномальной величины — более метра в диаметре. А наслоения магнезиально-кальцитового цемента, который распознается по шевроновой структуре (тонкие призмы, наклоненные в противоположную сторону в каждом последующем слое), достигали нескольких метров мощности, простираясь на десятки километров. Ныне размерность таких структур не превышает первые сантиметры, хотя океан от трех до семи раз перенасыщен карбонатом кальция. Понятно, что подобные карбонатные образования могли достигать аномальных размеров, поскольку на дне морей еще не появились ни животные с известковым скелетом, не обызвествленные водоросли или цианобактерии, которые развиваются намного быстрее неорганических кристаллов и, перехватывая поток ионов Са2+ и НСО3-, не дают им расти.



Опираясь на расчеты и особенности озер Дон-Жуан, Магади и Натрон, можно предположить, что архейский СаCl2-океан был кислым (рН = 5,5) и позднее стал щелочным. Это очевидно не так. Моделирование континентального стока, исходя из доступного для выветривания ряда горных пород и бескислородного состава атмосферы, показывает, что в океане катионы Fe2+, которые к тому же поступали из гидротермальных источников, должны были преобладать над Са2+, тем более над Mg2+ и Na+. Кроме того, с суши в больших объемах выносился бикарбонат (НСО3). Бикарбонат быстро нейтрализовал ионы Са2+, Mg2+ и Na+, что и способствовало образованию обильных карбонатов этих металлов. Так, благодаря закисному железу, которое оставалось в растворе, и карбонатно-бикарбонатному буферу океаническая среда поддерживалась ближе к нейтральной (рН = 5,7–6,9). Это не исключало появления отдельных кислых водоемов вблизи вулканически активных островов.

С сушей и океаном в какой-то степени разобрались. А что на небе — были ли там тучи, а если были, то из каких газов состояли?

Глава 4. Что и откуда мы знаем о первичной атмосфере

Но откуда и что мы знаем об архейской атмосфере — воздушной оболочке Земли, если даже от ее самой твердой оболочки мало что осталось? Основных источников знаний — три: сами горные породы и слагающие их минералы, их изотопный состав и некоторые физические особенности этих пород. Есть, конечно, и физико-химические модели, предсказывающие определенный состав атмосферы. Однако любые модели имеют множество решений и требуют проверки, которая опять же сводится к поиску фактических — геологических, включая палеонтологические остатки, — материалов.

Таким фактическим материалом, прежде всего, служат данные о составе архейских осадочных горных пород. В прибрежно-морских отложениях этого возраста часто встречаются окатанные (т. е. испытавшие длительный перенос) обломки пирита (FeS2), уранинита (UO2) и сидерита (FeCO3). Такие обломки могут накапливаться только в бескислородной среде.

Очень необычным явлением, оставившим свой след в архейских отложениях, было независимое от массы фракционирование стабильных изотопов серы (Δ33S ≈ δ34S — 0,515δ34S) (рис. 4.1б). Это явление было обусловлено воздействием ультрафиолетового облучения среднего и длинноволнового спектра (400–280 нм) на двуокись серы (SО2), поступавшую в атмосферу вместе с другими вулканическими газами. При этом молекулы, содержавшие 33S, подвергались выборочному фотолизу и фотовозбуждению (в современной атмосфере фотонный удар принимают на себя молекулы озона и кислорода). В результате значения Δ33S сильно варьируют (от –2 до +12‰), что и наблюдается в архейских сульфидах (например, пирите) в виде размашистой изотопной подписи.




А вот следы оледенений в архейской летописи полностью отсутствуют, но уже в Исуа (3,7 млрд лет) есть штормовые отложения и признаки разрушения минералов под воздействием текущей воды, например мелкие миндалины кварца, заполняющие пустоты в базальтах. Почему же Земля не превратилась в мерзлый шарик без жидкой воды и признаков жизни, если в начале архейского эона светимость Солнца была на 20–25 % слабее, чем сегодня? В середине прошлого века известные астрономы Карл Саган и Джордж Мьюллен обратили внимание и на это несоответствие теоретических ожиданий практическим наблюдениям и удачно назвали его «парадоксом слабого молодого Солнца».

Для объяснения «парадокса» за последние полстолетия были предложены десятки гипотез. И продолжают появляться новые. Последние, правда, принадлежат перу (клавиатуре) исключительно астрофизиков и прочих специалистов, от геологии далеких. (Трудно сказать, что им мешает набрать в поисковике выражение «faint young Sun paradox» и получить пару-другую сотен статей по теме, авторами 99 % которых окажутся геофизики и геохимики.) Как любые достижения, и особенно псевдодостижения науки, которые на слуху, будоражат сознание обывателей и те клюют на нелепые сочетания слов вроде «наномойка» или «нанопарикмахерская», так и какая-нибудь модная «темная энергия» начинает привлекаться для объяснения любых явлений. И тогда «при разумном значении локальной постоянной Хаббла легко объяснить, почему Земля получала приблизительно постоянную плотность потока солнечного излучения на протяжении длительного периода в прошлом» — автор цитаты из статьи, опубликованной в научном журнале, имеет в виду поступательное удаление Земли от Солнца в поле однородного распределения «темной энергии». Или, поскольку светимость Солнца зависит от его массы и величины гравитационной постоянной, при более высоких значениях последней светимость была выше, а орбита Земли — практически круговой и меньшего радиуса, на которой планета получала больше энергии. Сама же гравитационная постоянная превратилась в «переменную» под влиянием все той же «темной энергии». Если бы Земля была «чугуниевой болванкой», могло быть что угодно, но наша планета — сложное геобиологическое явление, и подобные перестройки орбитальных параметров не могли бы не оставить на ней следов.

Например, гигантские нагромождения тайдалитов (от англ. tide — морской прилив и отлив). Ведь будь орбита Земли 4–3 млрд лет назад ближе к Солнцу или Луна ближе к Земле, по земной поверхности прокатывались бы мощнейшие приливно-отливные течения. Однако тайдалиты — морские слоистые отложения, состоящие из повторяющихся ритмов песчаник-алевролит-аргиллит (от наиболее грубозернистой разности, формирующейся в начале приливного цикла, до самой мелкозернистой, венчающей его; мощность отдельных слойков составляет от 0,5 до 8 см), даже архейские, ничем (почти ничем) не отличаются от современных (рис. 4.2). Небольшая разница, конечно, наблюдается — годовая ритмика несколько другая.

Так, в эдиакарских тайдалитах Южной Австралии (620 млн лет), в которых удалось проследить приливно-отливные циклы за 60 лет, синодальный ритм (от полнолуния до полнолуния или от новолуния до новолуния) длился 14,75 дня, а не 14,26, как сейчас. Чтобы вычислить циклы, составляется развертка всех слоев, где против порядкового номера каждого слоя откладывается его мощность; затем в полученной «кардиограмме» с помощью гармонического анализа находят повторы одинаковой частоты и близкой амплитуды. Синодальный цикл распознается в тайдалитах особенно отчетливо — по максимальной мощности ритма, поскольку в момент противостояния Луны, Земли и Солнца из-за эффекта сложения лунного и солнечного приливов образуется максимальная (сизигийная, от греч. σύζευξις — сопряжение) приливная волна. (В это время зеваки любят собираться у аббатства Ле Мон-Сен-Мишель в Нормандии и глазеть, как гранитный останец с аббатством на вершине превращается в остров, а большая автомобильная стоянка — в пролив.) На развертке заметны и менее крутые квадратурные пики: Луна в это время пребывает в 1-й или 3-й четверти — ось Луна — Земля расположена под прямым углом к оси Земля — Солнце, а значит, горб лунного прилива ослабляется впадиной солнечного. Всего же выявлено 1580 сизигийно-квадратурных циклов. Изучая другие особенности этих тайдалитов — суточные циклы и «прохождение» Солнца через экватор (дни равноденствия), вызывающее самые большие сизигийные приливы, можно определить, что эдиакарские сутки длились 21,9 часа (Земля быстрее совершала оборот вокруг оси), а в году насчитывалось 400 дней (и ночей).



Данные по тайдалитам позволяют решить и проблему рецессии Луны, неподвластную физикам. Это явление — убегание Луны от Земли — тоже связано с приливами. Именно приливное трение, что установил немецкий философ Иммануил Кант в 1754 г. и математически обосновал физик Джордж Дарвин (сын выдающегося эволюциониста) в 1879-м, замедляет вращение Земли: поскольку период суточного вращения планеты короче времени прохождения спутника по орбите, ближний приливный горб «обгоняет» Луну, и, придерживая его, та притормаживает Землю. Сам же спутник, замедляя вращение планеты, в соответствии с законом сохранения совокупного момента вращения перемещается на все более дальнюю орбиту. Сейчас Луна удаляется со скоростью 3,81 см в год, что рассчитали с помощью лазерной локации поверхности нашего естественного спутника (уголковые отражатели были установлены американскими астронавтами и советскими станциями «Луна-17» и «Луна-21», доставившими туда луноходы почти полвека назад). И если бы скорость рецессии была постоянной, то Луна не могла бы появиться в «небе» ранее 1,5 млрд лет назад и первые миллионы лет своего существования с близкого расстояния вызывала бы мощнейшие возмущения в мантии и непрерывную канонаду супервулканов. Однако и возраст спутника мало уступает земному, и следов таких процессов, как уже сказано, в осадочных толщах нет. Так, быть может, скорость света замедляется, а вовсе не Луна удаляется? (Физики из Хьюстона предлагают и такие идеи. Хьюстон, у вас проблемы?) Впрочем, исходя из длительности эдиакарских суток, можно определить, что скорость рецессии в то время составляла 2,17 см в год, а усредненное, рассчитанное по длительности приливно-отливных циклов в разные периоды значение этой переменной не превышало 1,46 см в год. Получается, что даже 4 млрд лет назад Луна находилась более чем в 320 000 км от поверхности Земли — не намного ближе, чем сегодня (в среднем 384 400 км). Очень далеко до предела Роша — 18 000 км, на котором, согласно расчетам французского астронома Эдуарда Роша, сделанным в 1848 г., сила самогравитации спутника, подобного Луне, уравновесится приливной силой планеты, и спутник разрушится. Если же учесть, что взаимная конфигурация океанов и континентов на протяжении большей части истории планеты была иной, чем ныне, когда меридионально расположенный относительно узкий Атлантический океан создает резонансную волну (оттого и уровень приливов в нем выше, чем в Тихом), то средний показатель рецессии мог быть еще меньше.

Иными словами, взаимодействия триады Солнце — Земля — Луна практически не изменились со времени появления Луны, что случилось через 60 млн лет после образования Солнечной системы. Взывать к космическим силам для решения проблем архейского избыточного тепла бессмысленно. «Значит, — как полагал один персонаж Даниила Хармса, — жизнь победила смерть неизвестным для меня способом». На самом деле способ известен и сейчас на слуху: парниковый эффект — нагревание молекул некоторых газов во внутренних слоях атмосферы под воздействием инфракрасного излучения.

Наиболее вероятными претендентами на роль древних парниковых газов являются углекислый (СО2), метан (СН4), аммиак (NН3), закись азота (N2О), карбонилсульфид (OСS), а также, косвенно, азот (N2). (Высокое парциальное давление азота расширяет адсорбционные зоны молекул СО2, СН4 и водяного пара.) NН3, которому отводили роль парникового газа Саган и Мьюллен, а также N2О и OСS из перечня можно сразу вычеркивать: эти газы легко разрушаются ультрафиолетовым излучением и накопиться в атмосфере в достаточно больших количествах не могут. А вот N2, СО2 и СН4 не только устойчивы, но и выделяются в значительных объемах при дегазации мантии (подводные и наземные вулканы, метаморфизм) и в процессе жизнедеятельности различных микробов и, следовательно, могли насытить архейскую атмосферу. Чтобы создать ощутимый парниковый эффект в архейском эоне, правда, понадобилось бы не менее 3 % двуокиси углерода (почти в 100 раз больше, чем ныне). Однако при таких концентрациях этот газ сконденсировался бы в облака, отражающие солнечные лучи, и по мере остывания планеты оседал бы снежными шапками на полюсах, как на Марсе. Кроме того, при высоких концентрациях углекислого газа (≥1 %) ультрафиолетовые лучи частично поглощались бы его молекулами, а частично рассеивались, и независимое от массы фракционирование стабильных изотопов серы не происходило бы. Да и сидерита в архейских палеопочвах почти нет, а этот карбонат железа просто-таки обязан был накапливаться при высоком парциальном давлении СО2.

Более пригодным для разогрева мог бы быть азот, который хорошо абсорбирует инфракрасное излучение. И достаточно устойчив, чтобы попасть в ископаемую летопись даже как газ. Например, включения флюидов в гидротермальном кварце в более древних базальтах (3,49–3,46 млрд лет) кратона Пилбара содержат атмосферный газ, когда-то растворенный в поверхностных водах. Аммиак в них отсутствует, а инертный аргон и азот определяются. Соотношение молекул разных газов во включениях зависит от парциального давления каждого из них: при современном парциальном давлении N2 (7,9 × 104 Па) и 36Ar (3,2 Па) их соотношение колеблется в пределах 1,02–1,31 × 104 при температуре воды от 2 °C (средняя для глубоких вод) до 70 °C (архейский предел) и солености 0–16‰. Для архейского времени ее можно проверить по тем же включениям, и соотношение N2/36Ar не выходит за пределы 1,0 × 104. Следовательно, парциальное давление азота не превышало 5,0 × 104 Па, и с ролью основного теплоизолятора он справиться не мог.

Остается метан. Тем более что метан, как парниковый газ, в 21–25 раз эффективнее двуокиси углерода, поскольку поступление в атмосферу 1 × 109 кг метана равнозначно 21–25 × 109 кг углекислого газа (данные Рабочей группы I при Межправительственной панели по изменению климата за 2007 г.). Усиленный парниковый эффект метана обусловлен тем, что его молекулы абсорбируют более широкий спектр лучей, чем молекулы двуокиси углерода. Установить, какой из этих газов преобладал в архейской атмосфере, можно по ее плотности. Казалось бы, вообще неразрешимая задача…

Способ определения плотности древней атмосферы предложил еще в середине XIX в. англичанин Чарлз Лайель, один из основоположников современной геологии и наставник Чарлза Дарвина: нужно измерить диаметр ископаемых отпечатков дождевых капель. Такие отпечатки хорошо сохраняются в вязких и быстро твердеющих вулканических туфах при условии, что прошедший дождь был недолгим и несильным. В противном случае следы капель либо размоются, либо перекроют друг друга. Взяв за образец отпечатки дождевых капель на современных туфах — тех, что образовались в 2010 г. после извержения вулкана Эйяфьядлайёкюдль, и сравнив их с туфами из супергруппы Вентерсдорп в Каапваале, возраст которых 2,7 млрд лет, установили: самые крупные древние капли в момент удара о землю были в среднем мельче современных. Поскольку размер капель зависит от плотности атмосферы, значит, атмосфера была в 1,5–2 раза менее плотной, чем ныне.

Конечно, при этом требуется статистическая обработка огромного количества замеров, сделанных с помощью лазерного сканирования отпечатков капель, как и при другом методе определения плотности древней атмосферы, тоже связанном с вулканитами. Поскольку свежая базальтовая лава содержит огромные объемы газов, часть из них навсегда остается в виде пузырьков, заключенных в породе, такой как континентальные базальты Бунгал на кратоне Пилбара (2,74 млрд лет). Пузырьки же скапливаются на поверхности и подошве лавового языка, там, где вязкая лава, соприкасаясь с воздухом или холодными скалами, остывает быстрее. Размер навечно запечатанных в породе пузырьков на поверхности лавового языка прямо зависит от атмосферного давления, к которому прибавляется вес лавового пласта при расчетах величины лунок на его подошве. Зная мощность пласта и плотность базальтовой лавы (2650 кг/м3) и измерив самые крупные лунки на его поверхности и наименьшие на подошве, можно вычислить плотность атмосферы. Чем ниже плотность атмосферы, тем меньше разница в размере пузырьков внизу и наверху. Древние полости, конечно, позднее заполнились вторичным аморфным кремнеземом (его мы видим сейчас как вкрапления красивых агатов и сердоликов), кальцитом или хлоритом, превратившись в каменные миндалины. Расчеты, сделанные по соотношению средних величин таких миндалин, снова показывают, что архейская атмосфера была в два раза менее плотной. И скорее всего, не могла состоять из углекислого газа или азота, но могла быть насыщена метаном.

Этот газ, несомненно, поставляли вулканы: более низкое соотношение таких элементов, как ванадий и скандий (V/Sc = 5,2) в архейских океанических базальтах, чем в протерозойских и современных (V/Sc = 6,8–7,0), указывает, что расплав формировался в глубинных восстановительных условиях и, следовательно, их излияние сопровождалось выделением метана, сероводорода и водорода. Однако основным источником метана, вероятно, была жизнедеятельность метанобразующих архей, оставивших заметные следы в изотопной летописи планеты: резко отрицательные значения δ13С (–40–60‰), характерные для архейских керогенов, накопившихся в морских и озерных условиях и в палеопочвах (рис. 4.1е, ж), указывают на двухступенчатое фракционирование стабильных изотопов углерода: сначала археями, а затем метанокисляющими бактериями (например, гамма-протеобактериями). Никакие другие группы организмов, хотя более легкий изотоп выбирают все, не способны производить отбор столь тщательно. (Археи, как и бактерии, относятся к прокариотам — одноклеточным либо колониальным существам, в клетках которых нет органелл, а наследственное вещество рассредоточено в цитоплазме.)

Остатки самих метанобразующих архей и метанокисляющих бактерий обнаружены в кремнистых сланцах возрастом 3,47 млрд лет на кратоне Пилбара. Сами микроскопические остатки, напоминающие нитчатые колониальные бактерии, были найдены четверть века назад, но их органическая природа оспаривалась. Лишь в наши дни благодаря точечному анализу изотопного состава углерода в органическом веществе удалось доказать, что некоторые микрофоссилии принадлежат метанобразующим археям (их изотопная подпись варьирует от –33‰ до –38‰), а другие — метанокисляющим бактериям (δ13С = –39‰). Углерод археи могли извлекать из ацетатов — солей уксусной кислоты (СН3СООН), которые формировались при выветривании древних континентов, либо из углекислого газа. А необходимый им для синтеза метана водород (донор электрона) выделялся при воздействии морской воды на свежую океаническую кору, где водород теряли богатые железом коматииты и базальты в результате деятельности железоокисляющих анаэробных бактерий.

Изотопная подпись углерода показывает отклонение (δ13С) в соотношении стабильных изотопов этого элемента (13С/12С) в исследуемом образце от такового в стандарте, выраженное в количестве частиц на тысячу — промилле (‰). Этот показатель рассчитывается по формуле:


δ13С = [(13С/12С) образец — (13С/12С) стандарт/(13С/12С) стандарт] × 103.


По той же формуле определяются отклонения изотопной подписи (δ) других элементов, о которых речь пойдет ниже (18О/16О, 30Si/28Si, 34S/32S, 11B/10B, 15N/14N, 7Li/6Li). Разными для каждой пары являются только стандартные образцы.

В отличие от радиоактивного изотопа (14С) доля стабильных изотопов углерода в современном мире постоянна (12С/13С = 98,89/1,11). Поэтому любые отклонения от стандартной пропорции определимы и значимы, а в случае углерода практически всегда опосредованы деятельностью живых существ.

Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, — на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО2. Поскольку в отсутствие главного окислителя — кислорода — продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН4/СО2, близкого к 1, молекулы метана полимеризовались до этана (С2Н6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН3, OСS и серных соединений, включая аэрозоли полиатомной серы (S8).

Глава 5. Архей и археи

Сиренево-оранжевый туман не просто уберег Землю от переохлаждения, но, возможно, сделал планету даже более жаркой, чем ныне. Соотношение стабильных изотопов кислорода (18О/16О) и кремния (30Si/28Si) в архейском (3,5–2,5 млрд лет) осадочном кремнеземе, удержавшем первичный изотопный сигнал, указывает на температуру океанических вод в пределах 50–60 °C. Близкое соотношение этих изотопов выявлено и в естественных пробах архейской воды — капельках, заключенных в кристаллах галита (каменной соли), а также в керогенах (только для 18О/16О). Если повышенные значения изотопных подписей кислорода и кремния в кремнеземе еще можно объяснить осаждением этого минерала вблизи гидротерм или в теплых изолированных водоемах, то кероген формировался в нормально-морских условиях.

Да и первично осадочный кремнезем можно отличить от других его разностей по определенным минералогическим и геохимическим критериям. В архейском океане молекулы ортокремневой кислоты (Н4SiО4) полимеризовались в водной толще, образуя коллоидные наносферы, которые в условиях высокой солености слипались друг с другом и оседали на дно, где некоторое время продолжали расти. Поэтому слои кремнезема нацело сложены сферическими гранулами (≤0,2 мм). (Протерозойский кремнезем, образование которого связано с полосчатыми железными формациями, имеет иную структуру, а все фанерозойские кремневые отложения состоят из скелетов разных организмов.)

Редкость волновых знаков (ряби) на поверхности относительно глубоководных турбидитов — отложений морских мутьевых потоков (от англ. turbid — взвешенный, мутный) возрастом 2,7 млрд лет — предполагает низкую вязкость морской воды, также обусловленную повышенной температурой. Особенности архейских эвапоритов уже отмечались.

Если же обратиться к молекулярным корням древа жизни, то самыми древними организмами оказываются термофильные археи — прокариоты, обитающие в горячих источниках, обычно с повышенной кислотностью. (Кстати, «архей» и «археи» — слова однокоренные, подчеркивающие древность понятий, ими определяемых.) Близкие к ним метанобразующие археи также предпочитают жить при 40–85 °C, причем с повышением температуры объемы произведенного ими метана растут. Более того, реконструированные предковые белки группы факторов элонгации (удлинения), отвечающие за последовательное присоединение аминокислот к синтезируемому на органелле-рибосоме белку (иначе говоря, за удлинение белковой молекулы), являются устойчивыми к высоким температурам (45–80 °C и даже выше 80 °C). Поскольку и бактерии, и археи не обходятся без таких компонентов, то, скорее всего, унаследовали их от общего раннеархейского предка, и этот предок имел термостойкий белок-удлинитель.

Так что жизнь не только могла зародиться в «теплом прудике», как предполагал Чарлз Дарвин в письме к своему другу, английскому ботанику Джозефу Гукеру, но и долгое время существовать в тепличной обстановке. В теплой среде и темпы эволюции, вероятно, были выше. Поэтому уже в архейском эоне существовали всевозможные группы бактерий и архей, освоивших разные обстановки и образовавшие сложные сообщества. Обычно мы их не видим, а если видим, то отличить одни округлые микроскопические тельца от других (большинство прокариот имеет именно такую, коккоидную, форму) даже на современном материале без специальных анализов невозможно, но их присутствие чувствуется. В первую очередь благодаря изотопной подписи, оставленной фототрофами, буквально — «питающимися светом» (от греч. φως — свет и τροφή — пища).

Фототрофы фракционируют стабильные изотопы углерода — отбирают изотоп с меньшей массой и более высокой колебательной энергией (реакция с ним требует меньших энергетических затрат). Поэтому в ходе фотосинтеза органическое вещество обогащается легким изотопом (12С), а среда — обедняется, что и фиксируется в конечном счете в осадочных горных породах в виде изотопной подписи.

Необычная изотопная углеродная подпись вроде бы уже стоит на отложениях возрастом 3,8 млрд лет на западе Гренландии. Выражается она в заметной изотопной разнице между графитом, заключенным в кристаллах апатита (от –13‰ до –49‰), и углеродом в составе самого минерала (–2,3‰). При дальнейшем изучении этого апатита выяснилось, что графит образует не внутрикристаллические включения, а, наоборот, оторочку вокруг первичных кристаллов и, значит, сформировался позже, чем апатит. А вот насколько позже, сказать сложно. В целом, чтобы установить биогенную природу подобных и даже морфологически более сложных включений, требуется доказать: 1) осадочную природу самих отложений; 2) первичность включений, которые должны быть достаточно обильны; 3) их тесную генетическую связь с первичными минералами в породе; 4) сходство степени изменения включений с таковой первичных минералов; 5) невозможность объяснить изотопную подпись углерода абиогенными процессами; 6) приложить усилия к поиску следов других биогенных элементов — О, N, S, P и 7) молекулярных органических остатков — биомаркеров. Казалось бы, все это невозможно, но ведь получается!

Вряд ли фракционированием изотопов на заре жизни занимались оксигенные фототрофы, такие как цианобактерии: в архейских водах, учитывая высокое содержание растворенного железа и кремния, не могло находиться достаточно фосфора для поддержания жизни этих микробов. А вот аноксигенные фотоферротрофы в таких условиях процветать могли. Таким бактериям тоже нужна энергия света для синтеза органических соединений, но в качестве донора электрона, необходимого для протекания окислительно-восстановительных реакций, они используют закисное железо (Fe2+), а не воду, поэтому побочными продуктами их деятельности является Fe3+ (и различные минералы железа), а не кислород. Другие хемотрофы примерно тогда же получили доступ и к энергии недр, особенно на срединно-океанических хребтах, где позднее сложились необычные глубоководные сообщества черных курильщиков. Признаки их жизнедеятельности заметны по изотопной подписи другого элемента — серы (34S/32S, или δ34S).

Сохранилось ли что-нибудь от архейских организмов, кроме почти невидимых дырок в древних базальтах и изотопных подписей? Конечно, и немало. О метанобразующих археях и метанокисляющих бактериях из Пилбары уже говорилось. Там же, в Пилбаре (формация Стрелли-Пул) и в поясе Барбертон (соответственно, 3,43 и 3,2 млрд лет), найдены коккоидные тельца с органической оболочкой, состоящей из разных углеводородных молекул и азота, и связанные с ними кристаллы пирита, сохранившие изотопную подпись серы, характерную для серных бактерий.

На первый взгляд, учитывая обилие сульфидов — минералов серы, осаждение которых редко обходится без участия серных бактерий, — в этом нет ничего удивительного, но особая изотопная подпись видна не всегда, а остатки тех, кто «расписался», практически не сохраняются. Предполагается, что серные бактерии, подобные пурпурным и зеленым, были главными архейскими фототрофами и продуцентами (от лат. pro-duco — производить, создавать) органического вещества. Используя сероводород и сульфиды, они освобождали необходимые для фотосинтеза электроны и окисляли исходные молекулы до серы (S0) и в незначительной степени до сульфата (SO42–). Последние взаимодействовали с катионами железа и никеля, недостатка которых в архейском эоне не было, с образованием соответствующих сульфидов (например, пирита). Причем объемы серных соединений уравновешивали объемы органического вещества.

Особенно интересно, что часть бактериального сообщества Стрелли-Пул населяла приливно-отливную зону несмотря на смертельный уровень ультрафиолета: микробы закрепились когда-то под кварцевыми зернами, которые лежали на литорали, среди черного пиритового песка. Они выживали под прозрачным кварцем, подобно тому как в пустыне Намиб сейчас выживают почвенные колониальные цианобактерии носток (Nostoс flagelliforme). Кварц — это и экран, предохраняющий от коротковолнового излучения, и прозрачное окно, пропускающее достаточно света для фотосинтеза, и аккумулятор влаги: вода конденсируется на нижней поверхности камешка из-за суточного перепада температур. Более того, возвращаясь к архейским бактериям, в приливно-отливной зоне благодаря естественной, пусть и слабой аэрации воды им был доступен кислород, полностью отсутствовавший даже на небольшой глубине. (Пока не появился озоновый щит, кислород в небольших количествах образовывался за счет фотолиза воды.) Вероятно, в такой обстановке могли возникнуть и более сложные организмы. Во всяком случае, в той же формации Стрелли-Пул, в ее морских мелководных отложениях выявлены цепочковидные колонии из чечевицеподобных клеток (20–100 мкм в диаметре) с оторочкой и мелкими сферическими тельцами внутри. Эти «чечевичины» не похожи на каких-либо современных прокариот, но не имеют сложно устроенной оболочки, которая выдавала бы в них эукариот (организмов с клеточными органеллами, включая ядро — от греч. εύ — совершенно и κάρΰον — орех, ядро).

Хотя самые древние микроскопические ископаемые остатки на сегодня выявлены в формации Стрелли-Пул, следы архейской и протерозойской бактериальной жизнедеятельности видны во всем. Даже перекатывавшиеся по морскому дну песчинки обрастали бактериальными пленками, продолжавшими осаждение карбоната, и превращались в причудливые слоистые шарики — ооиды, иногда достигавшие в диаметре нескольких сантиметров (рис. 5.1). В целом же подавляющая масса архейских и протерозойских карбонатов, значительно нарастивших площадь континентов, обязана своим происхождением бактериальным сообществам. Без них это было просто физически (и химически) невозможно: при повышенном уровне углекислого газа возрастает и кислотность среды, что усиливает растворимость карбонатов, особенно кальцита и арагонита. Воспрепятствовать растворению карбонатных минералов способны микробы, преобразуя среду из кислой в щелочную хотя бы в придонном слое.



Поскольку в архейском и протерозойском мире еще не было животных, а до рубежа 850–800 млн лет — и простейших, способных питаться биоматами и пленками, они покрывали все свободное пространство, где содержалась хоть какая-то влага (рис. 5.2).



Благодаря таким покрытиям, склеивавшим частицы внеклеточными полимерами, в докембрийских отложениях, начиная с возраста 3,48 млрд лет (древнейшие — в Пилбаре), нередко сохраняются структуры поверхности осадка, даже песчаников, практически исчезнувшие из фанерозойской осадочной летописи. Подобные структуры получили свое общее название — текстуры, образованные под влиянием микробных матов: например, «слоновья шкура» — следы усыхания биоматов, киннейя (Kinneyia) — сморщенные биопленки (рис. 5.3) или манчуриофикус (Manchuriophycus) — слепки биопленок, свернувшихся в трубочку вдоль пляжных песчаных прибойных валиков. (И те и другие поначалу приняли за остатки многоклеточных организмов и присвоили им зоологические имена.)

Иногда на поверхности песчаников сохраняется органическое вещество, обволакивающее песчинки, с вполне различимыми бактериальными трихомами и углеродной изотопной подписью, выдающей цианобактерий (–24‰). Если выйти на влажный песчаный берег сразу после утреннего отлива, то творцов подобных текстур можно застать и в наши дни. Только очень недолго: не проходит и получаса, как от них не остается и следа. Точнее, следы как раз остаются, но от моллюсков, съевших биопленки.


Глава 6. Золотой век

Как уже говорилось, очень многие минералы и горные породы, а в особенности залежи полезных ископаемых, — суть следы жизнедеятельности тех или иных организмов. Практически ни одна рудная залежь, которую экономически выгодно разрабатывать (не просто извлечь из горных пород определенные элементы или соединения, но и продать так, чтобы окупились затраты на добычу и коррумпированные власти), не образовалась без ведома живых существ. Именно они естественным путем обогащают руды — создают экономические (с нашей точки зрения) запасы полезных ископаемых даже такого инертного самородного минерала, как золото. Этот металл практически неуничтожим: за то время, что его так полюбили дамы и монополии — со времен Древнего Египта, когда была составлена первая геологическая карта с изображением золотоносных гранитов (Туринский папирус), иначе говоря, за 3000 лет, — человечество добыло порядка 12–13 × 107 кг благородного металла. И практически вся эта масса существует до сих пор, пусть золотые маски фараонов, изящные скифские фигурки, сосуды инков и короны всяческих царьков, многократно перековываясь и переливаясь, превратились в слитки резервных фондов или сережки, выставленные за пуленепробиваемым стеклом модного ювелирного бутика. (Конечно, главная роль золота в современном мире — защита электропроводящих элементов от коррозии.)

Различаются коренные и россыпные месторождения. Вторые образуются в результате перемыва первых, обычно реками, поэтому золотой песок и самородки скапливаются в руслах или вблизи устьев рек, современных и ископаемых разного геологического возраста. Основные месторождения золота образовались в архейском эоне, 3,8–2,5 млрд лет назад. Поркьюпайн, Керкленд-Лейк, Йеллоунайф и Тимминс — на Канадском щите, Калгурли, Балларат, Бендиго и другие — на Австралийском, Колар-Голдфилс — на Индостанском, Морру-Велью и Гонку-Соку — на кратоне Сан-Франсиску (Бразилия), рудные поля Западной и Южной Африки, где особо выделяется Витватерсранд, содержат (и содержали — ряд из них уже исчерпан) три четверти всех известных золотых руд. Только на долю Витватерсранда в ЮАР, сформировавшегося 2,6 млрд лет назад, приходится 81 × 106 кг разведанного золота (40 % мировых запасов).

Предполагалось, что золотые руды в этом месторождении, приуроченные по большей части к галечным конгломератам, образовались в результате механического переноса и перемыва золотых частиц реками. Но именно изучение золота Витватерсранда выявило совсем иную картину: золотые залежи создают живые существа. Конечно, не огромные и свирепые рыжие муравьи, которые, согласно Геродоту, извлекали самородки для персидского царя Дария. (Возможно, до Геродота дошли слухи о сурках, которые при прокладке своих нор могут «выдавать на горá» самые разные гальки, а если попадутся, то и золотые.) «Добывали» драгоценный металл бактерии. «Живое» золото открыл южноафриканский геолог Дитер Хальбауэр, описавший в 1978 г. обрамленные золотыми частицами мельчайшие углеродные столбики, которые, по его мнению, более всего походили на остатки лишайников и грибов. До недавнего времени его открытие воспринимали как «несостоявшуюся сенсацию», пока микроскопическое изучение рудных образцов, изотопного состава серы и углерода, а также моделирование рудообразования в колониях современных микробов (например, бета-протеобактерий) и геохимические расчеты, предпринятые несколькими коллективами ученых разных стран, не подтвердили отчасти правоту Хальбауэра. Более того, опыты, поставленные в тех же условиях, но без участия бактериальных биофильмов, к осаждению золотых частиц не привели. Да, золотая руда — биохемогенная, но сконцентрирована не грибами или лишайниками, а бактериальными сообществами.

В бескислородных архейских условиях, когда вулканические газы в основном представляли собой сероводород, летучую серную кислоту и сернистый газ с парами воды (плавились-то в зонах субдукции в основном мафические породы), кислотные реки размывали золотосодержащие породы и выносили растворы на мелководье. Из-за этого жившим там бактериям приходилось буквально «купаться» в золоте. Вместе с растворами, несущими жизненно важные элементы — железо и серу, туда же могли поступать опасные соединения, подобные тетрахлориду и цианиду золота и дитиосульфатоаурату [AuCl4, AuCN, Au(S2O3)2]. Для обеззараживания этих смертельно ядовитых веществ микробы Витватерсранда восстанавливали их до органико-металлических комплексов или до золота (подобно современным бета-протеобактериям), и из раствора оседали драгоценные наночастицы. (При непрерывном поступлении раствора концентрация частиц возрастает в тысячи раз в течение недели.) Эти частицы накапливались на бактериальных матах (словно на золотом руне в Древней Колхиде). Поскольку жить в золоте постоянно невозможно (такой эксперимент провел на себе царь Мидас), колонии развивались над уже осажденными золотыми агрегатами в виде полых трубочек, буквально слепков трихомов (многоклеточных бактериальных цепочек), и по мере поступления новых растворов создавали рудные запасы (рис. 6.1).

Итак, Витватерсранд и, вероятно, другие архейские месторождения — результат взаимодействия бактериальных сообществ и бескислородной архейской атмосферы. Больше в истории Земли подобные месторождения не появлялись и уже никогда не появятся уже хотя бы потому, что с развитием континентов и со смещением части очагов вулканической деятельности на сушу состав вулканических газов изменился. (Хотя в небольших масштабах бактериальные биофильмы продолжают осаждать золотые наночастицы в горячих вулканических источниках Новой Зеландии.)


Глава 7. Ковровые камни

В первую очередь следы жизнедеятельности древних бактерий, даже целых сообществ, сохранились в виде строматолитов (от греч. στρωμα — подстилка, ковер и λίθος — камень) — тонкослоистых, обычно известковых, куполовидных построек (рис. 7.1). Миллиметровая, реже сантиметровая, слоистость строматолитов проявляется в изменении соотношения микрокристаллических сростков разной размерности, концентрации глинистых частиц или органического вещества и содержания некоторых элементов, но всегда любой из этих показателей многократно, закономерно и ритмично меняется.



Нередко в качестве примера строматолитов приводят современные известковые столбики, растущие в гиперсоленой мелководной бухте Хамелин залива Шарк на западе Австралии. В развитии последних, правда, существенную роль играют одноклеточные эукариоты — диатомовые и зеленые водоросли. Поэтому и структура у них другая — не тонкослоистая, состоящая из миллиметровых разностей карбоната кальция, а рыхлая, грубая. К докембрийским строматолитам ближе те, что образуются сугубо бактериальными сообществами в лагунах Те-Куронг в Южной Австралии или Вермелья в Бразилии. Впрочем, и они не являются прямым аналогом, поскольку выживают в весьма особенных условиях: при резких изменениях солевого и температурного режима. Да и форма у них довольно простенькая: низкие, почти плоские купола. Не сравнить с тем огромным разнообразием строматолитов, что существовали в протерозойском эоне — кустистые и столбчатые, правильные конические (до 3 м высотой) и подушечные, словно гигантские площади (несколько квадратных километров), вымощенные булыжником. Внешне похожие на них бактериальные постройки сейчас существуют на глубинах в десятки метров в щелочных озерах на востоке Турции (Ван), юго-западе Канады (Павилион) и в Индонезии (кратер вулкана Сатонда). Но отчетливых слойков эти микробные сообщества не образуют, поэтому называются микробиалитами. Вряд ли стоит распространять и эту модель, к тому же реализованную при очень низком содержании кальция, на сложные древние строматолиты и, как уже говорилось, предполагать существование в архейском и протерозойском эонах щелочного океана, тем более болотно-озерных ландшафтов, хотя такие допущения делаются. Примеры палеопротерозойской группы Петей (1,88 млрд лет) на северо-западе Канадского щита или мезопротерозойской буровой свиты (1 млрд лет) на северо-западе Сибирской платформы (река Нижняя Тунгуска) показывают, что бактериальные строматолиты были распространены в очень разных морских обстановках: «булыжные мостовые» из коробчатых построек формировались на бурном, но хорошо освещенном мелководье; столбчатые и кустистые образовывали рифы несколько глубже; а огромные, многометровой высоты конусы развивались даже на внешней сублиторали, на пределе фотической (освещенной) зоны и ниже базиса штормовой эрозии. Глубоководные формы, стремясь к свету, нарастали на самом верхнем кончике, образуя столбики и конусы.

Строматолиты являются древнейшими видимыми невооруженным глазом свидетельствами жизни: небольшие конусы, в несколько сантиметров высотой, обнаружены в архейских породах Каапвааля и Пилбары (3,5–3,4 млрд лет). Конечно, похожие структуры могли отлагаться и неорганическим путем: ламиниты — на литорали, радиальные ботриоиды морского цемента — на сублиторали. И опыты показывают, что нечто очень похожее на строматолит получается без участия живых существ. Но есть у «живых» строматолитов ряд признаков, которые вряд ли появились за счет лишь физических и химических процессов. Биогенный строматолит чутко реагирует на смену обстановки: меняет форму в зависимости от того, откладываются его слойки в затишье или в шторм; ветвится и даже прорастает сквозь тонкий слой осадка, накрывший всю постройку после урагана. Бактерии проберутся среди песчинок и начнут свою работу заново. Неживая природа на такое не способна. Кроме того, в биогенных строматолитах есть слойки с микросгустковой текстурой — вероятно, микрит, осевший на бактериальную слизь и приклеившийся к ней. В ламинитах и морских цементах подобных неправильностей не обнаружено. А главное, в строматолитовых керогенах сохранились заметные следы органического фракционирования изотопов углерода (до –30‰), азот и сера.

Выделять слизь, точнее внеклеточное полимерное вещество (в основном полисахариды), микробам приходилось, чтобы хоть немного обезопасить себя от ультрафиолетового излучения. Молекулы такого вещества [карбоксильная (COOН), гидроксильная (OH), фосфатная (РО) и аминовая (NH2) группы], а также клеточная оболочка, теряя в нейтральной или слегка щелочной морской среде протоны, становились отрицательно заряженными. Поэтому поверхность бактериальной колонии легко улавливала различные катионы, в том числе Са2+, если среда, конечно, была им достаточно насыщена. Кроме того, цианобактериальные колонии в процессе кислородного фотосинтеза выделяли гидроксильные ионы, которые реагировали с растворенным в воде бикарбонатом (HCO3), образуя анионы карбоната (CO32 —):


HCO3 + OH ↔ CO32- + H2O.


Анионы CO32– в свою очередь притягивали катионы Са2+, и из раствора выпадали мельчайшие (2–8 мкм в диаметре) микросгустки аморфного кальцита или арагонита.

В основном строматолиты строили нитчатые цианобактерии (менее 0,5 мкм в диаметре и несколько десятков мкм длиной), образующие своего рода «микролуга» — однослойные биопленки и многослойные биоматы. Биоматы состояли из чередующихся вертикально стоящих и горизонтально уложенных бактериальных чехлов, а также слойков чистого карбоната. Слойки с хорошо различимыми бактериальными чехлами формировались в весенне-летнее время при хорошей освещенности и при поступлении больших объемов биогенных элементов; благодаря обильным внеклеточным органическим полимерам они улавливали тонкие минеральные частицы или связывали катионы металлов. Карбонатные отлагались в осенне-зимнее время, когда цианобактериальные макромолекулы деградировали, использовались в пищу другими микробами, а выделявшиеся при распаде органических веществ анионы (особенно карбонат и бикарбонат) реагировали с ионами металлов. Именно тогда из раствора выпадали микросгустки аморфных карбонатных минералов, которые позже кристаллизовались и срастались в минеральные слойки.

При поступлении в окружающую среду ионов железа могли получиться «железные» (сидеритовые) строматолиты, марганца — родохрозитовые. (Все это руды названных металлов.) Сама слизь улавливала различные по составу частицы. При бескислородном фотосинтезе, который осуществляют серные пурпурные и зеленые бактерии, в осадок могли выпадать сульфаты: гипс (CaSO4 × 2H2O), барит (ВaSO4) или целестин (SrSO4). (Кстати, гипс — важное строительное вяжущее вещество, а два других минерала — руды бария и стронция.)

Если строматолиты пропитались растворенным кремнеземом, поступавшим из близлежащего термального источника (как в современной Исландии), то в них нередко, словно в стеклянных препаратах, сохранялись и сами бактерии, создавшие эти странные конструкции. Не исключено, что кремневые строматолитовые корки могли формироваться бактериями «умышленно», особенно в архейских условиях: кремнезем прекрасно экранирует ультрафиолетовые лучи ближнего спектра (150-микронный слой этого минерала обеспечивает полную защиту; без него 70 % клеток гибнет в течение 24 часов).

Преимущественно коническая и столбчатая форма строматолитов предопределялась несколькими факторами. В первую очередь фототаксисом — стремлением к свету бактериальных сообществ, но не только. Поскольку цианобактериальная часть сообщества выделяла кислород, пузырьки газа скапливались на кончике строматолита, куда устремлялись оксифильные бактерии, а за ними другие — потребители органики. (Такие ископаемые пузырьки начинают встречаться в строматолитах возрастом 2,7 млрд лет — на исходе архейского эона.) А правильность сложных построек (выдержанное расстояние между отдельными конусами) объясняется тем, что бактериальное сообщество дробилось на отдельные группы, борющиеся друг с другом за ресурсы.

Строматолитовая форма существования широко распространилась (рис. 4.1л), поскольку жить под защитой минеральных слойков оказалось очень выгодно: биопленки и биоматы быстро высыхали и повреждались ультрафиолетовым излучением, а со временем стали выедаться одноклеточными эукариотами. Под минеральными слойками сохранялась влага, для ультрафиолета они были непроницаемы, а для того, чтобы их разрушить, нужны были железные зубы, как у современных моллюсков — хитонов. Кроме того, в инертные минералы можно было упрятать ионы тяжелых металлов и мышьяка, растворенные в бескислородном океане в повышенных концентрациях и потому представлявшие опасность для жизни.

В архейском океане в возведении карбонатных построек могли участвовать протео- и ацидобактерии (известные в современных микробиалитах), но, поскольку они не имели таких прочных оболочек, как у цианобактерий, шансов сохраниться у них не оставалось. Эти члены сообщества прокариот могли обеспечить и другие пути образования карбонатов, например через последовательность реакций, начинавшуюся с разложения диамида угольной кислоты [(NH2)2CO]:


(NH2)2CO + 3H2O → 2NH4 + HCO3 + OH;


2HCO3+ Ca2+ → CaCO3 + H2O + CO2.


«Пузырьки кислорода», впервые застрявшие в строматолитах около 2,7 млрд лет назад, вероятно, и являются древнейшими свидетельствами существования цианобактерий — основной группы фототрофов (как в виде отдельных организмов, так и в форме пластид многих водорослей и высших растений). К этому же рубежу приурочены заметные изменения в изотопной подписи углерода (рис. 4.1е), повышенное содержание органического углерода в морских отложениях (такие объемы вряд ли могли образоваться за счет одного бескислородного фотосинтеза) и находки микрофоссилий, похожих на цианобактерии.

Морфология протерозойских бактериальных чехлов, скажем из сухотунгусской свиты Сибирской платформы, указывает на их принадлежность цианобактериям, внешне похожим на современные калотрикс (Calothrix) и формидиум (Phormidium): именно эти мелководные фототрофы нуждаются в толстых оболочках, предохраняющих от ультрафиолетового излучения. На присутствие цианобактерий указывают и состав органического вещества, иногда сохраняющегося в чехлах, и соотношение стабильных изотопов углерода. Способны были поучаствовать в строматолитостроении и коккоидные бактерии, образующие обильные колонии пленочной и грибовидной формы (напоминающие Entophysalis). В некоторых строматолитах насчитывается до десятка видов разных цианобактерий.

Цианобактерии жили не только под защитой строматолитовых корок: они освоились даже на периодически пересыхающем мелководье и играли там весьма заметную роль. Заметную благодаря золотистому пигменту (лат. pygmentum — краска) сцитонемину, предохранявшему клетки как цианобактерий, так и водорослей от ультрафиолетового излучения. Конечно, в клетках должны были находиться и пигменты, связанные с фотосинтезом, подобные хлорофиллам, поскольку изначально и они служили для рассеивания излучения. (Механизм рассеивания затем и использовался в фотосинтезе.) От гибели бактерии также защищались с помощью акинет — толстостенных удлиненных спор с обильными запасами питательных веществ: акинеты могли выдержать и временную засуху, и чрезмерное осолонение, и сильное опреснение.

Прослеживание молекулярной истории этих прокариот также показывает, что оксифототрофная ветвь отделилась от нефотосинтезирующей и анаэробной линии цианобактерий 2,6–2,5 млрд лет назад. Последние могли существовать и раньше и даже отладить фотосистему II — один из важнейших компонентов всей системы фотосинтеза, необходимый для расщепления молекул воды. В бескислородном архейском океане эта фотосистема была задействована для забора электрона у Н2S, чтобы окислить S2– до S0. С этим источником электронов, так же как с Fe2+, разные прокариоты не могли расстаться еще долго.

Глава 8. Когда раскрылся железный занавес

Состав Мирового океана как водного тела тоже в значительной степени определяется наличием в воде живых существ. Например, в современных морях продолжительность пребывания атомов кремния, фосфора, углерода, азота и кальция составляет всего от 10 до 100 лет (что на порядок ниже ожидаемой продолжительности, исходя из атомной массы этих элементов и объемов их поступления в океан), тогда как атомов натрия и хлора — 50 000 лет. Обусловлена эта разница тем, что Si, P, C и Ca являются биогенными элементами и востребованы живыми существами для создания органических и неорганических (скелет) тканей. Эти элементы очень быстро изымаются из раствора, а невостребованные Na и Cl накапливаются, и морская вода приобретает вкус поваренной соли. Если бы не организмы, то состав океана регулировался бы только притоком элементов (реки, подземные воды, вулканические и гидротермальные выделения, растворение океанической коры) и их стоком (формирование эвапоритов, глубоководных сульфидов, испарение и поглощение океанической корой). Впрочем, со временем организмы смогли вмешаться даже в эти физико-химические процессы.

Углерод, как основа всех органических соединений, конечно, был востребован всегда, и, скажем, на Карельском щите нефтяные залежи появились уже 2 млрд лет назад, раскинувшись на площади более 10 000 км2 и накопив 25 × 1013 кг углерода. Такие масштабы «нефтеобразования» свидетельствуют о высокой продуктивности палеопротерозойского океана. Понятно, что с тех пор органика обернулась почти графитом, на 98 % сложенным углеродом, а особые горные породы получили название шунгитов по карельскому поселку Шуньга. Часть углерода вместе с кальцием осаждалась строматолитовыми микробными сообществами.

Железо — тоже важный биогенный элемент — в современном мире даже не успевает раствориться, смешаться с мировыми водами (продолжительность его пребывания ничтожно мала) и прямо на месте, скажем после извержения вулкана, «съедается» фитопланктоном. Пока жизнь пребывала в прокариотном состоянии, кремнезем никем еще не потреблялся, и на дне архейских и протерозойских морей осаждались неорганические кремневые слойки, исчезнувшие в фанерозойском эоне с появлением первых же организмов, начавших строить кремневый скелет. А когда организмы уже «осознали» важность железа, но еще не придавали значения кремнию, образовались необычные полосчатые железистые кварциты. Тем более что железа в океане было предостаточно: оно выносилось вместе с гидротермальными растворами в области развития срединно-океанических хребтов и поступало с суши, где пока еще разрушались в основном мафические породы.

Обилие неокисленных ионов металлов, растворенных в морской воде, препятствовало накоплению кислорода, хотя цианобактериальные сообщества поставляли его как побочный продукт фотосинтеза. Весь свободный кислород до поры до времени уходил на связывание ионов железа и ряда других металлов. Следы этого процесса не просто сохранились в недрах планеты, а кажутся сейчас природной аномалией. Время золотой аномалии пришлось на архейский эон — 3,8–2,5 млрд лет назад. Время железной аномалии наступило в конце архея — в палеопротерозое — 2,6–1,85 млрд лет назад. Именно тогда сформировались основные железорудные провинции: Курская магнитная аномалия (Украинский щит), озеро Верхнее, включая формацию Ганфлинт, и Садбери (Канадский щит), Железорудный четырехугольник (Quadrilátero ferrífero, кратон Сан-Франсиску, Бразилия), формация Хамерсли (Австралийский щит), Бушвельд (Каапвааль) — в общей сложности более половины мировых балансовых запасов (только в Курской аномалии сосредоточено свыше 55 × 1012 кг железа) (рис. 4.1и). В отличие от фанерозойских руд, представляющих собой болотные и морские железные оолиты (микросферы из глинистых минералов железа) и гидротермальные сульфиды, все раннепротерозойские рудные тела, а также небольшое число архейских и позднепротерозойских — это железистые полосчатые кварциты, т. е. чередование слоев (от субмиллиметровой до метровой мощности) кварца (40–50 %) и минералов железа (20–40 %): магнетита (Fe3O4), гематита (Fe2O3), сидерита (FeCO3) и некоторых других. Считалось, что все эти минералы в равной степени первичны, т. е. отлагались непосредственно в момент рудообразования, причем в глубоководных бассейнах.

Однако изучение форм нахождения железа (соотношение Fe3+/ΣFe) показало, что первичны карбонаты (в том числе сидерит), поскольку океан был насыщен ионами бикарбоната (HCO3), и железосодержащие глинистые минералы, а окислы (магнетит, гематит и пр.) образовались при последующем преобразовании осадочных пород — диагенезе. В свою очередь, исследования особенностей осадконакопления выявили приуроченность полосчатых руд к мелководью — там, где ощущалось влияние морских волн. (В некоторых рудных залежах даже можно сосчитать приливно-отливные циклы, как в тайдалитах.)

Формирование полосчатых железных руд происходило примерно так: в теплые сезоны, когда процветал бактериопланктон, закисное железо (Fe2+), поступавшее в океан из гидротермальных источников, окислялось на огромных (десятки тысяч квадратных километров) шельфах. Окисляли железо фотоавтотрофные бактерии-микроаэрофилы (они довольствуются ничтожным содержанием кислорода в среде), анаэробные бактерии, а также свободный кислород цианобактериального происхождения или, например, воздействие коротковолнового излучения. Впрочем, абиогенное фотоокисление Fe2+ происходит почти незаметно и очень медленно по сравнению с возможностями микроорганизмов, которые ускоряют этот процесс в 50 раз. Затем окисное железо (Fe3+) и/или его гидроокислы, связанные органическим веществом, осаждались на дно. В осадке благодаря окислительно-восстановительным реакциям, осуществляемым ферментирующими и Fe3+-восстанавливающими бактериями, высвободившиеся ионы Fe3+ попадали в щелочную среду, где и формировались первичные минералы железа, названные выше. Дальнейший диагенез преобразовывал эти минералы в современный ряд окислов. В холодное время года деятельность планктонного рудообразующего сообщества приостанавливалась, и на дне преимущественно оседали частицы кремнезема, поступавшего за счет выветривания суши. Растворенный кремнезем абсорбировался на поверхности Fe2-гидроокислов и оседал на дно. Там гидроокислы реагировали с органическим веществом, а кремнезем высвобождался и уходил в поровые растворы в осадке, где и образовывались кремневые прослои. И так из года в год — на протяжении тысячелетий.

Разумеется, для осуществления всей этой цепочки биохимических реакций требовалось, чтобы закисное железо, поступавшее из гидротерм, попадало в фотическую зону, на мелководье, в неокисленном виде. Из этого следует, что и вся толща океана была закисной, кроме, разве что, самых верхних метров (рис. 4.1з). Подобные процессы наблюдаются в некоторых современных озерах со стратифицированной (разделенной на несмешивающиеся слои) водной толщей, например в Матано на острове Сулавеси (Индонезия). В нижнем, бескислородном слое этого озера обитают зеленые серные бактерии, которые используют Fe2+ в качестве донора электрона, и на дно оседают «зеленая ржавчина» — карбонатный минерал смешанного Fe2+/Fe3+ состава — и магнетит. Изучая жизнедеятельность подобных бактерий, и удается представить мир прошлого. Однако масштабы современного рудообразования несоизмеримо меньше и ограничены пространством болот и озер.

Некоторые свидетели, а возможно, и участники рудообразования были обнаружены в кремневых слойках формации Ганфлинт (1,9 млрд лет) на Канадском щите. В 1954 г. их открыли в провинции Онтарио американский геолог Стенли Тайлер и палеоботаник Элсо Баргхурн, решившие, что нашли древнейшие споры и пыльцу. Ошибка вполне простительная, поскольку в те годы ученым были доступны лишь петрографические и бинокулярные микроскопы. Ископаемые микроорганизмы величиной в несколько десятков и сотен микрометров оказались бактериями, причем очень разнообразными: звездчатые эоастрион (Eoastrion) и какабекия (Kakabekia) напоминают современных железобактерий (например, Metallogenium из Карельских озер), а нитчатые ганфлинтия (Gunflintia) и гурониоспора (Huroniospora) — вездесущих строителей биоматов, способных поставлять свободный кислород. Благодаря окремнению и современным технологиям, включая рамановскую микроспектроскопию, масс-спектрометрию вторичных ионов, электронное 3D-сканирование, лазерную конфокальную сканирующую микроскопию и синхротронную фазово-контрастную томографию, можно не только рассмотреть древние бактерии в деталях — отличить клеточную стенку от оболочки цисты, оценить степень структурной организации органического вещества, содержание в нем углерода, азота и серы, состав углеводородов, но также выявить других членов бактериального сообщества и понять, что существовали они в бескислородной среде. Так, обугленная оболочка нитчатой ганфлинтии свидетельствует о присутствии аэробных гетеротрофов, которые сохранились в виде округлых телец, а пиритизация такой же оболочки — о существовании сульфатвосстанавливающих анаэробных гетеротрофов (возможно, серных бактерий).

Железорудная эпоха закончилась в палеопротерозойскую эру, дав название ее первому периоду — сидерский (от греч. σίδηρος — железо). А положили конец этой эпохе 1,85 млрд лет назад, видимо, тоже сульфатвосстанавливающие бактерии, способные преобразовать сульфат (SO42–) в сульфид (НS). Океан обогатился сероводородом, активно поглощавшим железо с образованием нестойкого пирита. Исходя из распространения пирита и закисного железа, связанного в разных минералах, можно представить, что мелководье было охвачено сероводородным заражением, а глубины оставались закисными и также бескислородными (рис. 4.1з). Именно сероводородная прослойка не давала кислороду проникать глубже и окислять железо. Гипотезу эвксинизации протерозойского океана в 1998 г. предложил американский геохимик Дональд Кэнфилд, взяв за основу модель современного Черного моря, где господствует сероводородное заражение. (Греки называли этот водоем «Понт Эвксинский». И поскольку Понт стал моделью моря с сульфидными водами, сероводородное заражение вошло в литературу как эвксинизация.)

Лишь с «раскрытием железного занавеса», когда большая часть железа, растворенного в верхних слоях океана, осела на дно, положив начало будущим «магнитным аномалиям», свободный кислород стал накапливаться. Конечно, в очень небольших объемах кислород образовывался в атмосфере при фотолизе паров воды под действием ультрафиолетового излучения, поскольку свободный водород улетучивался в космическое пространство, что препятствовало обратному ходу реакции. Отметим, что это явление в чистом виде не может насытить атмосферу кислородом, поскольку по достижении определенной концентрации газа формируется озоновый щит и фотолиз прекращается, а весь накопившийся кислород опять уходит на окисление органических веществ и разных металлов. Так что свободный кислород — это исключительно побочный продукт фотосинтеза. (Не исключено, что цианобактерии стали выделять этот ядовитый для многих газ, чтобы обезопасить себя от фотосинтезирующих конкурентов, способных выжить лишь в анаэробной среде.)

Собственно, фотосинтезирующие организмы совершенно не заботились о насыщении атмосферы кислородом, а просто синтезировали органическое вещество по формуле:


H2O + CO2 + hν = CH2O + O2,


где hν — энергия фотона, которая используется для расщепления молекулы воды, а CH2O — условная формула органического вещества.


Причем процесс этот более рачительный, чем фотолиз воды под действием ультрафиолетового излучения: в этом случае молекула водорода связывается с органическим веществом, а не теряется безвозвратно в космосе. И если свободного кислорода не хватает для образования озонового слоя, то фотолиз может привести к исчерпанию источника воды, что, видимо, и произошло на Марсе.

Глава 9. Великое кислородное событие, акт первый: литосфера

Благодаря оттоку водорода с малого небесного тела в космос Марс и превратился в Красную планету: его цветовая гамма обусловлена окислением железосодержащих минералов, но свободного кислорода там не осталось.

На Земле насыщение кислородом атмосферы и верхних слоев гидросферы, с которыми воздух активно перемешивается вследствие штормов и ливней, обычно рисуется как поступательный процесс с резким скачком уровня этого газа примерно до 2 % и затем почти до нынешних объемов кислорода в воздушной оболочке Земли (20,95 %). Более тщательные исследования минерального, элементного и изотопного состава протерозойских вод (конечно, в виде выпавших из них осадков) показывают, что газ накапливался очень медленно. Даже в самом конце протерозойского эона уровень кислорода был неустойчив и не выходил за пределы 0,02 %. Точка невозврата,1–2 %, вероятно, была преодолена лишь на рубеже протерозоя и палеозоя (в эдиакарском-кембрийском периодах, 635–485 млн лет назад).

И пусть уровень кислорода в начале протерозойского эона достиг всего 1–2 %, этот рубеж полностью заслуживает своего научного признания как Великое кислородное событие, поскольку в архейской атмосфере живительного газа было не более 0,0001 % (рис. 4.1ж). С этим событием связаны существенные изменения в минералогическом составе горных пород (число минералов более чем удвоилось: с 1500 до 4000), наступление ледниковых эпох, пожалуй, самых суровых в истории планеты, и появление, а затем и бурная диверсификация (рост разнообразия) эукариот (рис. 4.1к, м).

Самым ярким свидетельством Великого кислородного события служат красноцветы — песчаники и конгломераты с песчинками и гальками, покрытыми водными окислами железа [FeO(OH); 2Fe2O3 × 3H2O)] — ржавчиной, которые начинают встречаться в континентальных отложениях возрастом от 2,43 млрд лет и моложе. А поскольку базальты — одна из наиболее развитых на поверхности суши пород — содержат железо в закисной форме, появление свободного кислорода вызвало окисление железа и привело к повсеместному покраснению этих мафических пород. Земля из черной планеты почти в одночасье стала красной, но не навсегда, как Марс. И не весь кислород остался связанным в минералах. Именно массовое появление новых минералов свидетельствует о повышении роли свободного кислорода во всех земных процессах. Например, его использовали серные бактерии для окисления сульфидов до сульфатов. И в ископаемой летописи 2,3 млрд лет назад появился гипс (CaSO4 × 2H2O). Хотя этот минерал весьма нестоек — быстро растворяется, заместившие его кремнезем и доломит сохранили присущую кристаллам этого сульфата форму: гипсовые розы и воронки, когда-то росшие на теплых пересыхающих мелководьях.

Возникновение обширного класса разбухающих глинистых минералов также связано с повышением уровня кислорода. Присутствие водонасыщенных глин, весьма недолговечных, выявляется по увеличению доли силикатных минералов с высоким содержанием δ18О в гранитной магме. Этот изотопный избыток является следствием усилившегося выветривания, к чему привело возрастание роли углекислого газа, и низкотемпературного диагенеза при изотопном обмене минералов с водной средой. Одновременно этот скачок изотопной подписи свидетельствует о появлении значительного резервуара обогащенных δ18О осадочных пород — глинистых сланцев и аргиллитов. (Углекислый газ, растворяясь в воде, превращается в угольную кислоту, которая изменяет многие минералы и изотопную подпись.)

Действительно, в архейских отложениях мощные глинистые толщи — главные продукты выветривания кристаллических горных пород — отсутствуют. Усиление выветривания отнюдь не абстрактный вывод, который следует из природы кислорода как сильнейшего окислителя: недаром французский химик Антуан Лавуазье назвал этот газ «кислоту рождающим» (франц. oxygène). Масштабы явления можно «поверить цифрой» как раз по росту объема глинистых минералов: темпы формирования глин резко увеличиваются в протерозое и продолжают нарастать до наступления фанерозойского эона. Все это является прямым следствием повышения уровня кислорода в атмосфере и, следовательно, побочным эффектом деятельности цианобактериальных сообществ.

Изменение окислительно-восстановительных условий океана привело к формированию новых типов руд — урановых, молибденовых, ванадиевых, а также фосфоритов и шунгитов. Например, органические черные сланцы стали накопителем урана — четверть мировых запасов руд этого радиоактивного металла образовались 2,4–2,2 млрд лет назад. В обогащенной кислородом среде U6+ выносится с суши, образует в морской воде трикарбонат уранила [UO2(CO3)34–], погружается в бескислородные глубины, восстанавливается до U4+ и оседает на отрицательно заряженных органических молекулах, образуя уранинит. Причем важнейшим механизмом восстановления и, следовательно, концентрации этого элемента является деятельность микробов, подобных железо- и сульфатвосстанавливающим бактериям.

Кислородное выветривание привело и к мобилизации фосфата, который активно использовался цианобактериями и накапливался как в отмершем органическом веществе, так и в виде карбонатапатита [Ca5(PO4,CO3)3F]. Из этого минерала на Индостанском щите даже построены строматолиты, образующие пласты мощностью 5–35 м и содержащие до 37 % фосфата. Богатые фосфатом породы возрастом 2,1–1,9 млрд лет сформировались и в других частях планеты. Причем изотопная подпись углерода в этих отложениях прямо указывает, что к их появлению были причастны фототрофы.

Наконец, кривая соотношения изотопов углерода действительно стала кривой с резкими перепадами значений этого соотношения от 0 до +13‰ в интервале 2,32–2,06 млрд лет (рис. 4.1е). Этот скачок, названный событием Ломагунди-Ятулий (по отложениям в Зимбабве и Карелии, где изотопная подпись особенно резко сдвигается в сторону положительных значений), указывает на значительные изменения в продуктивности фотосинтезирующих организмов, что, в свою очередь, отражает рост поступления биогенных элементов (фосфор, железо) с суши под воздействием кислородного выветривания и наземной биоты. Например, сидерит, который входил в состав полосчатых железистых формаций, с частью этих отложений уже оказался на суше, и его окисление обеспечивало цианобактерии сразу и железом, и карбонатом для образования органического вещества.

Кроме того, доля элементов, которые легко растворялись в бескислородном океане, уменьшилась по отношению к тем, что переносятся более насыщенной кислородом водой. К примеру, возьмем соотношение цинка и железа в карбонатных отложениях: оба этих элемента имеют одинаковую растворимость в морской воде и поступают из одних и тех же источников (в основном гидротермальных). Однако с появлением кислорода Fe2+ начинает окисляться до Fe3+ и выводится из раствора в виде окислов, тогда как для Zn2+ ничего не меняется — ионы этого металла продолжают осаждаться в карбонатах и соотношение Zn/Fe растет. Закономерным образом колеблется и фоновое содержание урана и молибдена — элементов, очень чувствительных к окислительно-восстановительному потенциалу среды. Резкие скачки в соотношении различных элементов и изотопов на архейско-протерозойской границе указывают на смену окислительно-восстановительной обстановки в древнем океане (рис. 4.1в, г, д). Изменился на этом рубеже не только минеральный состав, но и изотопный: навсегда исчезло независимое от массы фракционирование стабильных изотопов серы (рис. 4.1б). Появление «озонового щита» в протерозое воспрепятствовало фотолитическому распаду сернистого газа, и изотопная подпись Δ33S практически распрямилась — 0‰. Но озоновый слой мог образоваться только при наличии хотя бы 10–5 % кислорода в атмосфере.

К этому же рубежу (2,43–2,24 млрд лет назад) приурочены и первые в истории Земли следы оледенения: тиллиты, дропстоуны и уже упоминавшиеся варвиты. Тиллиты — это глинистая толща, вмещающая хаотически разбросанные угловатые разноразмерные валуны, а дропстоуны — эти самые валуны, часто с ледниковой штриховкой. Образуются подобные отложения на дне морей и озер, куда случайным образом падают обломки горных пород из тающих на поверхности водоема айсбергов и плавучих ледников. Ранее обломки были захвачены на суше при движении по ее поверхности ледового массива, поэтому на крупных валунах остаются приметные параллельные царапины и борозды — следы скольжения мелких обломков.

Если попытаться представить себе мир накануне кислородного события и через несколько миллионов лет после него, скажем на побережье небольшого вулканического острова, то архейская Земля будет выглядеть примерно так: черный пиритовый песок, омываемый волнами темно-сине-зеленого океана, куда впадают желтые серные ручьи, стекающие со склонов невысоких извергающихся вулканов. И весь этот пейзаж освещает красноватый диск солнца, то и дело исчезающий в густой оранжевой дымке. На второй картине песок становится красновато-серым, вулканы подрастают и их вершины покрываются снегом, а ручьи приобретают прозрачность и впадают в мутный бурый океан (в нем окисляется железо), но небо уже голубеет, яснеет, и солнце в зените утрачивает красноту.

Глава 10. Великое кислородное событие, акт второй: атмосфера

Великое кислородное событие выразилось не только в накоплении в атмосфере свободного кислорода, но и в изменении состава других газов. Метан с появлением мощного окислителя уже не мог накапливаться в атмосфере. А поскольку одного углекислого газа, который постоянно расходовался на выветривание горных пород, было недостаточно для создания постоянной атмосферной «шубы», температура в приземных слоях атмосферы начала падать (рис. 4.1н). Более того, в полосчатых железистых формациях и шунгитах захоранивались огромные объемы неокисленного органического углерода, и этот процесс препятствовал возобновлению прежнего уровня углекислого газа, который был изъят из атмосферы при фотосинтезе органического вещества. Если бы не это обстоятельство, Земле, вероятно, была бы уготована участь Венеры, где парниковый эффект, усилившийся по мере разогрева Солнца, привел к испарению океана.

Изменению температурно-газового режима атмосферы на Земле способствовали и два других фактора. Оба они были связаны с ростом площади суши: возросло альбедо (от лат. albus — белый) планеты («голые» безлесые континенты в отличие от океанов не столько поглощают солнечные лучи, нагреваясь, сколько отражают, остывая), и значительно увеличились площади горных пород, доступные для выветривания — по сути, связывания углекислого газа. Формулу этого процесса, если рассматривать наиболее распространенные горные породы — с высоким содержанием силикатов, — можно представить так:


СаSiО3 + 2СО2 + 3H2O → Са2+ + 2HСО-3 + H4SiО4.


Затем в морской среде H4SiО4, Са2+ и HСО-3 осаждаются как кремнезем и карбонат кальция, с высвобождением СО2, но в меньшем объеме:


H4SiО4 → SiО2 + 2H2O;

Са2+ + 2HСО-3 → СаСО3 + СО2 + H2O.


По счастью, этот процесс — саморегулирующийся: по мере того как суша покрывается снегом и льдом, площадь выходов горных пород, доступных для выветривания, сокращается, а поскольку вулканы и фумаролы продолжают выделять углекислый газ, его доля в атмосфере вновь начинает расти, приходит очередной парниковый цикл, и планета оттаивает.

Как раз к началу протерозойского эона континентальные плиты приросли почти на половину своей нынешней площади (рис. 4.1а), а горы приблизились к современным высотам. Есть ли этому доказательства? Во-первых, 1,8 млрд лет назад в ископаемой летописи появляются эоловые эрги — области подвижных дюн, связанные с деятельностью ветра в сухом климате, что указывает на наличие обширных внутриконтинентальных площадей. Во-вторых, меняется состав вулканических пород, что связано с формированием вулканических полей на суше (такие вулканиты выдает более кислый состав минералов, например, Fe3+/ΣFe > 0,3). В-третьих, иным становится соотношение некоторых изотопов (87Sr/86Sr), редкоземельных металлов (появление позитивной аномалии европия, источником которого тоже является суша) в морских отложениях, а также окислов (возрастает доля К2О по отношению к Na2О, что отражает переход от размыва древних богатых натрием гранитоидов к калиевым гранитам современного типа). Все это свидетельствует о резком усилении стока с суши и росте площадей последней.

Изотопная подпись стронция требует пояснений, поскольку к изотопной истории этого элемента придется обращаться часто. 86Sr поступает из мантии через гидротермы, а более тяжелый радиоактивный изотоп — продукт распада рубидия (87Rb) — выносится с суши в результате разрушения континентальной коры. В архейском океане, пока не сформировались настоящие континенты, изотопную подпись 87Sr/86Sr на отметках 0,701–0,702 оставляла мантия, но 2,2–1,8 млрд лет назад, с усилением притока тяжелого изотопа, «смысл» подписи изменился на более континентальный — 0,704–0,706. (Для сравнения: современное соотношение этих изотопов во всем океане, независимо от солености отдельных морей и заливов, — 0,7092.)

Лик Земли навсегда изменился и обрел современные черты, хотя суша занимала не более 15 % площади, а плато приподнялись только до 4000 м. Росли континенты в первую очередь за счет отложений эвапоритов (соли, образующиеся при сильном испарении в мелководных бассейнах) и карбонатов. Например, кратон Каапвааль прирос карбонатным поясом Кэмпбеллранд, 1,5 км мощностью и площадью 500 000 км2, причем среди карбонатов заметную роль играли строматолитовые рифы. И выходит, что в значительной степени континенты обязаны своим происхождением различным существам, без которых не образуются карбонаты и сульфатные разности эвапоритов (с начала фанерозойского эона в построении континентов начали играть важную роль многоклеточные животные в виде раковин, костей и других окаменелостей, а несколько позднее — и высшие растения, древесина и другие, органические ткани которых превращались в каменный уголь).

Прежние мелкие протоконтиненты постепенно нашли друг друга. Примерно 2,7 млрд лет назад кратоны Сан-Франсиску, Каапвааль, Зимбабве, Пилбара и, возможно, Индостанский щит сформировали материк, который иногда называют Зимваальбара. Кола, Карелия и другие части нынешней Северной и Восточной Европы собрались в Балтию, сибирские щиты — в Сибирь (Сибирскую платформу), а разросшийся Канадский щит вместе с некоторыми фрагментами будущей Западной Европы превратился в Лаврентию. Затем Балтия, Сибирь и Лаврентия, предположительно, сложились в Кенорленд (рис. 10.1). Все эти объединения проходили совсем не мирно: при столкновении континентальных масс дыбились горные цепи, а океаны схлопывались и снова открывались. Вероятно, во всех тектонических процессах существовали определенные, не до конца еще вскрытые закономерности. Так, в 1966 г. канадский тектонист Джон Тузо Уилсон на основе распределения горных пород заметил, что Атлантический океан несколько раз открывался и закрывался и его закрытие совпадало с формированием суперконтинента. Эти повторяющиеся явления теперь именуют циклами Уилсона (существование последнего суперматерика — каменноугольно-пермской Пангеи — выявил еще 100 лет назад немецкий гляциолог Альфред Вегенер). Хотя циклы Уилсона не объясняют всего многообразия глобальных тектонических событий, но суперконтиненты, которые собирали воедино более 75 % всей континентальной коры, на планете действительно появлялись примерно с интервалом 600–700 млн лет. Скажем, после распада Кенорленда 1,9 млрд лет назад образовалась Нуна. Это эскимосское слово означает землю у северного океана, а выбрано оно потому, что ядро Нуны составляли северные материки — Балтия, Сибирь и Лаврентия. 1,3 млрд лет назад распалась и она, чтобы через 700 млн лет сложилась Родиния — название этого континента происходит от русского слова «родить», буквально «дать начало» другим континентам. Окружал этот суперконтинент суперокеан Мировия. И если причины появления-исчезновения суперконтинентов еще предстоит найти, то само их существование подтверждается целым комплексом независимых доказательств. Так, палеомагнитные данные определяют широтное положение того или иного континента. Тектонические модели обрисовывают взаимную конфигурацию континентальных плит по наличию общих геологических структур и по размещению конвергентных и дивергентных границ. А состав осадочных отложений подсказывает, что, например, цирконы определенного возраста и состава, обнаруженные в Сибири, Северной Америке и Восточной Европе, имеют общий источник и могли единовременно попасть на все материки, только если их пересекал общий горный хребет.



Как уже сказано, вся эта материковая масса служила стоком для углекислого газа, что способствовало ослаблению парникового эффекта: метан оказался практически «съеден» кислородом, а Солнце все еще было на 6 % холоднее.

И первая ледниковая эра (гляциоэра) — гуронская — не заставила себя ждать. Она наступила 2,43–2,24 млрд лет назад, и с нее, по сути, начинается протерозой. Названа эта эра по ледниковым отложениям полуторакилометровой мощности, сформировавшимся на Канадском щите в районе современного озера Гурон. Слово «эра» подчеркивает, что это не было однократное событие: каждая гляциоэра длительностью в десятки и сотни миллионов лет включала несколько ледниковых периодов, подобных по временны́м рамкам нынешнему, начавшемуся 2,6 млн лет назад (14 млн лет назад — в Южном полушарии) и еще далеко не закончившемуся, и межледниковий.

Затем уровень углекислого газа значительно поднялся. Об этом свидетельствуют сами организмы, жившие в ту пору, 1,4–1,2 млрд лет назад. Так, изотопная подпись углерода из оболочек планктонных эукариот — акритарх — отражает фракционирование изотопов при парциальном давлении двуокиси углерода, в 10–200 раз превышавшем современное. Цианобактерии с обызвествленными чехлами уточняют эту цифру: все-таки не в 200 раз, а скорее в 10 (сегодняшняя атмосфера содержит 0,04 % СО2). Именно при содержании этого газа на уровне 0,36 % и ниже у цианобактерий возникает механизм концентрации углерода, включающий активный перенос бикарбоната в клетку и его преобразование в двуокись углерода, что сопровождается выделением ионов гидроксила и, как следствие, понижением кислотности среды и осаждением карбоната кальция. Этот минерал и образует известковую оболочку вокруг бактериального чехла (рис. 10.2).



Вновь масштабные оледенения охватили Землю в неопротерозое — в криогеновом (от греч. κρύος — холод и γένος — род, происхождение) и начале эдиакарского периода. Действительно охватили, судя по распространению ледниковых отложений — тиллитов-дропстоунов-варвитов, а также морозобойных клиньев, следов ледникового выпахивания (параллельных борозд на прочных коренных породах, процарапанных при движении по ним массы льда с захваченными каменными обломками), узорчатых грунтов (полигональной системы трещин, возникших при многократном промерзании и оттаивании грунта) и, конечно, морен (нагромождений валунов и галек, собранных ледником по мере движения). С этими отложениями сопряжены и железные руды, снова полосчатые. Но на этот раз железо поступало с суши, где в межледниковые эпохи выветривались базальты, богатые железом и неодимом. Присутствие последнего и указывает на источник металлов.

Ледниковые шапки простирались от полюсов до экватора: например, в Австралии ледники находились на широте 7,5–8,4 (рис. 10.1, 10.3). Отмечаются три основных оледенения: стертское, маринойское и гаскьеское (720–660, 640–635 и 580 млн лет назад соответственно).



Отложения каждого из трех ледниковых периодов перекрыты маломощным (<5 м) пластом венчающего доломита с резко отрицательным соотношением изотопов углерода. В таком доломите находят полости со сростками-ботриоидами огромных арагонитовых кристаллов (до 20 см длиной), обильные пластовые трещины (полости, теперь, конечно, заполненные морским цементом, между пластами), странные трубчатые структуры, так и названные тубстоунами, а также темпеститы (от англ. tempest — буря) — отложения, образовавшиеся в результате взламывания ураганами уже затвердевшего карбонатного дна. Если попытаться представить, в каких условиях могли образоваться венчающие доломиты, чтобы в них проявились подобные признаки, можно сделать вывод, что, скорее всего, то были жаркие условия (арагонитовые ботриоиды), когда в океанах зарождались грандиозные торнадо (темпеститы), а на мелководных шельфах быстро таяли метангидраты (кристаллические соединения метана с водой) и по трещинам (тубстоуны и пластовые трещины) в морском дне на поверхность устремлялись потоки метана. Также аномальная изотопная подпись углерода является следствием фракционирования изотопов этого элемента между газом и ионами карбоната при возросшем парциальном давлении СО2 и повысившейся температуре.

Высокий уровень углекислого газа подтверждается и другой изотопной аномалией, характерной для барита (сульфата бария), встречающегося в венчающем доломите, — Δ17О с негативными значениями до –0,70‰, небывалыми для всей последующей истории Земли. Современные значения Δ17О (+5,84‰) в сульфатах обусловлены окислением серосодержащих газов в тропосфере. Для того чтобы этот показатель снизился до –0,70‰, фракционирование должно происходить при аномально высоком парциальном давлении СО2 — в 750 раз выше нынешнего. При таком уровне СО2 тропосфера обогащается стратосферным кислородом с негативным показателем Δ17О, образование молекул которого из озона сопровождается независимым от массы фракционированием изотопов этого элемента. А избыточный углекислый газ как раз мог образоваться за счет окисления метана.

Получается не один парадокс — экваториальные ледники, а все два, включая быструю, в течение нескольких тысяч лет смену ледниковых условий парниковыми. Есть множество гипотез, объясняющих эту совокупность явлений, но нельзя сказать, что причина установлена. Понять механику криогеновых глобальных оледенений, однако, необходимо. Иначе все попытки предсказать даже ближайшее климатическое будущее Земли лишаются смысла.

Гипотезы о причинах криогеновых похолоданий можно разбить на четыре группы: астрофизические, тектонические, физико-химические и биосферные. Первые сводятся в основном к «мечтательным умствованиям» (выражение заимствовано у Венедикта Ерофеева): а что, если у Земли было ледяное кольцо, как у Сатурна? Или: а что, если ось вращения планеты лежала ближе к плоскости ее орбиты (≥54° вместо нынешних 22–24°), как у Урана? В обоих случаях оледенения наступали бы в низких широтах либо из-за тени от кольца, либо от слабого теплового потока вблизи экватора.

Каких-либо способов удостовериться, что «в той степени, в которой научное высказывание говорит о реальности, оно должно быть фальсифицируемо, а в той степени, в которой оно не фальсифицируемо, оно не говорит о реальности» (выражение заимствовано у Карла Поппера), авторами большинства гипотез, увы, не предлагается. Геологические данные, подтверждающие подобные идеи, отсутствуют. Точнее, они есть, но свидетельствуют как раз об обратном. Так, при положении оси вращения Земли под острым углом к плоскости ее орбиты полярная область, обращенная к Солнцу, за день бы прогревалась до точки кипения воды, а в тропиках, пусть и получавших меньше тепла, все равно бы наступала пара «курортных» сезонов — во время весеннего и осеннего равноденствия. Тогда бы ледниковые щиты нарастать не успевали, а центры накопления карбонатов и эвапоритов сдвинулись бы к полюсам. Ничего подобного в ископаемой летописи не наблюдается. Не «выручило» бы и ледяное кольцо: вследствие наклона оси тень от него падала бы лишь на зимнее полушарие, что тоже не способствует глобальному оледенению. Это явление определяется не суровыми зимними морозами, а низкими летними температурами, чтобы зародившийся ледник не успевал растаять. (Не зима должна быть долгой, а лето должно быть коротким.) И не будем забывать об относительной стабильности системы Луна — Земля — Солнце, которая исключает резкие колебания наклона оси планеты, но обеспечивает плавную, с периодом 26 000 лет, смену положения оси вращения планеты — прецессию. Прецессия тоже смягчала бы зимы при наличии ледяного кольца.

Тектонические гипотезы предполагают такие взаимные конфигурации континентов, которые хотя бы отчасти объясняли развитие на них ледниковых отложений. Увы, самое простое из возможных объяснений — сосредоточие континентальных масс вблизи полюсов, подобно современной Антарктиде или древней Пангее, — не подтверждается: суперконтинент Родиния располагался так, что значительные области суши оказались вблизи палеоэкватора. К концу криогенового периода этот суперконтинент как раз начинал дробиться (отделилась Лаврентия). Поэтому есть возможность увязать образование приэкваториальных ледников с зонами дробления — рифтами, подобными Восточно-Африканской рифтовой системе, вдоль которой растут вулканические цепи, и вершины самых высоких гор (Килиманджаро) покрыты снежниками. Однако площадные оледенения, в том числе следы обширных шельфовых ледовых полей (в виде отложений тиллитов, достигающих нескольких сотен метров мощности), в линейные рифтовые структуры никак не вписываются, и гипотеза «Земли на рифтовых молниях» тоже отпадает. Эта модель больше подходит для гуронской гляциоэры и отчасти для маринойского оледенения.

Климатические модели типа «Земля — талый комок» связывают площади горных пород, подвергающихся выветриванию, их состав и влияние наземной биоты на скорость выветривания с параметрами гидросферы (стратифицированный или смешанный, но обязательно открытый в области экватора океан, а в последнем случае и наличие морских течений определенной направленности) и атмосферы (газовый состав). Эти модели достаточно хорошо объясняют, что ледяной щит средней мощности 2500 м (и до 5000 м в Лаврентии и Антарктиде — этот континент часто оказывался крайним) мог вырасти за несколько сотен тысяч лет. Ледники зародились в Гренвильской горной системе (ее остатки составляют восточную часть Канадского щита), достигавшей высоты 2000 м, и за 50 000 лет охватили весь суперконтинент Родинию; уровень Мировии упал на 200 м. Однако венчающий доломит с этой моделью согласуется плохо.

Модель «Земля — снежок», предложенная американским геофизиком Джозефом Киршвинком в 1992 г., вообще предполагает длительное суровое оледенение всей планеты при резких скачках уровня углекислого газа и относительно неплохо увязывает чередование ледников в тропических широтах с быстрым образованием на их месте венчающего доломита. Важная роль в этой модели отводится суперконтиненту, низкоширотное положение которого повышает альбедо планеты, а обширная суша служит стоком углекислого газа — так начинается холодный период. Стоит же ледникам спуститься от полюсов до широт 30°, образование «снежка» неизбежно, поскольку альбедо снега и льда еще выше, чем у голого континента. Когда же вся поверхность суши покрывается льдом, углекислый газ перестает расходоваться на выветривание и начинает накапливаться в атмосфере (вулканическая деятельность ведь не прекращается). И достаточно парциальному давлению СО2 достичь уровня 12 000 Па (для этого при современных темпах поступления двуокиси углерода требуется всего несколько миллионов лет), весь процесс разворачивается в обратную сторону и развивается по нарастающей вплоть до образования венчающего доломита, знаменующего приход очередной парниковой эры. Как показали симуляционные модели, весь ледовый панцирь, учитывая низкоширотное положение ледников, может растаять всего за несколько тысяч лет.

Конечно, сплошные оледенения не длились десятки миллионов лет, а прерывались потеплениями, о чем свидетельствует чередование осадочных отложений разного происхождения. В стертских отложениях Австралии, например, распознается четыре ледниковья, перемежавшихся с теплыми эпохами. Но как жизнь сохранялась под сплошным ледяным панцирем? Вероятно, в гигантских трещинах во льдах, которые раскалывались в районах выхода гидротермальных источников или при торошении, вызванном лунными приливами. Одни организмы существовали в подледных озерах, подобных современному озеру Восток в Антарктиде. Другие выживали в пузырьках воздуха во льду, как некоторые одноклеточные на Байкале, пережидающие суровые зимы от оттепели до оттепели. Третьи — в криоконитовых ямах, которые протаивали под скоплениями темной минеральной пыли — криоконита (такие ямы известны на всех крупных ледниках). Неудивительно, что на кратоне Сан-Франсиску в ленточных глинах обнаружено от 1,7 до 4 % органического вещества. Может быть, такое «скучивание» организмов на небольших площадях даже сыграло положительную роль в эволюции — именно в таких оазисах могли зародиться многоклеточные.

Остается необъяснимым, или необъясненным, лишь один пунктик: что провоцировало начало ледниковых эр? Если исключительно положение континентов, то почему между гуронской и криогеновой гляциоэрами (более миллиарда лет) глобальные оледенения не случались?

Впрочем, если на Земле в то время бурно эволюционировали эукариоты, то их эволюция должна была привести к появлению массы фитопланктона, который, в отличие от цианобактерий, производит больше органического вещества на единицу потребленного азота и фосфора. А чтобы расти, все эти одноклеточные водоросли должны были фотосинтезировать, захватывая углекислый газ. Превращаясь со временем в мортмассу, огромные объемы органического вещества уходили в бескислородные толщи океана, начинавшиеся уже на небольшой глубине, унося углерод и не давая ему окисляться и вновь возвращаться в атмосферу в виде двуокиси. В связи с этим содержание парникового газа в атмосфере могло снизиться до критического, что и привело к наступлению холодов.

Так ли было на самом деле? Эволюция фитопланктона, главным образом акритарх, неплохо запечатлена в геологической летописи: их разнообразие с начала протерозойского эона ко времени тропических оледенений возрастало почти по экспоненте (рис. 4.1 м). Однако для поглощения значительных объемов углекислого газа важно не разнообразие, а общая биомасса и размер отдельных особей (крупные формы погружаются быстрее, особенно когда слипаются вместе). Для набора биомассы требуется только подкормка (равно как и для набора массы). Косвенными свидетельствами усилившегося в это время потока органического вещества на дно служат неопротерозойские сдвиги изотопной подписи углерода в карбонатных отложениях в сторону резко негативных значений (до –10‰), предшествовавшие каждому оледенению. Поскольку в бескислородной обстановке органика разлагалась анаэробными бактериями, фракционирование ими изотопов углерода и могло выразиться в этих негативных аномалиях. В закисном океане органическое вещество разлагается благодаря восстановлению железа и сульфата, в результате чего образуется не столько двуокись углерода, сколько бикарбонат-ион, который, реагируя с железом, выпадает в осадок в виде сидерита:


2CH2O + 8Fe3+(OH)3 → 8Fe2+ + 2HCO3- + 14OH- + 6H2O;

8Fe2+ + 8CO32- → 8FeCO3.


Получившийся сидерит и формировал полосчатые железистые руды криогенового периода.

Для подкормки фитопланктона дефицитным фосфатом свою лепту могла внести и древняя наземная биота, которая, судя по некоторым седиментологическим признакам, уже существовала. Одним из показателей разрушительно-созидательной деятельности наземной биоты, т. е. химического выветривания, как раз и является рост содержания фосфора в морских отложениях. С криогенового периода (800 млн лет) массовая доля фосфора в ископаемой летописи (конкретно, в сланцах) возрастает сразу в 4 раза — с 0,051 до 0,209 %. Увеличивается и число фосфоритовых месторождений. Вероятно, наземную биоту представляли некоторые группы актинобактерий, водорослей, грибов и лишайников, которые химически и механически взламывают кристаллическую решетку. Лишайники являются симбиозом все тех же водорослей и грибов и, несмотря на свой невзрачный вид — корки на камнях, небольшие рожки и «кустики», — заметно повышают темпы химического выветривания. Актинобактерии — древняя группа прокариот — способны извлекать ионы Mg, Ca и Si из базальтов, коматиитов и гранитов в два-три и даже в десятки раз быстрее (в зависимости от породы), чем любые химические процессы.

Пока следы достаточно сложной наземной биоты, существовавшей 1,0 млрд лет назад, обнаружены только в Северо-Западной Шотландии: в озерных отложениях того времени, которые ныне слагают песчаные скалы Торридона, есть прослои серых сланцев, а в них — фосфатные стяжения с микроскопическими остатками. Несмотря на мелкие размеры, некоторые из ископаемых намного крупнее любых бактерий. Среди них встречаются и многоклеточные формы, и клетки с очень сложным строением оболочки (рис. 10.4). Вероятно, то были одноклеточные и колониальные водоросли, а росли они вместе с колониальными коккоидными и нитчатыми цианобактериями на дне временно пересыхающих водоемов.

В океане на биогенах бурно развивался фотосинтезирующий планктон, и образовавшееся органическое вещество со временем уходило на дно. О высоких темпах захоронения неокисленной органики свидетельствует углеродная изотопная аномалия, приуроченная к морским отложениям, как раз предшествующим началу стертского оледенения (720 млн лет назад): δ13С = +13‰. И если органика погребается в неокисленном виде, то весь углекислый газ, выхваченный из атмосферы и связанный в виде органических соединений, не поднимется вновь в воздух, а его содержание может упасть ниже критической отметки, при которой поддерживается парниковый эффект. Наступает похолодание. Этот процесс саморегулирующийся: похолодание вызывает вымирание планктона, двуокись углерода больше не изымается из атмосферы (и не расходуется на выветривание скованных ледяным панцирем горных пород) и начинает накапливаться в атмосфере, поступая вместе с вулканическими эманациями. Парниковый эффект возобновляется, льды тают, талые воды выносят в океан огромные объемы накопившихся во льдах в виде пыли биогенов, фитопланктон «цветет»… Судя по многочисленности оледенений в криогеновом-эдиакарском периодах (по меньшей мере три, а возможно и пять, не считая более мелких циклов), биосферная гипотеза наиболее близка к истине.


Глава 11. Великое кислородное событие, акт третий: биосфера

Наконец, третье и наиболее существенное последствие Великого кислородного события — появление эукариот, что, собственно, привело ко второму событию (изменению состава атмосферы) и предопределило первое (распространение новых минералов). Вполне возможно, что случилось это событие вынужденно: свободный кислород — вещество исключительно активное и легко взаимодействует с органическими молекулами, окисляя их. Поэтому избыток кислорода грозит живым существам гибелью. Выход из ситуации был найден неожиданный и радикальный: создание своего рода живой матрешки, где внутри одной клетки, изолированно от ее внутренних структур, с помощью дополнительной мембраны была упрятана другая. Так предшественники эукариот обрели симбиотическую органеллу митохондрию, обеспечивающую защиту от опасного кислорода благодаря его постепенному усвоению, т. е. дыхание. У митохондрий до сих пор сохранилась собственная ДНК, указывающая на их прямое родство с альфа-протеобактериями, которые используют кислород как акцептор электронов для пополнения энергетических запасов клетки, а именно для синтеза аденозинтрифосфорной кислоты (АТФ). Симбиогенез с альфа-протеобактериями обеспечил будущих эукариот необходимыми запасами дешевой энергии. Ведь из всех возможных путей обмена веществ именно кислородное дыхание дает наибольший выход свободной энергии в расчете на одну использованную (окисленную) молекулу органического вещества (например, глюкозы). Без подобной энергетической подпитки никогда бы не появились ни подвижные существа, ни многоклеточные, ни крупные одноклеточные вообще. Даже организмы, перешедшие на анаэробное дыхание, по-прежнему пользуются митохондриями, хотя у них эти органеллы преобразовались в гидрогеносомы и митосомы, восстанавливающие электроны до водорода. (Не исключено, что в этом случае бывшие альфа-протеобактерии «вспоминают» свое прошлое: так, пурпурные несерные бактерии, относящиеся к этой группе, используя разные источники протонов, могут жить и в аэробной, и в анаэробной среде.) За длительное, по меньшей мере 2 млрд лет, время сосуществования с хозяевами митохондрии передали значительную часть своего генного аппарата клеточному ядру, и в ядерном геноме оказались чужеродные гены все тех же альфа-протеобактерий, например такие, что кодируют белки, устойчивые при высоких температурах.

Вслед за этим актом обретения сложности последовал еще один: клетки с митохондриями обзавелись собственными фабриками фотосинтеза — пластидами, или хлоропластами. Последние являются прямыми потомками свободно живущих цианобактерий. Среди возможных претендентов на эту роль рассматриваются и шаровидные хроококки. Хроококки улавливают в дневное время азот, для чего используют запасенные ночью полисахариды и крахмал (многие цианобактерии на это не способны). Обретение фотосимбионта оказалось выгодным вдвойне: сразу и органические запасы, и азотистые «удобрения». Возможно, именно потребность в фиксации азота — значимого биогенного элемента — могла быть первичной задачей симбиогенеза. Организм-хозяин усваивает его в виде аммонийного иона (NH4+). Так появились красные и зеленые водоросли — первичнопластидные, или архепластиды (Archaeplastida).

Как и в случае с митохондрией, часть генетической информации новой органеллы была передана ядру, геном которого у растений содержит почти 20 % генов цианобактерии (а пластиды удержали менее 10 % изначального бактериального генома).

Хотя теория симбиогенеза — многоступенчатого симбиоза различных прокариот, сформировавших эукариотную клетку, — зародилась более 100 лет назад — в трудах российских ботаников и физиологов Андрея Сергеевича Фаминцына, Константина Сергеевича Мережковского и Бориса Михайловича Козо-Полянского, их правоту подтвердили только молекулярно-генетические исследования последних лет. Более того, если до нынешнего тысячелетия считалось, что строение клеточных мембран не позволяет одному микробу поглотить другого, чтобы тот остался цел и невредим, недавнее открытие протеобактерий двух разных групп, которые существуют одна внутри другой, делятся продуктами обмена веществ и даже обмениваются генами, доказывает возможность симбиоза разных прокариот.

В железорудной формации Ганфлинт (1,9 млрд лет) наряду с простенькими бактериями найдена довольно сложная эосфера (Eosphaera), представляющая собой относительно крупную клетку (до 30 мкм) с двойной оболочкой, между слоями которой закономерно расположены мелкие сферические тельца (1–7 мкм в диаметре). Даже в более древней формации Стрелли-Пул (3,43 млрд лет) присутствуют относительно большие и сложные по меркам микромира чечевицеподобные клетки — с оторочкой на поверхности и мелкими сферическими тельцами внутри. Так вполне могли выглядеть древние симбиотические прокариоты, пока еще не превратившиеся в эукариот. А в мелководных морских аргиллитах и сланцах возрастом 3,2 млрд лет на Каапваале найдены органические сферы до 0,3 мм в диаметре — самые крупные организмы архейского эона. Они намного прочнее бактериальных оболочек, но в то же время не имеют сложной структуры стенки и намного крупнее большинства бактерий. И такими вполне могли быть начинающие эукариоты.

Что касается клетки-хозяина — той, которая гостеприимно предоставила кров альфа-протео- и цианобактериям, — то ею могла послужить асгардархея. Эта группа архей, представители которой носят имена древнескандинавских богов (а вся группа — имя их святилища), наиболее близка к эукариотам по молекулярным данным и обладает множеством генов, отсутствующих у всех прочих прокариот, но характерных для эукариот. Например, у них есть гены, кодирующие белки для построения цитоскелета, передачи химических сигналов, образования и перемещения вакуолей внутри клетки. По характеру обмена веществ и строению клеточной мембраны асгардархеи тоже близки к эукариотам. (Впрочем, мнения о конкретных участниках и порядке событий симбиогенеза очень разнятся.)

Началу Великого кислородного события предшествовало еще одно важное явление — формирование в палеопротерозое (2,415 млрд лет назад) в Каапваале богатейшего марганцевого месторождения, где содержание Mn достигает 4 ×103 млрд кг. (Марганцевые руды этого времени разведаны также на Индостанском и Западно-Африканском щитах.) Марганец здесь связан с карбонатом — кутнoгоритом [(CaMn2+0.7Mg0.3)CO3)2]. Кутногорит образовался в результате диагенетического восстановления окисла марганца — браунита [Mn3+6Mn2+(SiO4)O8]. Все же литологические и изотопные особенности марганцевой руды указывают на то, что сами первичные окислы кристаллизовались в бескислородной среде! Сильные окислители — свободный кислород, перекись водорода или иные перекиси — тогда просто не существовали. Значит, роль окислителя сыграло что-то другое. Это «что-то» существует до сих пор в виде водоокисляющего комплекса фотосистемы II. В данном комплексе четыре атома Mn, связанных через кислородный мостик с одним атомом Са, являются переносчиками электронов и под действием света способны окислить две молекулы воды до кислорода. Получается, что важнейший комплекс фотосистемы II, который, собственно, обеспечивает пополнение атмосферы кислородом, сформировался еще у анаэробных предшественников цианобактерий, которые и положили начало кислородной революции. Учитывая насыщенность архейского и палеопротерозойского океана ионами Mn2+, которые относительно легко расстаются с электронами, использовать такой ресурс было можно и нужно.

С появлением свободного кислорода возникли новые группы прокариот, полагавшиеся на кислород как на главный источник энергии, и анаэробным старожилам пришлось потесниться. В конечном счете возросло разнообразие сообществ, что, например, выражается в появлении 2,25–2,05 млрд лет назад множества новых форм строматолитов (рис. 4.1л). Время событий симбиогенеза можно определить благодаря ископаемой летописи. Альфа-протеобактерия стала симбионтом не позднее 1,8 млрд лет назад: к этому уровню приурочены древнейшие остатки эукариот. С этого же — палеопротерозойского — времени начинают встречаться ископаемые остатки, в которых узнаются сложные организмы — эукариоты. 1,8–1,65 млрд лет назад возникли одноклеточные зеленые водоросли, известные как акритархи. 1,56 млрд лет назад уже существовали крупные (до 30 см длиной и 8 см шириной) многоклеточные водоросли с хорошо выраженным листовидным талломом (слоевищем), 1,2 млрд лет назад — красные водоросли, мало отличимые от современных колониальных бангиевых: длинные цепочки из радиально и поперечно делящихся клеток, окруженных общей внешней оболочкой. 850–650 млн лет назад настало время многоклеточных зеленых водорослей с сифонокладальным талломом (многоядерные клетки, соединенные в ветвящиеся нити) и сифоновых желто-зеленых (кустистая на вид, но одна многоядерная клетка). Все это очень разные группы: зеленые и красные водоросли, как уже сказано, принадлежат к архепластидам, желто-зеленые относятся к страменопилам (Stramenopiles) — другой главной ветви эукариот, представители которой имеют жгутик сложного строения и митохондрии с трубчатыми выступами стенки — кристами; форма крист и подсказала их общее название (от лат. stramentum — соломка, или трубочка, и pilus — волос).

В основном такие органические остатки представляют собой устойчивые к разложению клеточные оболочки, усиленные пигментом. (Пигмент был необходим древним планктонным и мелководным водорослям, чтобы обезопасить себя от ближнего ультрафиолетового и видимого света; более коротковолновое излучение уже экранировалось озоном и кислородом.) Многие из этих находок далеко не единичны: например, сатка (Satka), получившая имя уральского городка, тимофеевия (Timofeevia), названная в честь известного исследователя древнейших организмов геолога Бориса Васильевича Тимофеева, и якутиянема (Jacutianema), впервые обнаруженная в Якутии, теперь известны на Шпицбергене, в Австралии, Канаде, Индии и Китае — везде, где имеются сходные морские отложения. Видимо, удачные эволюционные новшества распространялись очень быстро.

Если некоторые из перечисленных групп имеют достаточно выразительную морфологию, позволяющую определить их принадлежность, с акритархами все было очень непросто. Открытые в 1830-е гг. в нижнепалеозойских отложениях, они долгое время считались организмами неясной природы (отсюда и название: от греч. α-κρϊτος — неопределенный и άρχή — начало). Причем известно их было не так уж много. Лишь столетие спустя, когда Б. В. Тимофеев нашел способ извлекать многочисленные органические оболочки акритарх из аргиллитов и алевролитов с помощью смеси сильных кислот, эти ископаемые превратились в наиболее важные индикаторы возраста докембрийских отложений и обстановки, в которой они формировались. Было понятно, что эти миниатюрные сморщенные диски (не более 0,8 мм в диаметре) когда-то были шариками, плавающими в водной толще, — фитопланктоном. Но только новейшие методы микроскопии и анализ состава вещества позволили отчасти раскрыть загадку их принадлежности. Шарики оказались упакованы в очень устойчивую (к воздействию кислот) трехслойную клеточную оболочку, в составе которой выявлены полиароматические и разветвленные алифатические углеводороды, адсорбционные спектры которых ближе всего к альгенанам зеленых водорослей. Похоже, что у акритарх чередовались половое и бесполое поколения. От представителей последнего сохранились гладкие, легко распадавшиеся оболочки цист, покоившихся на дне. Каждая циста, вероятно, содержала зиготу, образовавшуюся при слиянии половых клеток. У цист хорошо выражен пилом — щель разверзания, через которую зооспоры или автоспоры — результат деления зиготы — когда-то покинули цисту. Размножавшиеся половым путем (на что опять же указывает наличие пилома), но нередко и делением, особи имели сложные оболочки с многочисленными оторочками, шипами или выростами, видимо удерживавшими слизь. Все эти поверхностные структуры повышали плавучесть. Внутри такой оболочки и находилась циста.

Именно акритархи преобладали среди протерозойских планктонных эукариот как по числу видов, так и по количеству экземпляров, и впоследствии изобиловали в палеозойских морях наряду с празинофитовыми (такими, как Tasmanites). Празинофитовые отличаются от акритарх по характерным пористым органическим оболочкам. Менее распространенными планктонными зелеными водорослями были одноклеточные существа с ажурными, сетчатыми, округлыми фосфатными скелетиками (Characodictyon и другие, 15–50 мкм в диаметре). Ныне подобные фосфатные чешуйки тоже есть только у празинофитовых. Пока такие скелетики известны лишь из относительно глубоководных отложений (группа Фифтинмайл), сформировавшихся 800–700 млн лет назад на границе нынешней Аляски и Канады.

Особенно бурный рост водорослевого фитопланктона начался после стертского оледенения. Это событие фиксируется по значительному сдвигу в соотношении биомаркеров: до оледенения ископаемое органическое вещество было в основном сложено гопанами, а после более половины объема такого вещества стали составлять стераны. Первые являются продуктами распада бактериальных остатков, а вторые — эукариотных. Интересно, в свою очередь, соотношение разных молекул среди стеранов: холестаны, преобладающие в достертских отложениях, свидетельствуют о том, что в океане того времени обитали красные водоросли и гетеротрофы, а послестертские эргостаны и стигмастаны могли принадлежать зеленым водорослям. Следовательно, с послестертского времени (около 650 млн лет назад) эукариоты становятся важной группой в океане. Сам же стремительный рост разнообразия и биомассы фитопланктона был обусловлен тем, что таяние ледников усилило приток в океан биогенных веществ.

Одновременно менялось и донное сообщество. Бактериальные пленки и даже биоматы были двумерными, поскольку даже вертикальные нити не добавляли бактериальным сообществам прижизненной пространственной структуры (строматолиты — это все-таки посмертные монументы). Бентосные зеленые, желто-зеленые и красные водоросли благодаря своим размерам образовали на дне морей первые трехмерные сообщества организмов — подводные луга. Такие луга распространились в конце мезопротерозойской — начале неопротерозойской эры (1200–650 млн лет назад), несмотря на суровое криогеновое похолодание (850–650 млн лет назад): ископаемые остатки «луговой растительности» известны из Сибири, Канады, Шпицбергена и Южного Китая. Количество видов в отдельных сообществах достигало 30 и более (в палеопротерозое не доходило и до 10). Однако стабилизаторами подвижного субстрата, склеивавшими частицы осадка в плотный грунт, пригодный для закрепления водорослей, все еще выступали нитчатые цианобактерии, чьи остатки достаточно обычны среди позднепротерозойских комплексов.

Обилие отмершей органики не могло не привести к появлению крупных ее потребителей. Бактерии, такие как сульфатвосстановители (чье присутствие выдают микроскопические цепочки пирита), хотя и справляются с компостом, но не так споро. Им на помощь к концу мезопротерозойской эры пришли одноклеточные грибы. Одни из них были похожи на хитридиевые (Chytridiomycota), другие — на мукоровые (Mucoromycota). Протерозойские хитридиевые хорошо определяются по характерным зооспорангиям — овальная клетка с оболочкой и ризомицелием в виде тонких ветвящихся нитей, которые врастают в субстрат — в отмершие талломы водорослей. Спорангиеносцы древних мукоровых, как и современные, похожи на миниатюрные спички. Правда, у «спички» бывает сдвоенная «головка» — сидящие друг над другом спорангии: в нижнем формировались многочисленные споры (он практически непрозрачный), верхний содержал всего несколько спор (он прозрачный с различимыми отдельными клетками). Вероятно, разнообразие протерозойских грибов было очень большим. Например, среди акритарх есть оболочки, покрытые трубочками с поперечными перегородками, очень похожими на септированные грибные гифы — тонкие трубочки, образующие грибницу. Встречаются сложные сплетения гифов, видимо принадлежавших многоклеточным грибам. А самые древние возможные грибы, возрастом 2,4 млн лет, происходят из Каапвааля: в полостях, образовавшихся в подушечных базальтовых лавах, они росли в виде мицелия из тонких (2–12 мкм в диаметре) полых переплетающихся нитей.

Учитывая, что грибы имели общих с животными прародителей, время их появления косвенно определяет временной рубеж, не ранее которого должны были возникнуть и существа, давшие начало многоклеточным животным, — около 1 млрд лет. Вместе грибы, многоклеточные животные и некоторые одноклеточные организмы составляют единую группу заднежгутиковых эукариот (Opisthokonta), поскольку хотя бы на одной стадии жизненного цикла у них появляются клетки с одним двигательным жгутиком. Грибы, эволюционируя как сидячие осмотрофы, потеряли часть «ненужных» им предковых генов, сохранившихся у животных.

Пока же из криогеновых отложений известны только одноклеточные представители других гетеротрофов, иначе говоря, хищников. Это раковинные, или лобозные, амебы (Amoebozoa), фораминиферы с тонкими ложноножками — ризоподиями (Rhizaria) и сидячие инфузории-тинтинниды (Alveolates, от лат. alveolus — желоб). Для клеток альвеолят характерным признаком является слой пузырьков (альвеол), расположенный непосредственно под клеточной мембраной. Это значит, что не позднее криогенового периода на Земле уже существовали все основные группы эукариот: архепластиды, страменопилы, альвеоляты, ризарии, амебозои и опистоконты. (Не хватает лишь экскават, но эти крошечные одноклеточные паразитические существа практически не имеют шансов попасть в палеонтологическую летопись.) Различаются остатки древних одноклеточных раковинных организмов по составу, форме и микроструктуре раковинок и органического вещества. У древних фораминифер (Foraminifera), например, раковинка представляет собой пористую трубочку с агглютинированной стенкой, т. е. состоит из мельчайших зерен кварца, слюды, гематита и полевого шпата (эти же минералы слагают вмещающую породу, но в породе зерна разноразмерные и среди них много крупных частиц); поры были необходимы для выхода ризоподий, которыми фораминифера захватывала добычу. Питались все эти существа другими, более мелкими одноклеточными, от которых совсем ничего не осталось. Или пока ничего не нашли.

Выход на сцену одноклеточных хищников не мог не преобразить всю биоту. (В современных водоемах внедрение выедателей резко усиливает темпы роста зеленых водорослей и диатомовых, поскольку выедание планктона ускоряет круговорот ранее потребленных питательных веществ. В новых поколениях водорослей увеличивается содержание белков, что делает их еще более привлекательными для гетеротрофов. Наоборот, количество цианобактерий уменьшается, хотя они и защищаются от выедателей с помощью ядов.)

И тогда, между 800 и 540 млн лет назад, роль строматолитов резко уменьшилась (рис. 4.1л). Значительно сократилось не только разнообразие построек, но и обилие: все реже формировались отложения при участии строматолитовых сообществ. Поскольку коренная перестройка в химическом составе океана еще не произошла, конец строматолитовой эпохи мог наступить из-за развития фитопланктона, препятствовавшего проникновению света в придонные слои. Отчасти этому способствовали и появление бентосных эукариотных «лугов», развивавшихся быстрее цианобактериальных сообществ и занимавших их место, и системообразующая роль выедателей.

Часть II. Мир вендобионтов (635–540 млн лет назад)


Глава 12. Вендский залив и Эдиакарские холмы

Последнее «столетие» (100 млн лет) протерозойского эона резко отличается от предыдущих без малого 2 млрд лет. Это уже не время одних только микробов и бактериальных сообществ с некоторым участием одноклеточных эукариот, в основном водорослей. Палеонтологическую летопись Земли начинают творить изощренные авторы с хорошо различимым почерком и стилем. Все больше появляется многоклеточных существ, и сами они становятся все больше, дорастая до двухметрового размера (максимальная величина организмов предыдущих эпох не превышала 0,3 м, хотя то, вероятно, были не одиночные особи, а колонии).

Этот временной интервал — 635–541 млн лет — называется эдиакарским периодом. Правда, в литературе встречается и другое название — венд. Вендскую систему в 1952 г. установил советский геолог и палеонтолог Борис Сергеевич Соколов на Восточно-Европейской платформе (континент Балтия). (Система — это отложения, накопившиеся за соответствующий период, точнее, период — это время накопления отложений определенной системы.) Ее типовые геологические разрезы находятся в бассейне реки Днестр, на границе Молдавии и Украины. А названа она по имени вендов, или венетов, так латинские авторы, начиная с Тацита (II в. н. э.), именовали народы, населявшие южное побережье Вендского залива (Балтийское море); когда здесь появились славяне, имя приросло и к ним. (Традиция давать системам/периодам хроностратиграфической шкалы имена древних народов и племен, населявших территории, где расположены ключевые разрезы, восходит к XIX в., когда были выделены ордовикский, силурийский и пермский периоды.)

Название «эдиакарская система» появилось позже: в 1960 г. его впервые упомянули французские геологи Анри и Женевьева Термье, а в 1981–1982 гг. предложили утвердить официально палеонтологи Мартин Глесснер, Ричард Дженкинс и Престон Клауд из Австралии и США. В 2004 г. это название было закреплено в Международной хроностратиграфической шкале за верхним подразделением протерозойской эонотемы. Типовые разрезы системы находятся на Эдиакарских холмах в горах Флиндерс в Южной Австралии, а за ее основание, нижнюю границу, принята кровля венчающего доломита маринойского оледенения. И это самый древний на сегодняшний день период, который имеет конкретное выражение в осадочных отложениях с определенным набором ископаемых остатков: все прочие подразделения архейского и протерозойского эонов именуются по основным событиям в геологической истории Земли, случившимся в те временные отрезки, а их границы имеют только радиометрическое выражение.

Главным отличием эдиакарской системы от других подразделений протерозойской эонотемы является обилие ископаемых организмов: разнообразные акритархи и другие водоросли, фосфатизированные эмбрионы Доушаньтуо, древнейшие ископаемые следы животных, первые скелетные остатки и, конечно, эдиакарская «мягкотелая фауна», или вендобионты (Vendobionta). Именно эволюция последних предопределила начало и конец особого периода в летописи Земли, а драматичная история их открытия — установление эдиакарской системы. Впервые отпечаток подобного организма, получивший имя аспиделла (Aspidella), был найден еще в 1872 г. на Восточном Ньюфаундленде геологом Элканахом Биллингсом, пионером исследований кембрийских и более древних отложений в Северной Америке. Аспиделле, как и многим другим эдиакарским ископаемым, описанным до середины прошлого века, была уготована незавидная судьба: их не признавали за органические остатки (как случилось и с самой аспиделлой), а если признавали, то считали вмещающие отложения кембрийскими или даже более поздними. Такая участь постигла и знаменитую фауну Эдиакарских холмов, открытую в 1940-е гг. австралийским геологом Реджиналдом Сприггом, и суворовеллу (Suvorovella) — одно из самых необычных ископаемых среди всей странной докембрийской фауны, обнаруженное в 1960 г. на якутской реке Мае, и фосфатизированные многоклеточные микроостатки из Северной Монголии.

Лишь с установлением эдиакарской системы стало ясно, что подобные организмы населяли моря и океаны, прежде чем появились более понятные кембрийские скелетные животные.

Глава 13. Задержка в развитии

Хотя эукариоты возникли в середине палеопротерозойской эры (2,1–1,8 млрд лет назад) и в течение мезо-неопротерозойского интервала постепенно становились разнообразнее и обильнее, их остатки встречаются не так уж часто. А вот осадочные слои эдиакарского периода буквально переполнены ископаемыми. Получается, что на протяжении миллиарда лет что-то тормозило темпы эволюции.

Американский геохимик Роджер Бюик, в 1995 г. изучавший мезопротерозойские отложения на северо-западе Австралии, даже охарактеризовал данный интервал словами Уинстона Черчилля, перефразируя историческое выражение премьер-министра Великобритании: «Никогда еще в истории Земли не случалось так мало за так много времени». А в научную литературу временной отрезок от 1,85 до 0,85 млрд лет вошел как «скучный миллиард».

Замерло накопление фосфоритов и гипсов, не образовывались шунгиты и другие богатые органическим веществом породы, даже оледенения прекратились (гуронская гляциоэра закончилась 2,24 млрд лет назад, а криогеновая началась лишь полтора миллиарда лет спустя). За время «скучного миллиарда» разнообразие акритарх — самой распространенной группы эукариот — оставалось практически неизменным, как и сами акритархи (одни и те же формы существовали от 0,4 до 1,1 млрд лет каждая), а темпы захоронения органического вещества были настолько низкими, что даже кривая соотношения углеродных изотопов превратилась в прямую, словно кардиограмма покойника (рис. 4.1е, м). Особенно это выпрямление бросается в глаза на фоне резких изотопных пиков Ломагунди-Ятулий (2,32–2,06 млрд лет назад), доходивших до +13‰ — предельного значения этого показателя за всю историю Земли (рис. 4.1е). Вполне возможно, что именно заторможенную эволюцию эукариот и невысокую их продуктивность мы и наблюдаем в виде спрямленной изотопной кривой.

Само по себе событие Ломагунди-Ятулий, отразившее в изотопной летописи захоронение значительных объемов неокисленного органического вещества, должно было предопределить дальнейший рост содержания кислорода в атмосфере, раз уж этот окислитель оставался невостребованным. Если предположить, что уровень этого газа, начиная с Великого кислородного события, постоянно повышался, как многие предполагали несколько лет назад (да и сейчас тоже), почему эволюция эукариот не спешила?

Современные геохимические и седиментологические исследования протерозойских отложений выявили, что темпы обогащения атмосферы кислородом были сильно преувеличены. Возьмем для примера два геохимических индикатора — уран и йод

Скачать книгу

Научные редакторы А. Марков, д-р биол. наук, профессор; Е. Самарин, д-р геол. – мин. наук, профессор

Редактор П. Суворова

Руководитель проекта А. Шувалова

Корректоры М. Миловидова, С. Чупахина

Компьютерная верстка А. Фоминов

Дизайн обложки Ю. Буга

Иллюстрация на обложке Shutterstock

В книге использованы иллюстрации из архива автора

© Журавлев А., 2018

© ООО «Альпина нон-фикшн», 2018

Рекомендовано к опубликованию решением учебно-методологического совета биологического факультета Московского государственного университета им. М.В. Ломоносова

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Моему отцу Юрию Журавлеву,

первому редактору этой книги

Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория» (при финансовой поддержке Н.В. Каторжнова).

Фонд поддержки научных, образовательных и культурных инициатив «Траектория» (www.traektoriafdn.ru) создан в 2015 году. Программы фонда направлены на стимулирование интереса к науке и научным исследованиям, реализацию образовательных программ, повышение интеллектуального уровня и творческого потенциала молодежи, повышение конкурентоспособности отечественных науки и образования, популяризацию науки и культуры, продвижение идей сохранения культурного наследия. Фонд организует образовательные и научно-популярные мероприятия по всей России, способствует созданию успешных практик взаимодействия внутри образовательного и научного сообщества.

В рамках издательского проекта Фонд «Траектория» поддерживает издание лучших образцов российской и зарубежной научно-популярной литературы.

Предисловие

Сегодня нам трудно представить мир, где нет глубоких озер и величественных рек, где не идут дожди и не валит снег, в недрах которого нет ни угля, ни железа, ни золота, в воздухе не хватает кислорода, а вместо шести континентов – один огромный суперконтинент или, наоборот, только острова. А ведь все это наша Земля, только такая, какой она была за 30, 350, 2500 млн лет до появления человека. Да и всего 12 000 лет назад она была совершенно другой – с обширными ледниковыми щитами, покрывавшими значительные пространства северных континентов, огромными, гораздо большими, чем сейчас, степными просторами.

Мир менялся всегда. И нынешнее его состояние тоже непостоянно. И виной тому не какие-то глобальные катаклизмы, вроде падения астероидов, землетрясений и вулканических взрывов, а деятельность существ – от мельчайших бактерий и одноклеточных водорослей до елей, слонов и, конечно, человека (это тоже один из видов организмов, занимающий на Земле определенную нишу).

Пока на планете не появились первые сообщества организмов, на ней не образовывались железорудные, золоторудные, урановые и многие другие месторождения, а атмосфера была лишена кислорода. Пока не сложились настоящие лесные массивы, не могло быть долговременных озер и полноводных рек с обширными долинами, красивыми излучинами – меандрами – и островами, и, конечно, не образовывался каменный уголь. Фитопланктон – обитающие в верхних слоях водной толщи одноклеточные водоросли – стал не только главным породообразователем морских и озерных осадочных толщ, но и в значительной степени повлиял на облачный покров и климат планеты. И поскольку состав фитопланктона постоянно менялся, вместе с ним постоянно менялись и все эти, казалось бы, вечные природные феномены. Даже динозавры и мамонты приложили определенные усилия, чтобы мир стал чуточку другим. Конечно, есть в этом непостоянстве и свои циклы, скажем глобальные потепления и похолодания, но и эти циклы не являются повторением уже пройденного. А нынешнее «глобальное потепление» с точки зрения геологии и палеонтологии и вовсе таковым не является, поскольку на событие, способное оставить заметный след в геологической летописи, пока претендовать не может. Но если на него не обращать внимания – не изучать, – это явление может принести кучу бед.

Узнать же о прошлом Земли позволяют современные методы геологии и палеонтологии. Любые ископаемые организмы – в руках профессионального палеонтолога – становятся собеседниками, способными поведать много интересного. Именно остатки организмов, включая ископаемые следы, изотопные и молекулярные свидетельства их жизнедеятельности, позволяют наиболее полно реконструировать историю Земли за последние 4 млрд лет. Об этом этапе и пойдет речь в книге.

Часть I

Как бактерии создали атмосферу и все прочее (4000–635 млн лет назад)

Глава 1

Слои времени

В этой книге есть страницы с буквами, складывающимися в слова и предложения, чтобы передать мысли ученых, чьи труды послужили основой для раскрытия ее темы, есть нумерация страниц и есть названия глав, в которых отражено содержание. Очень похоже устроена и каменная летопись Земли: каждый слой осадочных горных пород – это страница; заключенные в нем минералы, элементы, стабильные и радиоактивные изотопы и остатки органических веществ – это буквы; а организмы и геохимические процессы, когда-то предопределившие, что слой по содержанию (минералов и прочего) окажется именно таким, – авторы первоисточников наших знаний.

В каменной летописи есть и отдельные главы с названиями, и нумерация страниц. Конечно, все это существует для удобства пользования книгой (этой или земной). Так, «главы» – это подразделения Международной хроностратиграфической шкалы, смысл которой передает слово «стратиграфия» – «слоев описание» (от лат. stratum – слой и греч. γράφω – чертить, писать). А нумерация страниц – радиометрические датировки горных пород. Правда, отсчет ведется обратный: например, первая глава – «архей» – занимает страницы с 4-миллиардной по 2,5-миллиардную, а подглавка «голоцен» – последние 11 700.

Не следует думать, что это некое умозрительное удобство: «архей» (4,0–2,5 млрд лет назад) резко отличается по смыслу и содержанию от «протерозоя» (2,5–0,541 млрд лет назад) и оба они – от «фанерозоя» (0,541 млрд лет назад – ныне). Радиометрические датировки применяются уже более сотни лет (первые из них с использованием радиоактивных изотопов гелия и радия были получены в 1904 г. английским физиком Эрнстом Резерфордом) и постоянно совершенствуются. Даже породы возрастом в сотни миллионов лет теперь можно датировать с точностью до нескольких тысячелетий (рис. 1.2).

Наиболее распространенные методы радиометрического анализа – радиоуглеродный (в пределах 30 000 лет), аргон-аргоновый (40Ar/39Ar), рений-осмиевый (Re/Os), урано-свинцовые (238U/206Pb, 235U/207Pb, 232U/208Pb и 207Pb/206Pb); последние представляют собой совокупность четырех независимых измерений возраста для одного образца. Скепсис к подобному – «абсолютному» – выражению возраста Земли у профанов вызван тем, что они не догадываются о возможностях получения тех же возрастных характеристик сугубо геологическими методами.

Достаточно, например, пересчитать количество осадочных слойков, не любых, конечно, а таких, которые формируются в течение года. Например, слои льда – это тоже горная порода (равно как и вода) в ледяных щитах Гренландии и Восточной Антарктиды. Последний позволяет нам заглянуть в прошлое на 160 000 лет (толщина ледяного панциря достигает здесь 2000 м). А благодаря пузырькам и «пыли» (тонким минеральным частицам), вмороженным в каждом слое, можно подробно узнать, каков был состав воздуха в те годы, какие преобладали температуры на поверхности планеты и откуда дули ветры.

Ленточные глины, а также их уплотненные аналоги – варвиты (от швед. varv – слой), образующиеся в озерах и в некоторых морях, позволяют «копнуть» еще глубже – на миллионы лет. Эти осадочные горные породы образуются благодаря ежегодному чередованию весенне-летнего и осенне-зимнего слойков от нескольких миллиметров до нескольких сантиметров толщиной. (Далее вместо выражения «толщина» будет использоваться геологический эквивалент этой размерной характеристики – «мощность».) Весенне-летний слой осадка – обычно грубозернистый, светлый и содержит множество легко различимых скелетиков планктонных организмов (в этот сезон снос с суши усиливается, а жизнь во всех ее проявлениях процветает и расцветает), а осенне-зимний – тонкий и темный (сноса почти нет, лишь медленно оседает взвесь, а органика разрушается и уплотняется). Примерно также археологи подсчитывают годовые кольца у деревьев, чтобы получить дендрохронологические датировки. Правда, возраст отдельного дерева редко превышает первые тысячелетия, а варвиты образуют толщи в сотни метров, где число слойков доходит до нескольких миллионов. Чтобы получить хронологию Новгорода Великого, нужно создать дендрохронологическую шкалу всех наслоений его деревянных мостовых, а затем привязать к этой шкале прочие археологические находки (монеты, печати, берестяные грамоты). Чтобы выстроить хронологию Земли, можно точно так же переходить от одной толщи варвитов (геологического разреза) к другой, более древней…

Расчет возраста отложений по ленточным глинам (варвохронология) тоже имеет столетнюю историю: впервые возможности метода были показаны шведским геологом Герхардом Якобом де Геером на 11-й сессии Международного геологического конгресса, состоявшейся в Стокгольме в 1910 г. Просто радиометрическое датирование оказалось удобнее и дешевле (в том числе и радиоуглеродный метод в археологии вместо утомительного дендрохронологического). Точно так же, чтобы узнать, сколько страниц в этой книге, можно взглянуть на цифру, указанную на последней из них, а особо недоверчивые могут пересчитать все страницы. А если бы их было 4 млрд?

Когда же требуется узнать время, за которое сформировалась та или иная толща осадков, прибегают к варвохронологии или циклостратиграфии. Последний метод основан на выявлении повторяющихся ритмов в осадочных отложениях, связанных с периодичностью климатических колебаний. Связь такой периодичности с орбитальными циклами в Солнечной системе, где взаимное притяжение планет и крупных спутников искажает правильность орбит, предначертанную законами Кеплера – Ньютона, установил югославский физик Милутин Миланкович. Эти орбитальные циклы включают прецессию (примерно каждые 26 000 лет земная ось описывает коническую фигуру), нутацию (каждые 41 000 лет колеблется угол наклона оси к плоскости земной орбиты) и эксцентриситет – изменение формы орбиты с эллиптической на круговую и обратно, но в плоскости, перпендикулярной прежней, и снова на круговую каждые 400 000 лет (полный цикл) (рис. 1.3а – г).

Эти смены орбитальных конфигураций приводят к тому, что через строго определенное количество лет планета оказывается то ближе к Солнцу тем или иным полушарием (прецессия и нутация) или вся целиком (эксцентриситет), то дальше от светила. В первом случае она получает несколько больше тепла, во втором – охлаждается. При наступлении теплой эпохи с обильными осадками в карбонатных породах накапливается больше частиц тяжелых минералов. Очевидно, сосчитать бесконечное число почти невидимых, пылевой размерности кусочков минералов во всех осадочных слойках нереально. Но можно определить величину магнитной восприимчивости каждого из них, которая зависит от содержания окислов железа, обладающих магнитными свойствами, построить магнитную спектрограмму и выявить число орбитальных циклов, в течение которых и накопились данные отложения.

Есть и другие сугубо геологические методы расчета возраста отложений горных пород и отдельных геологических объектов. Например, вулканические конусы базальтовых вулканов благодаря периодическим напластованиям застывших потоков лавы растут со скоростью около метра за столетие (рис. 1.4).

Зная, что высочайшая гора на Земле Мауна-Кеа (остров Гавайи) возвышается над ее поверхностью на 10 200 м (из них на 4205 м – над уровнем океана в виде острова), можно определить, что этому вулкану стукнуло более миллиона лет. Тот же возраст получаем, датируя самые древние базальты этой горы радиометрическими методами. Базальтовая лава вообще очень благодатный материал. Поскольку новообразование базальтовых слоев в срединно-океанических хребтах связано с расширением океанов, по этим горным породам можно определить и возраст самых крупных планетарных водоемов. Так, Атлантическому океану исполнилось примерно 150 млн лет. Проверить датировку можно, используя данные высокоточных приемных устройств, расположенных на разных континентах и многократно замеряющих по атомным часам время прохождения спутниковых радиосигналов или лазерных лучей, отраженных от Луны и космических аппаратов (или просто данные GPS – глобальной системы определения координат). Согласно таким замерам скорость расширения Атлантики, скажем, между Северной Африкой и югом Северной Америки – 0,025 м в год. Разделим ширину океана между этими точками – 3 700 000 м – на данную величину и убедимся, что Атлантический океан родился 148 млн лет назад. (Возможно, именно в эту пятницу.) На небольших участках Атлантического океана возраст коры достигает 195 млн лет – она древнее, чем тихоокеанские плиты.

Глава 2

Как подвинуть Африку?

Океанические и тем более морские чаши постоянно меняют свои очертания. Когда не было современных океанов, существовали иные, ныне «вымершие»: Уральский на месте Уральских гор – более 320 млн лет назад, Япет на месте Аппалачей – свыше 450 млн лет назад. В этих горах навечно впаяны останцы прежних срединно-океанических хребтов – древние базальты, превратившиеся со временем в зеленокаменные комплексы – офиолиты. Типичная для такого комплекса горная порода офиолит (от греч. όφις – змея и λίθος – камень) известна среди уральских умельцев-камнерезов как змеевик из-за травянисто-зеленого цвета и чешуйчатой структуры.

Причиной грандиозных изменений лика Земли является тектоника литосферных плит. Тектоника (от греч. τέκτων – строитель, художник или τεκτονικός – искусный в строительном деле) – это, собственно, и есть строительство литосферы (от греч. λίθος – камень и σφαϊρα – оболочка) из отдельных блоков – плит. Последние состоят из твердой земной коры (совокупности осадочных, магматических и метаморфических горных пород) и подстилающих ее верхних слоев мантии, имеющих сходный химический состав. Скользят плиты, поднимаются и опускаются по вязкому и разуплотненному прослою верхней мантии – астеносфере (от греч. α – не, σφήν – клин и σφαϊρα – оболочка). Континентальная кора легче океанической (менее плотная), поэтому материки, образующие ядра континентальных литосферных плит, возвышаются над ложем океана и в областях столкновения этих плит с океаническими остаются «на плаву». Наоборот, более тяжелые океанические плиты подныривают под них, уходя в глубоководные желоба, подобные Курило-Камчатскому и Марианскому, и еще на 600–700 км дальше, пока полностью не расплавятся. Этот процесс называется субдукцией (от лат. sub – под и ductio – увод, отведение). Столкновение циклопических структур происходит с выделением огромного количества энергии, что выражается в формировании гигантских вулканических очагов, таких как Тихоокеанское вулканическое кольцо, включающее Анды, Кордильеры, Камчатку, Курильскую островную дугу, Японию и Новую Зеландию. Движение тихоокеанских плит в сторону континентальных на периферии океана обусловлено постоянным ростом подводного хребта, известного как Восточно-Тихоокеанское поднятие, за счет образования все новых слоев океанической коры в продольных глубоководных расселинах хребта – рифтах (от англ. rift – трещина, щель) в зоне подъема к поверхности горячих мантийных конвективных потоков. (Тысячекилометровый разлом Сан-Андреас в Калифорнии, прославленный многими блокбастерами и землетрясениями, тоже относится к тихоокеанскому рифту, хотя вклинивается в сушу.) Кора образуется из базальтовой лавы, которая, застывая вдоль рифтовой расселины, способствует раздвижению океанических плит. Это явление называется «спрединг» (от англ. spread – расширять). Атлантический океан, продолжением которого является Северный Ледовитый, ведет себя вроде бы более спокойно: никаких вулканических арок на периферии нет. Но спрединг происходит и там – вдоль хребтов Срединно-Атлантического и Рейкьянес. Только движутся здесь океанические плиты вместе с ближайшими континентами. Поскольку сам океан имеет S-образную конфигурацию, южная часть его хребта, раздвигаясь, толкает на север Африку, а северная – ей навстречу Европу. Там, где материки упираются друг в друга, происходит коллизия (от англ. collision – столкновение) континентальных плит, и, словно при ударе друг о друга гигантских льдин, начинается «торошение» – растут горные хребты, подобные Альпийскому поясу от Пиренеев до Кавказа с вулканами и сопутствующими периодическими землетрясениями. Так как вдоль срединно-океанических хребтов, а также вдоль любых рифтов литосферные плиты расходятся, а на границе континентов или разных плит сходятся, первый тип границ называется дивергентным, а второй – конвергентным.

Теория литосферных плит, верность которой доказывается не только наблюдением за вышеназванными геологическими явлениями, но и замерами движений плит благодаря спутниковому и наземному мониторингу, объясняет, почему на дне океанов бессмысленно искать самые древние отложения. Их и не нашли, несмотря на тысячи скважин, заложенных по проекту глубоководного бурения с корабля «Гломар Челленджер» и международной программе бурения океанического дна начиная с 1968 г. А вот на континентах, хотя и они претерпели существенные изменения, кое-что осталось. По большей части это кое-что – тоже морские отложения, поскольку материковый шельф является частью континентов, а порой целые материки «тонули», покрываясь на десятки миллионов лет обширными мелководными эпиконтинентальными морями, аналогов которых нет в современном мире. И это явление было обусловлено тектоникой литосферных плит, поскольку с ростом океанических хребтов огромные объемы воды выталкиваются из океанических чаш на сушу. Данный процесс называется тектоноэвстазией (от «тектоника» и греч. εΰ – совершенно, στάσις – стояние). Обусловленный тектоноэвстазией подъем уровня моря – на сотни метров – на порядок превышает рост уровня моря в результате таяния ледниковых шапок (гляциоэвстазия от лат. glacies – лед и эвстазия) – не более нескольких десятков метров. К слову, поскольку гигантские ледяные щиты Северной Америки и Европы растаяли около 12 000 лет назад, дальнейшее потепление к заметному повышению уровня моря уже не приведет. Впрочем, для исчезновения под волнами океана Нидерландов, Дании и Северной Сибири, наиболее богатой нефтегазовыми месторождениями части России, и этого будет достаточно.

Нас, однако, сейчас интересует не то, что исчезнет, а то, что осталось. Даже простые расчеты показывают: чем древнее земные породы, тем меньшие площади они должны занимать. Ведь любые горные хребты, будь то все еще величественный, но далеко не высотный Урал или Казахский мелкосопочник, когда-то вздымались Андами и Гималаями. Если мы, к примеру, возьмем горный кряж высотой 5 км и площадью 25 км2 (условный квадрат 5 × 5 км), то общий объем горных пород в нем составит 125 км3. Любой, бывавший в горах, легко представит, что кряж прорезают ручьи и реки, что мороз и жара, а также деятельность самых разных организмов – от невидимых глазу бактерий и одноклеточных грибов до лишайников и кустарников – со временем превращают самые прочные скалы в труху курумов и речных наносов. И все это измельчается и перемещается все дальше и дальше от кряжа. Такое преобразование горных пород на поверхности планеты за счет физико-химических и биохимических процессов называется выветриванием. Если с нашего условного кряжа стекают пять горных речек, способных унести десятую часть кубометра горных пород в день каждая (далеко не самые бурные потоки), то за год они размоют около 180 м3. Значит, чтобы сровнять весь горный кряж с землей, живым и неживым силам природы понадобится не более 700 млн лет. (Кстати, именно так пытался определить возраст Земли английский геолог и биолог Чарлз Дарвин, избрав для расчетов мощность меловых утесов на юго-востоке Англии.) Так что чем древнее отложения, тем меньше от них остается в результате выветривания.

Еще более действенны процессы, связанные с тектоникой плит, – субдукция и гранитный метаморфизм в зоне коллизии. Ведь и сами материки вместе с шельфами не всегда были такими, как сейчас. Осталось ли вообще что-нибудь от древнейших отложений? Да, осталось. Хотя при возрасте Земли 4,567 млрд лет от ее горных пород возрастом свыше 4,03 млрд лет не сохранилось ничего, кроме жалких крох: переотложенных в более молодых осадках обломков кристаллов циркона (ZrSiO4) – одного из самых устойчивых минералов – возрастом 4,2 и 4,4 млрд лет на кратоне Йилгарн (Западная Австралия). И даже эти крохи способны кое-что прояснить благодаря захваченным ими в момент кристаллизации частицам других минералов: например, наличие у планеты той поры земной коры, жидкой водной оболочки, где кристаллы сформировались, и магнитосферы. Данные о древнейшей водной оболочке особенно ценны, поскольку от нее не уцелело больше ничего: она полностью испарилась и развеялась в космосе во время мощных метеоритных бомбардировок, которым планеты земной группы подверглись 4,0–3,8 млрд лет назад. К этому интервалу приурочено большинство лунных и марсианских кратеров; земные же поглощены тектоническими процессами. (Появились сведения об обнаружении в зеленокаменном поясе Нуввуагиттук на Канадском щите – на северо-западе полуострова Лабрадор – связанных с гидротермами морских отложений возрастом 3,77–4,28 млрд лет и даже о следах бактериальной жизнедеятельности в них. Однако эти находки и их датировка требуют дальнейшего всестороннего изучения.) В результате всевозможных и непрекращающихся преобразований земных слоев 80 % из них имеет возраст менее 200 млн лет, а вот на Луне, где процесс тектоники плит не пошел, те же 80 % представлены горными породами древнее 4 млрд лет. Поэтому, чтобы заглянуть глубже, придется слетать на Луну и привезти образцы оттуда, благо это уже сделали в 1960–1970-е гг. бесстрашные американские астронавты и хитроумные советские спускаемые аппараты: возраст древнейших лунных пород оказался 4,417 млрд лет (отдельных кристаллов – до 4,51 млрд лет). Некоторые включения минералов в метеоритах, найденных на Земле, но представляющих собой остатки протопланетного вещества, могут быть и постарше нашей планеты – до 4,568 млрд лет (время образования Солнечной системы) (рис. 2.1). Утерянная глава каменной летописи Земли – 4,568–4,0 млрд лет – называется хадейским эоном (от греч. γάϊος – подземный мир).

Дальше речь пойдет исключительно о геологической истории Земли – о том огромном временном интервале (4 млрд лет), события которого можно восстановить с помощью седиментологических, геохимических, палеонтологических и других методов, применяемых в науках о Земле.

Уцелевшая, «первоначальная», летопись начинается с архейского эона (от греч. άρχαιος – первоначальный, древний). Архейские «материки», по площади больше напоминавшие крупные современные острова, ныне вкраплены в различные континенты, где выходят на поверхность в виде древних щитов. А щиты состоят в основном из метаморфических (измененных, местами довольно сильно) горных пород, подобных гнейсам и гранитам (рис. 1.1). Геологи, геохимики и палеонтологи, правда, и среди этих клочков умудряются высмотреть наименее покореженные временем и тектоническими процессами останцы. К ним и приковано внимание ученого мира, особенно к древнейшим комплексам Акаста на северо-западе Канады (4,03 млрд лет), Исуа и Акилия на западе Гренландии (>3,8 млрд лет) и более молодым областям Канадско-Гренландского, или Канадского, щита, кратонам Йилгарн и Пилбара (3,6 млрд лет) в северо-западной части Австралийского щита, зеленокаменному поясу Барбертон (3,5 млрд лет) и кратонам Зимбабве и Каапвааль (3,6 млрд лет) на Южно-Африканском щите, и Фенноскандинавскому щиту, охватывающему Скандинавию, Финляндию, Карелию и Кольский полуостров (3,5 млрд лет) (рис. 2.2). Кратоны (от греч. κρατΰνω – укреплять) – это самые древние стабильные участки коры, которые условно можно считать протоконтинентами.

Интересной геологической особенностью протоконтинентов являлось то, что они состояли из фрагментов океанической и континентальной коры. Иначе говоря, механизм тектоники плит уже был запущен. Не вдаваясь в подробности глубинного движителя этого механизма (процессы в мантии и ядре Земли), следует отметить, что необходимым условием его запуска является дифференциация коры на относительно тяжелую и плотную океаническую (2900 кг/м3) и легкую континентальную (2500–2700 кг/м3). В геологии их также именуют «темной» и «светлой» – по цвету основных породообразующих минералов. Океаническая кора по большей части состоит из темно-зеленых и иссиня-черных минералов, богатых магнием, железом и кремнием, – пироксенов (Ca,Na,Mg,Fe2+)(Mg,Fe3+,Al)Si2O6, оливинов (Mg,Fe)2SiO4, основных плагиоклазов (Na,Ca,)Al(Si,Al)Si2O8, а континентальная – из серых, белых и красноватых кремний- и алюминийсодержащих силикатов (таких как кварц – SiO2, калиевый полевой шпат – KAlSi3O8, альбитовый плагиоклаз – NaAlSi3O8). Отсюда и другое название этих главных минеральных комплексов: мафический (аббревиатура от лат. magnesium – магний, ferrum – железо и суффикс ic) и фельзитовый (от лат. ferrum – железо, alumen – квасцы, silex – кремень и тот же суффикс). Анализ распределения этих минералов в магматических источниках, земных слоях разного возраста и космических телах, включая астероиды, показывает, что «темная материя» здесь первична, а «светлая» – результат ее дифференциации, преобразования в недрах и на поверхности Земли.

Сами по себе ни минералы, ни состоящие из них горные породы, ни земная кора, которая из них, в свою очередь, построена, превращаться во что-то другое не будут: нужно либо отправить их обратно в недра на переплавку, либо изменить состав на поверхности. Первичная коматиит-магнезиально-базальтовая протокора, которая, вероятно, существовала 4,4 млрд лет назад, мало отличалась по составу от морских базальтов. Это и были базальты, только формировались они при более высоких температурах, чем современные, поскольку мантия в хадейском и архейском эонах была горячее. Из протокоры образовывались небольшие острова, которые хаотически перемещались конвекционными мантийными потоками и буквально таяли в них. Но если все слои земной коры были до поры до времени – до начала архейского эона – по составу, физическим и химическим свойствам почти одинаковыми, то можно ли заставить их погружаться и всплывать относительно друг друга? Тем более что главная фельзитовая порода – гранит – термодинамически несовместима с ультрамафическими мантийными минералами и не может напрямую выплавиться из последних, а слишком горячая мантия препятствует субдукции.

Оказывается, все-таки можно. В чем принципиальная разница Земли и несколько уступающего ей по размеру Марса? Не только в том, что на Голубой планете плиты движутся, а на Красной – нет, и даже не в наличии Мирового океана на первой из них и «Мировой суши» – на второй, но и в том, что на Земле открыто примерно 5000 разных минералов, а на Марсе – почти на порядок меньше. Про Луну и говорить нечего – их там около 150. Причем появление двух третей земных минералов (3000) прямо или косвенно связано с наличием на ней жизни. Жизнь – архейские бактериальные сообщества – и запустила, по сути, тектонику плит современного типа.

Во-первых, в поисках пропитания – необходимых микроэлементов и электронов – для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. χηλή – раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы – следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического углерода – керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe2+), как только базальтовая лава начинает остывать, первые же попавшие на ее поверхность бактериальные споры прорастают, и начинается бурное пиршество. (Каждый кубометр современного базальтового стекла – с содержанием до 17 % железа – может пропитать до 2,5 × 1016 анаэробных железобактерий.) Во-первых, бактерии ускоряют выветривание силикатных минералов (подобных вышеназванным пироксенам, оливинам, плагиоклазам) на порядок и проникают в них гораздо глубже, чем любые активные вещества под действием физических и химических сил. По прошествии всего нескольких лет горная порода превращается в насыщенное водой «нанорешето», разуплотняется, а такие продукты ее выветривания, как иллитовые и смектитовые глины, представляют собой субстрат-накопитель, ускоряющий в морской среде осаждение ионов калия. В дальнейшем новообразованная минеральная затравка способствует выплавке гранитного материала вместо базальтового.

Во-вторых, бактериальные сообщества принялись за создание совершенно новых горных пород и минералов – карбонатов, фосфатов, сульфидов, железных и других руд. В большинстве своем эти разности имеют меньшую плотность, чем мафические пироксены и оливины.

На протоконтинентах, подобных Акасте, разнообразие фельзитовых пород ограничивалось кварцевым диоритом, трондьемитом и гранодиоритом, образовавшимися при частичном плавлении толеитового базальта, из-за неглубокого заложения зон субдукции.

Когда же эти зоны, представляющие собой плавильный котел тектонических процессов, опустились в область более высоких давлений, то из исходного комплекса минералов стали выплавляться более легкие и плавучие граниты, а также связанные с их образованием вулканические породы (андезиты, риолиты) и гнейсы. Однако, чтобы зона субдукции ушла глубже в недра Земли, на нее нужно «надавить», скажем, положить сверху горную гряду: чем выше такая гряда, тем, благодаря явлению изостазии, сильнее продавится под ней астеносфера и дальше вниз нырнет под континентальную кору океаническая. Горы же образуются в результате столкновения участков континентальной коры, пусть это даже протоконтиненты, или последних с вулканическими арками. Далее из пород гранитного ряда и гнейсов с высоким разнообразием минералов и начинают складываться ядра континентов – древние кристаллические щиты. А гнейсы к тому же являются первыми свидетельствами, пусть и преобразованными, появления осадочных отложений (древнейшие – 3,85 млн лет, Исуа). Ни на Марсе, ни на Венере, ни на Луне граниты и гнейсы не появились: поверхность этих небесных тел застыла на стадии мафической протокоры. На Земле же вследствие воздействия биосферы на литосферу и преобразования мафических пород не только возник фельзитовый ряд, но и процесс (тектоника плит) пошел и значительно ускорился.

Названный выше зеленокаменный пояс Барбертон и кратоны Пилбара и Каапвааль и есть остатки древнейшей океанической и континентальной коры соответственно. В первых присутствуют подушечные базальтовые лавы (при застывании лавы в морской среде ее поверхность приобретает вид плотно уложенных подушек) и полосчатые железистые формации, во вторых – граниты и разнообразные мелководные осадочные породы. А самая древняя ископаемая тектоническая граница плит возрастом 2,7 млрд лет выявлена с помощью сейсмофизических методов под Канадским щитом – в провинциях Квебек и Онтарио.

Превзойти же геологические силы жизнь смогла, обретя иной источник энергии. Все тектонические процессы – движение плит, горообразование и др. – идут благодаря тепловому потоку, поступающему из недр Земли (радиоактивный распад и остаточное аккреционное тепло, выделившееся при столкновении планетезималей и протопланет). Этот поток оценивается в 8,7 × 10–5 Вт/м2, но тектоника успевает захватить не более десятой доли энергии (~1 × 10–5 Вт/м2). Остальное рассеивается в космосе. Жизненные силы через различные формы фотосинтеза подпитываются напрямую от энергии Солнца – 340 Вт/м2. Причем за время эволюции КПД организмов возрос: от анаэробного фотосинтеза, зависимого от различных соединений, как доноров электронов, живые существа перешли на кислородный его вариант. В этом случае используется неисчерпаемый океан электронов – вода. Быстрое истощение некоторых элементов (железо, азот, фосфор), необходимых для функционирования организмов, должно было бы ограничить дальнейший рост КПД, но благодаря ускорению круговорота этих элементов (за счет совершенствования трофической пирамиды и появления новых организмов – деструкторов отмершего органического вещества) и эта проблема была решена. На сегодняшний день биосфера потребляет в год 26,8 × 10–5 Вт/м2 только солнечной энергии. Это всего 0,07 % от энергии Солнца, поскольку 30 % рассеивается атмосферой и поверхностью Земли, а еще 69,93 % уходит на нагрев планеты и теряется в виде длинноволнового излучения.

И все равно организмы потребляют энергии на порядок больше, чем могут получить все континенты, горы и прочие геологические образования вместе взятые. Именно поэтому биосфера может себе позволить атмосферу, химически неравновесную с горными породами: это неравновесие и есть основа биохимического выветривания. [Названный выше уровень потребления энергии биосферой рассчитан исходя из данных по годовой фиксации углерода при фотосинтезе – 9 × 1015 моль; энергии, необходимой для связывания одного моля углерода с органической молекулой (пентоза), – 477 000 Дж; и площади планеты – 5,1 × 1014 м2, умноженной на 3,15 × 107 с в году.]

Перестройка планеты организмами стартовала в самом начале архейского эона.

Глава 3

Известковый океан

Архейский мир был совсем другим: суша составляла 4 % от общей площади планеты (ныне – 28 %); плато, поскольку континентальная кора была тоньше, возвышались не более чем на 2000 м (сейчас – 5500 м), а океаническая кора была толще, из-за чего вершины океанических хребтов отстояли от поверхности океана в среднем на 660–1200 м (теперь они запрятаны в два раза глубже).

Иным был и состав океана. Поскольку основным источником главного морского аниона – Cl – является глубинная дегазация Земли, а поглощается этот анион в результате геохимических преобразований океанической коры, то за последние 4 млрд лет его среднее содержание не очень сильно менялось. А вот соотношение катионов, преобладающих в морской воде, не могло не измениться: пока не появились кислородная атмосфера и достаточно большая фельзитовая суша, благодаря выветриванию которой усилился сток щелочных (Na+, К+) и некоторых щелочноземельных катионов (Mg2+), обильным и достаточно активным в водной среде был Са2+. Важнейший источник этого катиона – гидротермальная активность, связанная с высокотемпературными преобразованиями океанической коры, – уже существовал. И архейский океан, вероятно, представлял собой не концентрированный раствор хлорида натрия, как сейчас, а раствор хлорида кальция (СаCl2). Модель такого океана доступна (почти доступна): озеро Дон-Жуан в антарктической долине Райта, на дне которого формируется минерал антарктицит (СаCl2 × 6Н2О), а в гиперсоленой (44‰) воде обитают цианобактерии и некоторые одноклеточные эукариоты.

К выводу о солевом режиме архейского океана можно прийти и другим путем: сейчас общая масса карбонатов составляет 4,4±1,0 × 1020 кг, что приблизительно включает 1,8±0,4 × 1020 кг кальция. Это в 70 раз больше массы данного металла в Мировом океане, и, следовательно, значительная его часть (1,0 × 1020 кг), пребывавшая в архейском эоне в растворе, вошла ныне в состав горных пород. Анализ флюидных включений в осадочном кремнеземе и гидроокислах железа возрастом 3,5–3,2 млрд лет (Пилбара) также выявил СаCl2–NaCl солевой состав архейского океана. Там же и в поясе Барбертон обнаружены архейские морские эвапориты: пласты поваренной соли – галита (NaCl), перемежающиеся с троной [Na2(CO3) × Na(HCO3) × 2H2O] и нахколитом [Na(HCO3)]. Сейчас такие минералы формируются в щелочных (рН = 8,1) озерах, подобных Магади и Натрон в Восточно-Африканской рифтовой системе, прогревающихся до 70 °C. А вот сульфаты, такие как гипс (CaSO4 × 2H2O), характерные для наших дней и всего фанерозойского эона, в то время не образовывались, что указывает на низкий уровень содержания SO42--иона.

Еще более показательны для представления о составе архейского океана карбонаты кальция. По характерным шестоватым кристаллам с квадратным сечением, организованным в «ежики» – ботриоиды (рис. 3.1), известно, что весьма распространенным осадочным образованием был арагонитовый морской цемент (в кристаллической решетке арагонита наряду с кальцием присутствуют атомы стронция). Сами же ботриоиды были аномальной величины – более метра в диаметре. А наслоения магнезиально-кальцитового цемента, который распознается по шевроновой структуре (тонкие призмы, наклоненные в противоположную сторону в каждом последующем слое), достигали нескольких метров мощности, простираясь на десятки километров. Ныне размерность таких структур не превышает первые сантиметры, хотя океан от трех до семи раз перенасыщен карбонатом кальция. Понятно, что подобные карбонатные образования могли достигать аномальных размеров, поскольку на дне морей еще не появились ни животные с известковым скелетом, не обызвествленные водоросли или цианобактерии, которые развиваются намного быстрее неорганических кристаллов и, перехватывая поток ионов Са2+ и НСО3-, не дают им расти.

Опираясь на расчеты и особенности озер Дон-Жуан, Магади и Натрон, можно предположить, что архейский СаCl2-океан был кислым (рН = 5,5) и позднее стал щелочным. Это очевидно не так. Моделирование континентального стока, исходя из доступного для выветривания ряда горных пород и бескислородного состава атмосферы, показывает, что в океане катионы Fe2+, которые к тому же поступали из гидротермальных источников, должны были преобладать над Са2+, тем более над Mg2+ и Na+. Кроме того, с суши в больших объемах выносился бикарбонат (НСО3). Бикарбонат быстро нейтрализовал ионы Са2+, Mg2+ и Na+, что и способствовало образованию обильных карбонатов этих металлов. Так, благодаря закисному железу, которое оставалось в растворе, и карбонатно-бикарбонатному буферу океаническая среда поддерживалась ближе к нейтральной (рН = 5,7–6,9). Это не исключало появления отдельных кислых водоемов вблизи вулканически активных островов.

С сушей и океаном в какой-то степени разобрались. А что на небе – были ли там тучи, а если были, то из каких газов состояли?

Глава 4

Что и откуда мы знаем о первичной атмосфере

Но откуда и что мы знаем об архейской атмосфере – воздушной оболочке Земли, если даже от ее самой твердой оболочки мало что осталось? Основных источников знаний – три: сами горные породы и слагающие их минералы, их изотопный состав и некоторые физические особенности этих пород. Есть, конечно, и физико-химические модели, предсказывающие определенный состав атмосферы. Однако любые модели имеют множество решений и требуют проверки, которая опять же сводится к поиску фактических – геологических, включая палеонтологические остатки, – материалов.

Таким фактическим материалом, прежде всего, служат данные о составе архейских осадочных горных пород. В прибрежно-морских отложениях этого возраста часто встречаются окатанные (т. е. испытавшие длительный перенос) обломки пирита (FeS2), уранинита (UO2) и сидерита (FeCO3). Такие обломки могут накапливаться только в бескислородной среде.

Очень необычным явлением, оставившим свой след в архейских отложениях, было независимое от массы фракционирование стабильных изотопов серы (Δ33S ≈ δ34S – 0,515δ34S) (рис. 4.1б). Это явление было обусловлено воздействием ультрафиолетового облучения среднего и длинноволнового спектра (400–280 нм) на двуокись серы (SО2), поступавшую в атмосферу вместе с другими вулканическими газами. При этом молекулы, содержавшие 33S, подвергались выборочному фотолизу и фотовозбуждению (в современной атмосфере фотонный удар принимают на себя молекулы озона и кислорода). В результате значения Δ33S сильно варьируют (от –2 до +12‰), что и наблюдается в архейских сульфидах (например, пирите) в виде размашистой изотопной подписи.

А вот следы оледенений в архейской летописи полностью отсутствуют, но уже в Исуа (3,7 млрд лет) есть штормовые отложения и признаки разрушения минералов под воздействием текущей воды, например мелкие миндалины кварца, заполняющие пустоты в базальтах. Почему же Земля не превратилась в мерзлый шарик без жидкой воды и признаков жизни, если в начале архейского эона светимость Солнца была на 20–25 % слабее, чем сегодня? В середине прошлого века известные астрономы Карл Саган и Джордж Мьюллен обратили внимание и на это несоответствие теоретических ожиданий практическим наблюдениям и удачно назвали его «парадоксом слабого молодого Солнца».

Для объяснения «парадокса» за последние полстолетия были предложены десятки гипотез. И продолжают появляться новые. Последние, правда, принадлежат перу (клавиатуре) исключительно астрофизиков и прочих специалистов, от геологии далеких. (Трудно сказать, что им мешает набрать в поисковике выражение «faint young Sun paradox» и получить пару-другую сотен статей по теме, авторами 99 % которых окажутся геофизики и геохимики.) Как любые достижения, и особенно псевдодостижения науки, которые на слуху, будоражат сознание обывателей и те клюют на нелепые сочетания слов вроде «наномойка» или «нанопарикмахерская», так и какая-нибудь модная «темная энергия» начинает привлекаться для объяснения любых явлений. И тогда «при разумном значении локальной постоянной Хаббла легко объяснить, почему Земля получала приблизительно постоянную плотность потока солнечного излучения на протяжении длительного периода в прошлом» – автор цитаты из статьи, опубликованной в научном журнале, имеет в виду поступательное удаление Земли от Солнца в поле однородного распределения «темной энергии». Или, поскольку светимость Солнца зависит от его массы и величины гравитационной постоянной, при более высоких значениях последней светимость была выше, а орбита Земли – практически круговой и меньшего радиуса, на которой планета получала больше энергии. Сама же гравитационная постоянная превратилась в «переменную» под влиянием все той же «темной энергии». Если бы Земля была «чугуниевой болванкой», могло быть что угодно, но наша планета – сложное геобиологическое явление, и подобные перестройки орбитальных параметров не могли бы не оставить на ней следов.

Например, гигантские нагромождения тайдалитов (от англ. tide – морской прилив и отлив). Ведь будь орбита Земли 4–3 млрд лет назад ближе к Солнцу или Луна ближе к Земле, по земной поверхности прокатывались бы мощнейшие приливно-отливные течения. Однако тайдалиты – морские слоистые отложения, состоящие из повторяющихся ритмов песчаник-алевролит-аргиллит (от наиболее грубозернистой разности, формирующейся в начале приливного цикла, до самой мелкозернистой, венчающей его; мощность отдельных слойков составляет от 0,5 до 8 см), даже архейские, ничем (почти ничем) не отличаются от современных (рис. 4.2). Небольшая разница, конечно, наблюдается – годовая ритмика несколько другая.

Так, в эдиакарских тайдалитах Южной Австралии (620 млн лет), в которых удалось проследить приливно-отливные циклы за 60 лет, синодальный ритм (от полнолуния до полнолуния или от новолуния до новолуния) длился 14,75 дня, а не 14,26, как сейчас. Чтобы вычислить циклы, составляется развертка всех слоев, где против порядкового номера каждого слоя откладывается его мощность; затем в полученной «кардиограмме» с помощью гармонического анализа находят повторы одинаковой частоты и близкой амплитуды. Синодальный цикл распознается в тайдалитах особенно отчетливо – по максимальной мощности ритма, поскольку в момент противостояния Луны, Земли и Солнца из-за эффекта сложения лунного и солнечного приливов образуется максимальная (сизигийная, от греч. σύζευξις – сопряжение) приливная волна. (В это время зеваки любят собираться у аббатства Ле Мон-Сен-Мишель в Нормандии и глазеть, как гранитный останец с аббатством на вершине превращается в остров, а большая автомобильная стоянка – в пролив.) На развертке заметны и менее крутые квадратурные пики: Луна в это время пребывает в 1-й или 3-й четверти – ось Луна – Земля расположена под прямым углом к оси Земля – Солнце, а значит, горб лунного прилива ослабляется впадиной солнечного. Всего же выявлено 1580 сизигийно-квадратурных циклов. Изучая другие особенности этих тайдалитов – суточные циклы и «прохождение» Солнца через экватор (дни равноденствия), вызывающее самые большие сизигийные приливы, можно определить, что эдиакарские сутки длились 21,9 часа (Земля быстрее совершала оборот вокруг оси), а в году насчитывалось 400 дней (и ночей).

Данные по тайдалитам позволяют решить и проблему рецессии Луны, неподвластную физикам. Это явление – убегание Луны от Земли – тоже связано с приливами. Именно приливное трение, что установил немецкий философ Иммануил Кант в 1754 г. и математически обосновал физик Джордж Дарвин (сын выдающегося эволюциониста) в 1879-м, замедляет вращение Земли: поскольку период суточного вращения планеты короче времени прохождения спутника по орбите, ближний приливный горб «обгоняет» Луну, и, придерживая его, та притормаживает Землю. Сам же спутник, замедляя вращение планеты, в соответствии с законом сохранения совокупного момента вращения перемещается на все более дальнюю орбиту. Сейчас Луна удаляется со скоростью 3,81 см в год, что рассчитали с помощью лазерной локации поверхности нашего естественного спутника (уголковые отражатели были установлены американскими астронавтами и советскими станциями «Луна-17» и «Луна-21», доставившими туда луноходы почти полвека назад). И если бы скорость рецессии была постоянной, то Луна не могла бы появиться в «небе» ранее 1,5 млрд лет назад и первые миллионы лет своего существования с близкого расстояния вызывала бы мощнейшие возмущения в мантии и непрерывную канонаду супервулканов. Однако и возраст спутника мало уступает земному, и следов таких процессов, как уже сказано, в осадочных толщах нет. Так, быть может, скорость света замедляется, а вовсе не Луна удаляется? (Физики из Хьюстона предлагают и такие идеи. Хьюстон, у вас проблемы?) Впрочем, исходя из длительности эдиакарских суток, можно определить, что скорость рецессии в то время составляла 2,17 см в год, а усредненное, рассчитанное по длительности приливно-отливных циклов в разные периоды значение этой переменной не превышало 1,46 см в год. Получается, что даже 4 млрд лет назад Луна находилась более чем в 320 000 км от поверхности Земли – не намного ближе, чем сегодня (в среднем 384 400 км). Очень далеко до предела Роша – 18 000 км, на котором, согласно расчетам французского астронома Эдуарда Роша, сделанным в 1848 г., сила самогравитации спутника, подобного Луне, уравновесится приливной силой планеты, и спутник разрушится. Если же учесть, что взаимная конфигурация океанов и континентов на протяжении большей части истории планеты была иной, чем ныне, когда меридионально расположенный относительно узкий Атлантический океан создает резонансную волну (оттого и уровень приливов в нем выше, чем в Тихом), то средний показатель рецессии мог быть еще меньше.

Иными словами, взаимодействия триады Солнце – Земля – Луна практически не изменились со времени появления Луны, что случилось через 60 млн лет после образования Солнечной системы. Взывать к космическим силам для решения проблем архейского избыточного тепла бессмысленно. «Значит, – как полагал один персонаж Даниила Хармса, – жизнь победила смерть неизвестным для меня способом». На самом деле способ известен и сейчас на слуху: парниковый эффект – нагревание молекул некоторых газов во внутренних слоях атмосферы под воздействием инфракрасного излучения.

Наиболее вероятными претендентами на роль древних парниковых газов являются углекислый (СО2), метан (СН4), аммиак (NН3), закись азота (N2О), карбонилсульфид (OСS), а также, косвенно, азот (N2). (Высокое парциальное давление азота расширяет адсорбционные зоны молекул СО2, СН4 и водяного пара.) NН3, которому отводили роль парникового газа Саган и Мьюллен, а также N2О и OСS из перечня можно сразу вычеркивать: эти газы легко разрушаются ультрафиолетовым излучением и накопиться в атмосфере в достаточно больших количествах не могут. А вот N2, СО2 и СН4 не только устойчивы, но и выделяются в значительных объемах при дегазации мантии (подводные и наземные вулканы, метаморфизм) и в процессе жизнедеятельности различных микробов и, следовательно, могли насытить архейскую атмосферу. Чтобы создать ощутимый парниковый эффект в архейском эоне, правда, понадобилось бы не менее 3 % двуокиси углерода (почти в 100 раз больше, чем ныне). Однако при таких концентрациях этот газ сконденсировался бы в облака, отражающие солнечные лучи, и по мере остывания планеты оседал бы снежными шапками на полюсах, как на Марсе. Кроме того, при высоких концентрациях углекислого газа (≥1 %) ультрафиолетовые лучи частично поглощались бы его молекулами, а частично рассеивались, и независимое от массы фракционирование стабильных изотопов серы не происходило бы. Да и сидерита в архейских палеопочвах почти нет, а этот карбонат железа просто-таки обязан был накапливаться при высоком парциальном давлении СО2.

Более пригодным для разогрева мог бы быть азот, который хорошо абсорбирует инфракрасное излучение. И достаточно устойчив, чтобы попасть в ископаемую летопись даже как газ. Например, включения флюидов в гидротермальном кварце в более древних базальтах (3,49–3,46 млрд лет) кратона Пилбара содержат атмосферный газ, когда-то растворенный в поверхностных водах. Аммиак в них отсутствует, а инертный аргон и азот определяются. Соотношение молекул разных газов во включениях зависит от парциального давления каждого из них: при современном парциальном давлении N2 (7,9 × 104 Па) и 36Ar (3,2 Па) их соотношение колеблется в пределах 1,02–1,31 × 104 при температуре воды от 2 °C (средняя для глубоких вод) до 70 °C (архейский предел) и солености 0–16‰. Для архейского времени ее можно проверить по тем же включениям, и соотношение N2/36Ar не выходит за пределы 1,0 × 104. Следовательно, парциальное давление азота не превышало 5,0 × 104 Па, и с ролью основного теплоизолятора он справиться не мог.

Остается метан. Тем более что метан, как парниковый газ, в 21–25 раз эффективнее двуокиси углерода, поскольку поступление в атмосферу 1 × 109 кг метана равнозначно 21–25 × 109 кг углекислого газа (данные Рабочей группы I при Межправительственной панели по изменению климата за 2007 г.). Усиленный парниковый эффект метана обусловлен тем, что его молекулы абсорбируют более широкий спектр лучей, чем молекулы двуокиси углерода. Установить, какой из этих газов преобладал в архейской атмосфере, можно по ее плотности. Казалось бы, вообще неразрешимая задача…

Способ определения плотности древней атмосферы предложил еще в середине XIX в. англичанин Чарлз Лайель, один из основоположников современной геологии и наставник Чарлза Дарвина: нужно измерить диаметр ископаемых отпечатков дождевых капель. Такие отпечатки хорошо сохраняются в вязких и быстро твердеющих вулканических туфах при условии, что прошедший дождь был недолгим и несильным. В противном случае следы капель либо размоются, либо перекроют друг друга. Взяв за образец отпечатки дождевых капель на современных туфах – тех, что образовались в 2010 г. после извержения вулкана Эйяфьядлайёкюдль, и сравнив их с туфами из супергруппы Вентерсдорп в Каапваале, возраст которых 2,7 млрд лет, установили: самые крупные древние капли в момент удара о землю были в среднем мельче современных. Поскольку размер капель зависит от плотности атмосферы, значит, атмосфера была в 1,5–2 раза менее плотной, чем ныне.

Конечно, при этом требуется статистическая обработка огромного количества замеров, сделанных с помощью лазерного сканирования отпечатков капель, как и при другом методе определения плотности древней атмосферы, тоже связанном с вулканитами. Поскольку свежая базальтовая лава содержит огромные объемы газов, часть из них навсегда остается в виде пузырьков, заключенных в породе, такой как континентальные базальты Бунгал на кратоне Пилбара (2,74 млрд лет). Пузырьки же скапливаются на поверхности и подошве лавового языка, там, где вязкая лава, соприкасаясь с воздухом или холодными скалами, остывает быстрее. Размер навечно запечатанных в породе пузырьков на поверхности лавового языка прямо зависит от атмосферного давления, к которому прибавляется вес лавового пласта при расчетах величины лунок на его подошве. Зная мощность пласта и плотность базальтовой лавы (2650 кг/м3) и измерив самые крупные лунки на его поверхности и наименьшие на подошве, можно вычислить плотность атмосферы. Чем ниже плотность атмосферы, тем меньше разница в размере пузырьков внизу и наверху. Древние полости, конечно, позднее заполнились вторичным аморфным кремнеземом (его мы видим сейчас как вкрапления красивых агатов и сердоликов), кальцитом или хлоритом, превратившись в каменные миндалины. Расчеты, сделанные по соотношению средних величин таких миндалин, снова показывают, что архейская атмосфера была в два раза менее плотной. И скорее всего, не могла состоять из углекислого газа или азота, но могла быть насыщена метаном.

Этот газ, несомненно, поставляли вулканы: более низкое соотношение таких элементов, как ванадий и скандий (V/Sc = 5,2) в архейских океанических базальтах, чем в протерозойских и современных (V/Sc = 6,8–7,0), указывает, что расплав формировался в глубинных восстановительных условиях и, следовательно, их излияние сопровождалось выделением метана, сероводорода и водорода. Однако основным источником метана, вероятно, была жизнедеятельность метанобразующих архей, оставивших заметные следы в изотопной летописи планеты: резко отрицательные значения δ13С (–40–60‰), характерные для архейских керогенов, накопившихся в морских и озерных условиях и в палеопочвах (рис. 4.1е, ж), указывают на двухступенчатое фракционирование стабильных изотопов углерода: сначала археями, а затем метанокисляющими бактериями (например, гамма-протеобактериями). Никакие другие группы организмов, хотя более легкий изотоп выбирают все, не способны производить отбор столь тщательно. (Археи, как и бактерии, относятся к прокариотам – одноклеточным либо колониальным существам, в клетках которых нет органелл, а наследственное вещество рассредоточено в цитоплазме.)

Остатки самих метанобразующих архей и метанокисляющих бактерий обнаружены в кремнистых сланцах возрастом 3,47 млрд лет на кратоне Пилбара. Сами микроскопические остатки, напоминающие нитчатые колониальные бактерии, были найдены четверть века назад, но их органическая природа оспаривалась. Лишь в наши дни благодаря точечному анализу изотопного состава углерода в органическом веществе удалось доказать, что некоторые микрофоссилии принадлежат метанобразующим археям (их изотопная подпись варьирует от –33‰ до –38‰), а другие – метанокисляющим бактериям (δ13С = –39‰). Углерод археи могли извлекать из ацетатов – солей уксусной кислоты (СН3СООН), которые формировались при выветривании древних континентов, либо из углекислого газа. А необходимый им для синтеза метана водород (донор электрона) выделялся при воздействии морской воды на свежую океаническую кору, где водород теряли богатые железом коматииты и базальты в результате деятельности железоокисляющих анаэробных бактерий.

Изотопная подпись углерода показывает отклонение (δ13С) в соотношении стабильных изотопов этого элемента (13С/12С) в исследуемом образце от такового в стандарте, выраженное в количестве частиц на тысячу – промилле (‰). Этот показатель рассчитывается по формуле:

δ13С = [(13С/12С) образец – (13С/12С) стандарт/(13С/12С) стандарт] × 103.

По той же формуле определяются отклонения изотопной подписи (δ) других элементов, о которых речь пойдет ниже (18О/16О, 30Si/28Si, 34S/32S, 11B/10B, 15N/14N, 7Li/6Li). Разными для каждой пары являются только стандартные образцы.

В отличие от радиоактивного изотопа (14С) доля стабильных изотопов углерода в современном мире постоянна (12С/13С = 98,89/1,11). Поэтому любые отклонения от стандартной пропорции определимы и значимы, а в случае углерода практически всегда опосредованы деятельностью живых существ.

Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, – на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО2. Поскольку в отсутствие главного окислителя – кислорода – продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН4/СО2, близкого к 1, молекулы метана полимеризовались до этана (С2Н6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН3, OСS и серных соединений, включая аэрозоли полиатомной серы (S8).

Глава 5

Архей и археи

Сиренево-оранжевый туман не просто уберег Землю от переохлаждения, но, возможно, сделал планету даже более жаркой, чем ныне. Соотношение стабильных изотопов кислорода (18О/16О) и кремния (30Si/28Si) в архейском (3,5–2,5 млрд лет) осадочном кремнеземе, удержавшем первичный изотопный сигнал, указывает на температуру океанических вод в пределах 50–60 °C. Близкое соотношение этих изотопов выявлено и в естественных пробах архейской воды – капельках, заключенных в кристаллах галита (каменной соли), а также в керогенах (только для 18О/16О). Если повышенные значения изотопных подписей кислорода и кремния в кремнеземе еще можно объяснить осаждением этого минерала вблизи гидротерм или в теплых изолированных водоемах, то кероген формировался в нормально-морских условиях.

Да и первично осадочный кремнезем можно отличить от других его разностей по определенным минералогическим и геохимическим критериям. В архейском океане молекулы ортокремневой кислоты (Н4SiО4) полимеризовались в водной толще, образуя коллоидные наносферы, которые в условиях высокой солености слипались друг с другом и оседали на дно, где некоторое время продолжали расти. Поэтому слои кремнезема нацело сложены сферическими гранулами (≤0,2 мм). (Протерозойский кремнезем, образование которого связано с полосчатыми железными формациями, имеет иную структуру, а все фанерозойские кремневые отложения состоят из скелетов разных организмов.)

Редкость волновых знаков (ряби) на поверхности относительно глубоководных турбидитов – отложений морских мутьевых потоков (от англ. turbid – взвешенный, мутный) возрастом 2,7 млрд лет – предполагает низкую вязкость морской воды, также обусловленную повышенной температурой. Особенности архейских эвапоритов уже отмечались.

Если же обратиться к молекулярным корням древа жизни, то самыми древними организмами оказываются термофильные археи – прокариоты, обитающие в горячих источниках, обычно с повышенной кислотностью. (Кстати, «архей» и «археи» – слова однокоренные, подчеркивающие древность понятий, ими определяемых.) Близкие к ним метанобразующие археи также предпочитают жить при 40–85 °C, причем с повышением температуры объемы произведенного ими метана растут. Более того, реконструированные предковые белки группы факторов элонгации (удлинения), отвечающие за последовательное присоединение аминокислот к синтезируемому на органелле-рибосоме белку (иначе говоря, за удлинение белковой молекулы), являются устойчивыми к высоким температурам (45–80 °C и даже выше 80 °C). Поскольку и бактерии, и археи не обходятся без таких компонентов, то, скорее всего, унаследовали их от общего раннеархейского предка, и этот предок имел термостойкий белок-удлинитель.

Так что жизнь не только могла зародиться в «теплом прудике», как предполагал Чарлз Дарвин в письме к своему другу, английскому ботанику Джозефу Гукеру, но и долгое время существовать в тепличной обстановке. В теплой среде и темпы эволюции, вероятно, были выше. Поэтому уже в архейском эоне существовали всевозможные группы бактерий и архей, освоивших разные обстановки и образовавшие сложные сообщества. Обычно мы их не видим, а если видим, то отличить одни округлые микроскопические тельца от других (большинство прокариот имеет именно такую, коккоидную, форму) даже на современном материале без специальных анализов невозможно, но их присутствие чувствуется. В первую очередь благодаря изотопной подписи, оставленной фототрофами, буквально – «питающимися светом» (от греч. φως – свет и τροφή – пища).

Фототрофы фракционируют стабильные изотопы углерода – отбирают изотоп с меньшей массой и более высокой колебательной энергией (реакция с ним требует меньших энергетических затрат). Поэтому в ходе фотосинтеза органическое вещество обогащается легким изотопом (12С), а среда – обедняется, что и фиксируется в конечном счете в осадочных горных породах в виде изотопной подписи.

Необычная изотопная углеродная подпись вроде бы уже стоит на отложениях возрастом 3,8 млрд лет на западе Гренландии. Выражается она в заметной изотопной разнице между графитом, заключенным в кристаллах апатита (от –13‰ до –49‰), и углеродом в составе самого минерала (–2,3‰). При дальнейшем изучении этого апатита выяснилось, что графит образует не внутрикристаллические включения, а, наоборот, оторочку вокруг первичных кристаллов и, значит, сформировался позже, чем апатит. А вот насколько позже, сказать сложно. В целом, чтобы установить биогенную природу подобных и даже морфологически более сложных включений, требуется доказать: 1) осадочную природу самих отложений; 2) первичность включений, которые должны быть достаточно обильны; 3) их тесную генетическую связь с первичными минералами в породе; 4) сходство степени изменения включений с таковой первичных минералов; 5) невозможность объяснить изотопную подпись углерода абиогенными процессами; 6) приложить усилия к поиску следов других биогенных элементов – О, N, S, P и 7) молекулярных органических остатков – биомаркеров. Казалось бы, все это невозможно, но ведь получается!

Вряд ли фракционированием изотопов на заре жизни занимались оксигенные фототрофы, такие как цианобактерии: в архейских водах, учитывая высокое содержание растворенного железа и кремния, не могло находиться достаточно фосфора для поддержания жизни этих микробов. А вот аноксигенные фотоферротрофы в таких условиях процветать могли. Таким бактериям тоже нужна энергия света для синтеза органических соединений, но в качестве донора электрона, необходимого для протекания окислительно-восстановительных реакций, они используют закисное железо (Fe2+), а не воду, поэтому побочными продуктами их деятельности является Fe3+ (и различные минералы железа), а не кислород. Другие хемотрофы примерно тогда же получили доступ и к энергии недр, особенно на срединно-океанических хребтах, где позднее сложились необычные глубоководные сообщества черных курильщиков. Признаки их жизнедеятельности заметны по изотопной подписи другого элемента – серы (34S/32S, или δ34S).

Сохранилось ли что-нибудь от архейских организмов, кроме почти невидимых дырок в древних базальтах и изотопных подписей? Конечно, и немало. О метанобразующих археях и метанокисляющих бактериях из Пилбары уже говорилось. Там же, в Пилбаре (формация Стрелли-Пул) и в поясе Барбертон (соответственно, 3,43 и 3,2 млрд лет), найдены коккоидные тельца с органической оболочкой, состоящей из разных углеводородных молекул и азота, и связанные с ними кристаллы пирита, сохранившие изотопную подпись серы, характерную для серных бактерий.

На первый взгляд, учитывая обилие сульфидов – минералов серы, осаждение которых редко обходится без участия серных бактерий, – в этом нет ничего удивительного, но особая изотопная подпись видна не всегда, а остатки тех, кто «расписался», практически не сохраняются. Предполагается, что серные бактерии, подобные пурпурным и зеленым, были главными архейскими фототрофами и продуцентами (от лат. pro-duco – производить, создавать) органического вещества. Используя сероводород и сульфиды, они освобождали необходимые для фотосинтеза электроны и окисляли исходные молекулы до серы (S0) и в незначительной степени до сульфата (SO42–). Последние взаимодействовали с катионами железа и никеля, недостатка которых в архейском эоне не было, с образованием соответствующих сульфидов (например, пирита). Причем объемы серных соединений уравновешивали объемы органического вещества.

Особенно интересно, что часть бактериального сообщества Стрелли-Пул населяла приливно-отливную зону несмотря на смертельный уровень ультрафиолета: микробы закрепились когда-то под кварцевыми зернами, которые лежали на литорали, среди черного пиритового песка. Они выживали под прозрачным кварцем, подобно тому как в пустыне Намиб сейчас выживают почвенные колониальные цианобактерии носток (Nostoс flagelliforme). Кварц – это и экран, предохраняющий от коротковолнового излучения, и прозрачное окно, пропускающее достаточно света для фотосинтеза, и аккумулятор влаги: вода конденсируется на нижней поверхности камешка из-за суточного перепада температур. Более того, возвращаясь к архейским бактериям, в приливно-отливной зоне благодаря естественной, пусть и слабой аэрации воды им был доступен кислород, полностью отсутствовавший даже на небольшой глубине. (Пока не появился озоновый щит, кислород в небольших количествах образовывался за счет фотолиза воды.) Вероятно, в такой обстановке могли возникнуть и более сложные организмы. Во всяком случае, в той же формации Стрелли-Пул, в ее морских мелководных отложениях выявлены цепочковидные колонии из чечевицеподобных клеток (20–100 мкм в диаметре) с оторочкой и мелкими сферическими тельцами внутри. Эти «чечевичины» не похожи на каких-либо современных прокариот, но не имеют сложно устроенной оболочки, которая выдавала бы в них эукариот (организмов с клеточными органеллами, включая ядро – от греч. εύ – совершенно и κάρΰον – орех, ядро).

Хотя самые древние микроскопические ископаемые остатки на сегодня выявлены в формации Стрелли-Пул, следы архейской и протерозойской бактериальной жизнедеятельности видны во всем. Даже перекатывавшиеся по морскому дну песчинки обрастали бактериальными пленками, продолжавшими осаждение карбоната, и превращались в причудливые слоистые шарики – ооиды, иногда достигавшие в диаметре нескольких сантиметров (рис. 5.1). В целом же подавляющая масса архейских и протерозойских карбонатов, значительно нарастивших площадь континентов, обязана своим происхождением бактериальным сообществам. Без них это было просто физически (и химически) невозможно: при повышенном уровне углекислого газа возрастает и кислотность среды, что усиливает растворимость карбонатов, особенно кальцита и арагонита. Воспрепятствовать растворению карбонатных минералов способны микробы, преобразуя среду из кислой в щелочную хотя бы в придонном слое.

Поскольку в архейском и протерозойском мире еще не было животных, а до рубежа 850–800 млн лет – и простейших, способных питаться биоматами и пленками, они покрывали все свободное пространство, где содержалась хоть какая-то влага (рис. 5.2).

Скачать книгу