Полный курс за 3 дня. Нормальная физиология бесплатное чтение

Скачать книгу

Тема 1. Введение в нормальную физиологию

1. Основные этапы развития физиологии

Основоположником научной физиологии считается В. Гарвей. В 1628 г. вышла в свет книга «Анатомические исследования движения крови и сердца у живых». Автором было дано описание большого круга кровообращения. Эта дата и считается датой рождения научной физиологии.

В истории развития физиологии можно выделить два больших периода:

1) допавловский;

2) павловский.

Допавловский период продолжался до 1883 г., когда была издана диссертация И. П. Павлова «Центробежные нервы сердца».

Особенности допавловского периода развития физиологии

1. Функция изучалась на отдельных органах, не учитывалась целостность организма.

2. Не изучалось влияние нервной системы на функции организма в целом и отдельных его органов.

3. Не изучалось влияние факторов внешней среды на функциональное состояние организма человека.

4. Господствовал аналитический подход к изучению функций организма.

5. При экспериментах в физиологии применялись только наблюдения и острый опыт.

Особенности павловского периода развития физиологии

1. В физиологии господствует метод хронического эксперимента для изучения функций организма, но острый опыт продолжает существовать.

2. Изучение функций органов происходит на целостном организме.

3. Учитывается влияние нервной системы и гуморальных факторов в регуляции деятельности органов и их систем.

4. Учитывается влияние внешней среды на организм (последние 20 лет).

5. Преобладает системный подход к изучению функций организма и отдельных его органов.

Принципы павловской физиологии

1. Организм – это единое целое, которое обладает способностью к саморегуляции своих функций.

2. Принцип единства организма и внешней среды. Человек тонко приспособлен к той среде, в которой он живет. При изменении условий среды изменяется и организм, возникают болезни, дезадаптация.

3. Принцип нервизма. Нервизм – это направление в физиологии и медицине, которое стремится распространить влияние нервной системы на как можно большее количество функций организма.

Периоды развития нервизма

1. И. М. Сеченов, 1863 г., вышла работа «Рефлексы головного мозга». Основная идея монографии: вся сознательная и бессознательная деятельность человека – это рефлексы головного мозга.

2. В. М. Бехтерев – русский невропатолог и психиатр. Показал, что головной мозг человека участвует в регуляции деятельности всех внутренних органов. За счет головного мозга организм человека целесообразно уравновешен в окружающей среде.

3. В. П. Боткин – русский терапевт. Считал, что различные функции организма человека контролируются нервной системой, а при нарушении функции нервной системы развиваются нейрогенные заболевания, например гипертония, тиреотоксикоз.

4. Павлов – это имя соотносится с высшим этапом развития нервизма. Он считал, что центробежные нервы влияют на функции сердца и роль нервной системы в регуляции кровяного давления; значение нервной системы в регуляции секреторной и моторной функции желудочно-кишечного тракта неоспоримо велико. Также он показал, что нервная система принимает участие в приспособлении организма к новым условиям внешней среды за счет условных рефлексов; основоположник учений о типах нервной деятельности, доказал значение коры больших полушарий в деятельности животного и человека – распорядитель и распределитель деятельности.

2. Методы исследования в физиологии, понятия о функции, физиологической и фунциональных системах организма

Нормальная физиология – биологическая дисциплина, изучающая:

1) функции целостного организма и отдельных физиологических систем (например, сердечно-сосудистой, дыхательной);

2) функции отдельных клеток и клеточных структур, входящих в состав органов и тканей (например, роль миоцитов и миофибрилл в механизме мышечного сокращения);

3) взаимодействие между отдельными органами отдельных физиологических систем (например, образование эритроцитов в красном костном мозге);

4) регуляцию деятельности внутренних органов и физиологических систем организма (например, нервные и гуморальные).

Физиология является экспериментальной наукой. В ней выделяют два метода исследования – опыт и наблюдение. Наблюдение – изучение поведения животного в определенных условиях, как правило, в течение длительного промежутка времени. Это дает возможность описать любую функцию организма, но затрудняет объяснение механизмов ее возникновения. Опыт бывает острым и хроническим. Острый опыт проводится только на короткий момент и животное находится в состоянии наркоза. Из-за больших кровопотерь практически отсутствует объективность. Хронический эксперимент был впервые введен И. П. Павловым, который предложил оперировать животных (например, наложение фистулы на желудок собаки).

Большой раздел науки отведен изучению функциональных и физиологических систем.

Физиологическая система – это постоянная совокупность различных органов, объединенных какой-либо общей функцией. Образование таких комплексов в организме зависит от трех факторов:

1) обмена веществ;

2) обмена энергии;

3) обмена информации.

Функциональная система – временная совокупность органов, которые принадлежат разным анатомическим и физиологическим структурам, но обеспечивают выполнение особых форм физиологической деятельности и определенных функций. Она обладает рядом свойств, таких как:

1) саморегуляция;

2) динамичность (распадается только после достижения желаемого результата);

3) наличие обратной связи.

Благодаря присутствию в организме таких систем он может работать как единое целое.

Особое место в нормальной физиологии уделяется гомеостазу.

Гомеостаз – совокупность биологических реакций, обеспечивающих постоянство внутренней среды организма. Он представляет собой жидкую среду, которую составляют кровь, лимфа, цереброспинальная жидкость, тканевая жидкость. Их средние показатели поддерживают физиологическую норму (например, pH крови, величину артериального давления, количество гемоглобина и т. д.).

Итак, нормальная физиология – это наука, определяющая жизненно важные параметры организма, которые широко используются в медицинской практике.

Тема 2. Физиологические свойства и особенности функционирования возбудимых тканей

1. Физиологическая характеристика возбудимых тканей

Основным свойством любой ткани является раздражимость – способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

Различают две группы раздражителей:

1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

2) искусственные: физические (механические – удар, укол; температурные – тепло, холод; электрический ток – переменный или постоянный), химические (кислоты, основания, эфиры и т. п.), физико-химические (осмотические – кристаллик хлорида натрия).

Классификация раздражителей по биологическому принципу:

1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

К общим физиологическим свойствам тканей относятся:

1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

Мерой возбудимости является порог раздражения.

Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением.

Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

2. Законы раздражения возбудимых тканей

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы-времени. Эта кривая называется кривой Гоорвега – Вейса – Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то как бы длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальная сила раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезное время.

Закон градиента раздражения. Градиент – это «крутизна» нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

3. Понятие о состоянии покоя и активности возбудимых тканей

О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма и наблюдается функциональное отправление ткани.

Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, не распространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

2) импульсное, распространяющееся возбуждение. Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера (возникает скачкообразно);

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично, без предшествующего возбуждения;

2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

4. Физико-химические механизмы возникновения потенциала покоя

Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов калия, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;

2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

1) силы диффузии;

2) силы электростатического взаимодействия.

Значение электрохимического равновесия:

1) поддержание ионной асимметрии;

2) поддержание величины мембранного потенциала на постоянном уровне.

В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.

Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – Na-K-насос. Na-K-насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа Na-K насоса обеспечивает:

1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;

2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;

3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.

5. Физико-химические механизмы возникновения потенциала действия

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

1) локальный ответ;

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Локальный ответ. Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменной и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов и возникает локальный ответ. Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход натрия в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

Высоковольтный пиковый потенциал (спайк). Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

1) восходящей части – фазы деполяризации;

2) нисходящей части – фазы реполяризации.

Лавинообразное поступление ионов натрия в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов натрия войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов натрия внутрь клетки продолжается до момента электрохимического равновесия по иону натрия. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов натрия и от степени проницаемости мембраны к ионам натрия. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам натрия происходит инактивация активационных ворот, снижается проницаемость к ионам натрия и возрастает проницаемость к ионам калия, Na-K-насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы: положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам натрия, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

Тема 3. Физиологические свойства нервов и нервных волокон

1. Приготовление нервно-мышечного препарата лягушки

Деятельность нервов и мышц в нормальной физиологии изучается на нервно-мышечном препарате лягушки.

В приготовлении нервно-мышечного препарата можно выделить три этапа:

1) приготовление препарата двух задних лапок лягушки;

2) приготовление препарата одной задней лапки лягушки;

3) приготовление нервно-мышечного препарата.

Основными компонентами нервно-мышечного препарата являются седалищный нерв, мионевральный синапс, икроножная мышца.

Для приготовления нервно-мышечного препарата лягушку предварительно обездвиживают, удаляют головной мозг, произведя разрез за глазными яблоками, и разрушают спинной мозг. Затем, взяв лягушку за задние лапки, большими ножницами производят поперечный разрез туловища на расстоянии 1–1,5 см от крыльев подвздошных костей.

Взяв в левую руку остаток позвоночника, правой рукой захватывают остаток кожи со спинной стороны, снимают ее со спины и обеих задних лапок. По обеим сторонам от обнаженного позвоночника отчетливо видны корешки спинного мозга, дающие начало нервам. Разъединив лапки, препарат разделяют, разрезая его большими ножницами через оставшуюся часть позвоночника и лобковое сочленение.

На задней поверхности бедра находят местоположение седалищного нерва. Он расположен между мышцами бедра. Тупым способом раздвигают мышцы и осторожно приподнимают седалищный нерв, отделяя его от отходящих мелких ветвей. После отпрепарирования нервного ствола от коленного сустава до позвоночника перерезают бедренную кость, удаляют бедренные мышцы и остаток позвоночника.

На голени тупым способом выделяют икроножную мышцу. Введя браншу ножниц под ахиллово сухожилие, перерезают его у места прикрепления к пяточной кости. Затем ниже коленного сустава перерезают кости голени и мышцы.

Для проверки препарата гальваническим пинцетом наносят раздражение на седалищный нерв. Нервный импульс распространяется через мионевральный синапс, в результате чего наблюдается сокращение икроножной мышцы.

2. Физиология нервов и нервных волокон. Типы нервных волокон

Физиологические свойства нервных волокон:

1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;

2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;

3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.

Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности: предохраняет ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;

4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.

Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:

1) отростки нервных клеток – осевые цилиндры;

2) глиальные клетки;

3) соединительно-тканную (базальную) пластинку.

Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.

Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5–7 мкм, скорость проведения импульса 1–2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов, обладающих высоким омическим сопротивлением, и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами. При диаметре 12–20 мкм скорость проведения возбуждения составляет 70–120 м/с.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С.

Наибольшей скоростью проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С – от 0,5 до 2 м/с.

Не следует смешивать понятия «нервное волокно» и «нерв».

Нерв – комплексное образование, состоящее из нервного волокна (миелинового или безмиелинового), рыхлой волокнистой соединительной ткани, образующей оболочку нерва.

3. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существует два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутри волокна или в окружающей его жидкости. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «−». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесении раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70–120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Существует три закона проведения раздражения по нервному волокну.

Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.

Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.

В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.

В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.

В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.

Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях: центростремительно и центробежно.

В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и «клапанным» свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.

Тема 4. Физиология мышц

1. Физические и физиологические свойства скелетных, сердечной и гладких мышц

По морфологическим признакам выделяют три группы мышц:

1) поперечно-полосатые мышцы (скелетные мышцы);

2) гладкие мышцы;

3) сердечную мышцу (или миокард).

Функции поперечно-полосатой мускулатуры:

1) двигательная – обеспечение динамической и статической работы организма. Динамическая функция – это перемещение тела в пространстве и частей тела относительно друг друга, а статическая – это поддержание определенного положения тела;

2) участие в акте дыхания – вдох и выдох производятся за счет поперечно-полосатой дыхательной мускулатуры;

3) рецепторная – в поперечно-полосатой мускулатуре расположены различные виды рецепторов – механо-, хемо-, термо-, проприорецепторы, собственные мышечные веретена, сухожильные тельца Гольджи. За счет рецепторов скелетная мускулатура связана с центральной нервной системой и организмом в целом;

4) депонирующая – скелетная мускулатура является депо крови, в мышцах откладывается гликоген, содержатся вода, минеральные вещества;

5) участие в терморегуляции – при повышении температуры тела импульсы с периферии идут в центральную нервную систему – в центр терморегуляции. Однако пирогены (вещества химической, физической или биологической природы, вызывающие повышение температуры тела) вызывают изменение восприятия центром терморегуляции тепловых сигналов с периферии, в результате чего нервные импульсы о повышении температуры тела воспринимаются, наоборот, как охлаждение. После этого организм запускает сократительный термогенез – сокращение поперечно-полосатой скелетной мускулатуры (дрожь при лихорадке);

6) обеспечение эмоциональных реакций – мимическая мускулатура лица.

Функции гладких мышц:

1) входят в состав стенок полых органов, сосудистой стенки, радужной оболочки глаза, ресничной мышцы и мышц связочного аппарата матки (широкая связка);

2) поддерживают форму органа и постоянство давления, особенно в кровеносных сосудах;

3) обеспечивают резервуарную функцию, образуют сфинктеры, которые задерживают содержимое в определенном отделе органа;

4) обеспечивают опорожнение органа;

5) обеспечивают продвижение содержимого в желудочно-кишечном тракте;

6) поддерживают определенный просвет зрачка (мышцы радужной оболочки глаза).

Функция сердечной мышцы – насосная, обеспечивает движение крови по сосудам, при сокращении миокарда кровь выбрасывается из полости сердца в сосуды, а при расслаблении кровь наполняет камеры сердца.

Мышечная система рассматривается как единая структура. Структурной единицей мышечной системы является нейромоторная (двигательная) единица. Она представляет собой мотонейрон со всеми его отростками и группу мышечных волокон, иннервируемую этим нейроном. В состав нейромоторной единицы может входить различное количество нервных волокон: от нескольких сотен до тысяч.

В зависимости от способности генерировать возбуждение различают фазные и тонические нейромоторные единицы.

Фазные нейромоторные единицы характеризуются следующими особенностями:

1) образованы крупными α-мотонейронами центральной нервной системы;

2) аксоны мотонейронов – нервные волокна группы Аα;

3) разветвление аксонов по мышечному волокну образует 1–2 синапса;

4) характерна одиночная иннервация.

Основная функция фазных нейромоторных единиц – обеспечение динамического фактора движения. По скорости возникновения возбуждения и распространения волны сокращения выделяют быстрые и медленные фазные нейромоторные единицы. Быстрые предназначены для быстрого сокращения и расслабления. Это экономический процесс, протекающий без участия кислорода, только при помощи энергии АТФ. Медленные единицы выполняют работу медленного типа – статическую работу, участвуют в возникновении тонуса мышц. Для этого необходимо значительное количество энергии и обязательно участие кислорода.

Тонические нейромоторные единицы характеризуются следующими признаками:

1) в них генерируется местное возбуждение;

2) образованы мелкими мотонейронами;

3) аксоны мотонейронов – нервные волокна группы А;

4) аксоны образуют до нескольких десятков синапсов, за счет чего может возникать суммация нервных импульсов и развиваться импульсное возбуждение;

5) участвуют в поддержании тонуса мускулатуры, а также медленных, длительных сокращений скелетных мышц;

6) не реагируют на одиночный нервный импульс, для их возбуждения необходима серия импульсов.

Физиологические свойства скелетных мышц:

1) возбудимость ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала;

2) проводимость низкая, порядка 10–13 м/с;

3) рефрактерность занимает по времени больший отрезок, чем у нервного волокна;

4) лабильность;

5) сократимость – способность укорачиваться или развивать напряжение.

Различают два вида сокращения:

а) изотоническое сокращение – изменяется длина, тонус не меняется;

б) изометрическое сокращение – изменяется тонус без изменения длины волокна.

Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность – способность развивать напряжение при растягивании.

Физиологической особенностью сердечной мышцы является ее автоматизм – возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

Ультрамикроструктура мышечного волокна

Скелетные мышцы состоят из отдельных миофибрилл – телец толщиной от 0,5 до 2 нм, а длиной – до 2–3 см. Миофибриллы образованы сократительными белками актином и миозином и имеют поперечную исчерченность.

2. Механизмы мышечного сокращения и расслабления

Электрохимический этап мышечного сокращения

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca2+ и повышению их внутриклеточной концентрации.

Хемомеханический этап мышечного сокращения

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca2+ запускают механизм мышечного сокращения;

2) за счет ионов Ca2+ происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca2+ мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательные заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca2+ происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca2+:

1) Ca2+ реагирует с трипонином;

2) Ca2+ активирует АТФ-азу;

3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca2+ с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca2+.

Мышечное расслабление, как и сокращение, – активный процесс, для чего необходима энергия АТФ.

1. Мышечное расслабление осуществляется за счет распада кальциевых мостиков, что происходит в результате уменьшения количества ионов Ca2+ в межфибриллярном пространстве. Ионы Ca2+ путем активного транспорта возвращаются в саркоплазматическую сеть за счет деятельности кальциевого насоса.

2. В середине XX в. был обнаружен белок – фактор Мари-Бендалла, обеспечивающий способность актина возвращаться обратно.

3. Молекула АТФ является биологической «смазкой» – уменьшает силу трения между фибриллами и способствует возвращению актина и миозина в исходное положение.

4. При расслаблении играет важную роль пассивный механизм за счет эластичности мышечной ткани.

3. Анатомические, физиологические и функциональные особенности гладких мышц. Механизм сокращения гладкой мускулатуры

Гладкомышечная ткань состоит из отдельных клеток. Они имеют веретенообразную форму, длину от 2 до 10 нм, ширину от 50 до 400–500 мкм. Мембраны этих клеток тесно прилегают друг к другу. В месте контакта двух соседних гладкомышечных клеток образуются нексусы – электрические синапсы. В результате этого формируется функциональный синцитий. Гладкие мышцы имеют большое количество актиновых и миозиновых волокон, которые распределяются неравномерно, в результате чего при микроскопии в гладкомышечной ткани отсутствует поперечная исчерченность. Гладкомышечные клетки бедны саркоплазматической сетью, ионы кальция, необходимые для сокращения, поступают из внеклеточного пространства. Иннервация гладкой мускулатуры осуществляется вегетативной нервной системой, работа внутренних органов не контролируется сознанием человека и гладкие мышцы не подвергаются произвольной регуляции.

Физиологические свойства гладких мышц

1. Возбудимость ниже, чем у поперечно-полосатой мускулатуры. Это объясняется тем, что в возникновении потенциала действия важную роль играют ионы Ca2+. Они проникают вглубь клетки через медленные кальциевые каналы. Так как в гладкой мускулатуре плохо развит саркоплазматический ретикул, то и ионы кальция будут доставляться в меньшем количестве, а соответственно, будет снижаться возбудимость. Гладкие мышцы не реагируют на одиночное раздражение, для возникновения мышечного сокращения необходима серия нервных импульсов с частотой не менее 1 импульса в минуту.

2. Проводимость ниже, чем у скелетной мускулатуры. Скорость проведения возбуждения в гладкой мускулатуре составляет 0,01–0,02 м/с. За счет этого волна возбуждения распространяется медленно – возможно обеспечение перистальтической функции полых органов.

3. Рефрактерность больше, чем у скелетных мышц. Рефрактерный период удлиняется за счет относительного рефрактерного периода и составляет от 80–500 мс до нескольких секунд.

4. Лабильность низкая. При рефрактерном периоде, равном 1 с, регистрируется 1 волна возбуждения.

5. Сократимость. Гладкие мышцы сокращаются медленно, но могут развивать значительную силу. Они способны выполнять функцию длительного сокращения с минимальной затратой энергии, что особенно важно в полых органах. Гладкие мышцы имеют более низкую по сравнению со скелетными частоту сокращения (примерно в 100–1000 раз). Это происходит за счет удлинения одиночного мышечного сокращения.

За счет наличия медленного сокращения даже под влиянием редких импульсов мышечная ткань может приходить в состояние длительного сокращения, напоминающее тетанус.

Функциональные особенности гладкомышечной ткани

Гладкие мышцы обладают спонтанной электрической активностью, автоматией, они способны самостоятельно генерировать потенциал действия (мышцы желудка, кишечника, мочеточника, сосудов). Это объясняется тем, что гладкомышечная клетка имеет нестабильную величину мембранного потенциала. В состоянии покоя мембранный потенциал постепенно уменьшается и в определенный момент достигает критического уровня деполяризации – возникает потенциал действия. Он имеет миогенную природу. Этот потенциал генерируется постоянно, в том числе в состоянии покоя, обеспечивая тонус гладкой мускулатуры, или базальный тонус.

Однако не все гладкомышечные клетки обладают способностью к автоматии. Такое свойство отсутствует у мышц артерий, радужной оболочки глаза, связочного аппарата матки, ресничной мышцы. В этих мышцах возможно возникновение только нейрогенного потенциала действия.

Гладкие мышцы реагируют на растяжение сокращением. При растяжении гладких мышц деформируются клеточные мембраны и возникает деполяризация. Происходит сокращение гладкомышечных клеток. Например, по этому механизму происходит миогенная ауторегуляция сосудистой стенки. При снижении давления в сосуде гладкая мускулатура сокращается, просвет сосуда уменьшается, объем крови не изменяется, кровообращение органа не нарушается.

Гладкие мышцы обладают пластичностью, способны длительное время оставаться в растянутом состоянии. Гладкие мышцы способны выполнять свою функцию как в расслабленном, так и в сокращенном состоянии. Они обладают высокой чувствительностью к действию биологически активных веществ. Считают, что на мембране гладкомышечных клеток имеются рецепторы к гормонам и другим биологически активным веществам.

Механизм сокращения гладких мышц

Пусковым механизмом к сокращению является возникновение потенциала действия. В процессе возникновения потенциала действия ионы кальция Ca2+ поступают внутрь клетки. В гладких мышцах они взаимодействуют с кальмодулином и образуют комплекс кальций – кальмодулин, запускающий механизм сокращения. Под его влиянием активируются киназы легких цепей миозина, он вызывает фосфорилирование миозина, после чего активируется АТФ-аза, выделяется энергия АТФ и происходит мышечное сокращение.

4. Тонус скелетной мускулатуры и механизм его возникновения

Тонус – это состояние умеренного сокращения в покое или постоянного напряжения мышцы. В возникновении тонуса участвуют тонические и фазные нейромоторные единицы, постоянно генерирующие нервные импульсы.

Тонус скелетной мускулатуры имеет рефлекторную, нервную и гуморальную природу.

1. Рефлекторный механизм возникновения мышечного тонуса.

Мотонейроны центральной нервной системы постоянно получают нервные импульсы от различных рецепторов, в первую очередь от проприорецепторов мышц, в ответ на что генерируется нервный импульс, передающийся на мотонейроны спинного мозга и вызывающий изометрическое сокращение миофибрилл.

2. Нервный механизм возникновения мышечного тонуса. Скелетная мускулатура постоянно находится под влиянием вышележащих отделов центральной нервной системы. В среднем мозге, мозжечке, базальных ганглиях, стволе мозга имеются структуры, посылающие импульсы на мотонейроны, способствующие возникновению мышечного тонуса.

3. Гуморальный механизм возникновения мышечного тонуса.

Мотонейроны подвергаются воздействию универсальных метаболитов, таких как углекислый газ (образуется в процессе тканевого дыхания), молочная, пировиноградная кислоты (образуются в процессе мышечного сокращения). Они повышают активность мотонейронов.

Тонус скелетной мускулатуры играет важную роль. Благодаря тонусу мышцы находятся в состоянии готовности к сокращению.

5. Одиночное мышечное сокращение и происхождение тетануса. Понятия оптимума и пессимума раздражения

Характер сокращения скелетной мышцы зависит не только от силы, но и от частоты раздражителя.

Выделяют одиночное и тетаническое мышечное сокращение. В ответ на кратковременное одиночное раздражение пороговой или сверхпороговой силы возникает быстро развивающееся и быстро заканчивающееся одиночное мышечное сокращение.

При графической записи одиночного сокращения отмечают:

1) скрытый (или латентный) период – время от момента раздражения до начала сокращения;

2) сокращение мышцы – подъем кривой на миограмме;

3) расслабление мышцы – возвращение кривой миограммы к исходному уровню.

Общая продолжительность одиночного мышечного сокращения для мышцы лягушки составляет 0,12 с, из них 0,05 – сокращение, 0,06 – расслабление и 0,01 – скрытый (латентный) период.

Если к мышце посылать несколько отстоящих друг от друга на различные промежутки времени раздражений, то в зависимости от того, в каком состоянии находится мышца, получается неодинаковый эффект.

Если раздражающие импульсы сближены и новый приходится на тот момент, когда мышца начала расслабляться, но не расслабилась полностью, возникает зубчатый тип сокращения (по характеру кривой миограммы), получивший название неполного, зубчатого, несовершенного тетануса (клонуса).

Если импульсы сближены настолько, что новый приходится на момент сокращения мышцы, когда она не успела прийти в состояние расслабления, то возникает длительное непрерывное сокращение, получившее название гладкого, совершенного тетануса.

Таким образом, в основе тетануса лежит суммация одиночных мышечных сокращений.

В норме по одиночному типу сокращения работают поперечно-полосатая, сердечная и гладкая мускулатуры. Сокращение скелетных мышц носит характер тетанического, так как из центральной нервной системы к ним поступают множественные нервные импульсы, при этом совершенный тетанус – это нормальное рабочее состояние скелетной мускулатуры, возникающее при частоте 40–50 нервных импульсов в минуту. Зубчатый тетанус возникает при частоте 30 импульсов в минуту. Если частота импульсов составляет 10–20 в минуту, то мышца находится в состоянии тонуса – умеренного сокращения и расслабления.

Тетаническое сокращение сильнее и продолжительнее одиночного, что дает возможность сохранять положение тела.

Оптимумом силы и частоты раздражителя называют определенную его частоту и силу, при которых отмечаются максимальные ответные реакции мышцы. Дальнейшее увеличение силы и частоты раздражения приводят сначала к ослаблению сократительной способности, вплоть до полного ее отсутствия. Это явление получило название пессимума.

6. Парабиоз и его стадии

Учение о парабиозе создано Н. Е. Введенским на основании исследования об оптимуме и пессимуме силы и частоты раздражения, а также учения о лабильности, или функциональной подвижности тканей.

Парабиоз – это состояние особого, стойкого, неколеблющегося возбуждения, которое в отличие от обычного возбуждения не распространяется за пределы измененного участка ткани.

Введенский показал, что если небольшой участок нерва подвергнуть действию чрезмерно сильных или чрезмерно частых, а также повреждающих и длительно действующих раздражителей, то физиологические свойства этого участка изменяются: понижается лабильность, меняются возбудимость и проводимость.

Свои опыты Введенский проводил на нервно-мышечном препарате лягушки, при этом в качестве раздражителей он использовал раствор кокаина, тепло, холод, давление и ряд других факторов.

В процессе развития парабиоза можно выделить следующие стадии.

1. Стадия трансформаторная (провизорная, или уравнительная) – в этой фазе лабильность измененного участка нервной ткани понижается, в результате чего нервные импульсы проводятся через него в более медленном темпе, на слабые и сильные раздражители мышца сокращается с одинаковой силой.

2. Парадоксальная стадия – в этой фазе усугубляются нарушения функции в измененном участке нервной ткани, при этом на самые слабые раздражители участок реагирует так же, как и на самые сильные, на которые может вообще не реагировать.

3. Тормозная стадия – происходят глубокие функциональные изменения ткани. Слабые и сильные нервные импульсы не проходят через парабиотический участок нервной ткани, хотя возбудимость измененного участка еще сохранена.

Парабиоз – обратимый процесс. Если устранить действующий фактор, то ткань вернется к нормальному функционированию, а если же фактор будет продолжать действовать, то наступает гибель ткани, а позже – и всего организма.

Введенский установил, что парабиотический участок заряжен электроотрицательно по отношению к окружающим тканям. Можно выделить две фазы действия парабиотических агентов:

1) электропозитивную фазу, или фазу гиперполяризации. В начале действия парабиотических факторов отмечается кратковременный рост мембранного потенциала. В это время наблюдаются повышение обменных процессов, усиление деятельности натрий-калиевого насоса;

2) электронегативную фазу – происходит прогрессивное снижение мембранного потенциала, причем оно носит ступенчатый характер. Отмечается постепенное снижение лабильности и возбудимости.

Парабиоз – закономерная реакция живой ткани на действие чрезмерных по силе и частоте раздражений. Его можно наблюдать не только в нервном волокне, но и в нервных клетках, мышцах и железистой ткани.

Тема 5. Действие постоянного тока на живые ткани. Хронаксиметрия

Постоянный ток в настоящее время находит все более широкое применение в клинической практике, как для диагностики поражений нервов и мышц (например, хронаксиметрия – метод определения возбудимости периферических нервов и скелетных мышц), так и для физиотерапии ряда заболеваний (например, использование постоянного тока для введения лекарственных веществ – метод электрофореза – или с целью повышения эластичности послеоперационного рубца).

Постоянный ток – это ток, постоянный по силе и направлению. Он меняет свою величину только дважды – в момент замыкания цепи (при этом амплитуда резко возрастает с нуля до определенного значения) и в момент размыкания цепи (при этом амплитуда резко снижается с определенной величины до нуля). Таким образом, постоянный ток, в отличие от переменного, будет действовать на живые ткани только в момент замыкания и размыкания цепи. После замыкания цепи и ответной реакции в тканях начинается адаптация к действию постоянного тока.

Известно, что в момент замыкания цепи постоянного тока возбуждение возникает под катодом, а при размыкании – под анодом (Полярный закон Пфлюгера). В 1859 г. Пфлюгер провел следующий опыт. Умерщвляя участок нерва под одним из электродов и устанавливая на неповрежденный участок другой электрод, он обнаружил, что при соприкосновении с неповрежденным участком катода возбуждение возникает только при замыкании цепи постоянного тока, а если катод установить на поврежденный участок ткани, а анод на неповрежденный, то возбуждение возникает только при размыкании цепи. Таким образом Пфлюгер пришел к выводу, что при действии постоянного тока на возбудимую ткань в момент замыкания цепи возбуждение возникает над катодом, а при размыкании – над анодом. Порог раздражения при размыкании цепи, когда возбуждение возникает над анодом, значительно выше, чем в момент замыкания цепи. Это можно объяснить изменением мембранного потенциала, которое вызывается постоянным током.

В момент замыкания цепи в области приложения к поверхности ткани положительно заряженного анода увеличивается положительный потенциал на наружной поверхности клеточной мембраны, т. е. происходит ее гиперполяризация, при этом увеличивается мембранный потенциал, поэтому при замыкании цепи постоянного тока возбуждение над анодом не возникает. Это явление не сопровождается изменением ионной проницаемости клеточных мембран и получило название пассивной гиперполяризации.

В момент замыкания цепи в области приложения отрицательно заряженного электрода – катода – положительный заряд на наружной поверхности клеточной мембраны снижается. Возникают пассивная деполяризация и снижение величины мембранного потенциала. В момент замыкания цепи повышается проницаемость мембраны для ионов натрия, что увеличивает явление деполяризации, что в свою очередь способствует еще большему увеличению натриевой проницаемости.

Прохождение постоянного электрического тока через живую ткань сопровождается изменением ее физических и химических свойств. Для обозначения этих изменений введен термин «электротон». Изменения, которые происходят над катодом, получили название «катэлектротон», под анодом – «анэлектротон». Изменения, возникающие на расстоянии 1 см от электронов, называются «периэлектротон», они противоположны изменениям, возникающим на катоде и на аноде.

В момент замыкании цепи происходят определенные сдвиги физиологических и физико-химических свойств.

Под катодом происходит повышение возбудимости и проводимости ткани, падает активность ацетилхолинэстеразы, увеличивается количество ацетилхолина, выделяется аммиак.

Под анодом понижаются возбудимость и проводимость ткани, повышается активность холинэстеразы, уменьшается содержание ацетилхолина, накапливается витамин В2, выделяется углекислый газ.

При продолжительном действии постоянного электрического тока под катодом увеличивается критический уровень деполяризации, т. е. возрастает порог раздражения. Наряду с этим происходит снижение амплитуды потенциала действия, так как длительное повышение натриевой проницаемости над катодом в момент замыкания цепи приводит к ее аккомодации. Накопление под катодом ацетилхолина также способствует понижению возбудимости за счет развития стойкой деполяризации. Это явление – повышение возбудимости над катодом, которое затем сменяется ее снижением, получило название катодической депрессии и было изучено учеником Н. Е. Введенского Б. Ф. Вериго.

В зависимости от расположения электродов различают восходящее и нисходящее направление тока. При восходящем направлении ближе к мышце располагается анод, а при нисходящем – катод.

Ответная реакция ткани зависит не только от направления постоянного тока, но и от его силы. Различают слабый (пороговый), средний и сильный постоянный ток.

Слабый ток вызывает ответную реакцию в мышце или при восходящем или при нисходящем направлении только в момент замыкания цепи. В момент размыкания цепи ответной реакции не возникает, так как под анодом развивается только местное возбуждение, которое не проводится к мышце.

Средний ток при восходящем и при нисходящем направлении вызывает ответную реакцию как при замыкании, так и при размыкании цепи. В момент замыкания цепи под катодом, а в момент размыкания – под анодом возникает импульсное возбуждение, которое и вызывает сокращение мышцы.

Сильный ток при восходящем направлении вызывает ответную реакцию при размыкании цепи, а при нисходящем – только в момент ее замыкания, когда возбуждение возникает под электродом, расположенным ближе к мышце.

В момент замыкания цепи сильного постоянного тока восходящего направления под катодом возникает распространяющееся возбуждение, но в момент действия сильного постоянного тока под анодом резко понижаются возбудимость и проводимость, что блокирует проведение возбуждения от катода через область анода.

Аналогичный блок проведения возбуждения создается под анодом при размыкании цепи постоянного тока нисходящего направления за счет возникновения катодической депрессии.

Хронаксиметрия – один из методов диагностики функционального состояния нервов и мышц с помощью постоянного электрического тока. Для характеристики возбудимости ткани необходимо определить минимальный порог раздражения (реобазу) и минимальное время, в течение которого ток, по силе или по напряжению равный удвоенной реобазе, должен возбудить ткань (хронаксия).

Хронаксия – это величина, характеризующая скорость возникновения возбуждения в ткани. Чем быстрее возбуждается ткань, тем короче ее хронаксия. Хронаксия измеряется в тысячных долях секунды, реобаза – в вольтах или миллиамперах.

Лабильность и хронаксия тесно связаны между собой, так как быстро протекающий процесс возбуждения характеризуется быстрым возникновением, и, наоборот, медленное протекание процесса возбуждения сочетается с длительным его возникновением. Таким образом, измерение хронаксии можно использовать для характеристики лабильности тех или иных образований. Хронаксия и лабильность ткани находятся в обратно пропорциональной зависимости. Чем больше хронаксия, тем меньше лабильность ткани, и наоборот – при низкой хронаксии лабильность ткани высокая.

Для определения хронаксии пользуются прибором хронаксометром. Он позволяет дозировать время действия тока на ткань и его силу. В хронаксометре имеются два электрода, отличающиеся друг от друга по размерам: анод – большой электрод, катод – малый электрод. В связи с этим густота электрических линий у анода незначительна и раздражающий эффект практически отсутствует, поэтому большой электрод называется индифферентным. Густота электрических линий на катоде примерно в 100 раз больше, чем на аноде, и он обладает выраженным раздражающим действием. Этот электрод называется дифферентным, или активным.

При исследовании проводят определение хронаксии эфферентных (моторную хронаксию) и афферентных (сенсорную хронаксию – зрительную, слуховую) систем. При исследовании моторной хронаксии проводят измерение хронаксии двигательного нервного ствола и иннервируемой им мышцы. При исследовании берут те участки нервного ствола, где он наиболее поверхностно располагается к коже, чтобы вызванная раздражением реакция была достаточной.

При исследовании мышц раздражение наносится на их двигательную точку – проекцию на коже места входа нервного ствола в данную мышцу. Для обнаружения этих точек используют системы их топографии. Передача возбуждения с одного нейрона на другой, а также с нейрона на мышцу возможна только при близких величинах их хронаксии. Это явление получило название изохромизма. Если хронаксии мышцы и нерва отличаются друг от друга более чем в два раза, то передача возбуждения невозможна, что получило название гетерохромизма.

Скачать книгу