Ошибки мировой космонавтики бесплатное чтение

Александр Яровитчук, Анастасия Стебалина
Ошибки мировой космонавтики

© Яровитчук А.Г., 2024

© Стебалина А.С., 2024

© ООО «Издательство АСТ», 2024

* * *

От авторов

Ошибаются все. Ошибки неизменно сопровождают процессы познания, творчества, созидания.

Каждому из нас лучше всего запоминается собственный опыт. Однако учиться стоит не только на своих ошибках. Опыт других людей порой помогает по-новому взглянуть на личные успехи и неудачи. Казалось бы, при чем здесь космонавтика? Но ведь эта область науки основана на соединении смелых новаторских идей, инженерного гения и жажды познания. В масштабах человеческой истории она совсем молода, а больше всего ошибок допускают именно первопроходцы. Описанные на страницах этой книги реальные случаи могут многому научить, ведь чем бы мы ни занимались, в первую очередь мы остаемся людьми, а люди могут ошибаться.

Космические программы СССР, продолженные Россией, а также разработки США, Японии, Европы дали миру огромное количество новых знаний и открыли невиданные горизонты. Грандиозный триумф невозможен без большой кропотливой работы, а значит – вероятных ошибок и неизбежного поиска путей их преодоления. Мы не ставим перед собой цель принизить чьи-либо заслуги. Наша книга прежде всего о том, как извлечь урок из ошибок, как не сдаться и продолжить идти к намеченной цели. Мы хотим показать космонавтику с менее эффектной и привлекательной, более непарадной, будничной стороны и надеемся, что собранные нами истории не только послужат уроком читателю, но и дадут вдохновение для новых идей и увлечений. Мы хотим показать, что космос не такой уж недосягаемый, и если приложить усилия, то многое, даже кажущееся поначалу фантастическим, становится возможным.

Глава 1
Орбиты, инерция и гравитация

Тише едешь – дальше будешь.

Пословица

В космосе нет ничего необычного. Законы природы на то и законы, что выполняются везде. Однако происходящее с космонавтом или спутником на орбите будет отличаться от того, к чему мы привыкли на Земле.

Первое – в космосе правит инерция. Тело будет двигаться с постоянной скоростью, пока на него не подействуют другие силы. На Земле этот принцип тоже работает, но мы обычно его не замечаем. Если мы что-то бросили, разогнали или сдвинули, оно будет потихоньку останавливаться, замедляться. На Земле на нас постоянно действует множество сил: трение о воздух, о землю, сила тяжести, сила реакции опоры, сила упругости и так далее. В космосе подобных явлений гораздо меньше, и поэтому инерцию прекрасно видно. Даже если совсем немного воздействовать на космонавта, например, легким касанием, он начнет двигаться и может улететь на любое расстояние, хоть на миллион, хоть на миллиард километров, пока его что-то не остановит. Причем инерция работает как снаружи, так и внутри космического корабля.

Сколько космонавты упускали предметов в космосе – не сосчитать. Началось все с обычного карандаша, которым Юрий Гагарин должен был вести записи в бортовом журнале. Первый космонавт планеты сделал вывод, что на орбите все нужно крепить. Сейчас у каждого космического приспособления есть способы фиксации – липучки, карабины, винты.

Но все еще есть трудности с крошащимися и жидкими материалами. Показательным примером стал полет американского астронавта № 6 Гордона Купера на корабле «Меркурий-Атлас-9». При попытке приготовить еду он случайно разлил бо́льшую часть отведенной на это воды. Капельки разлетелись по кораблю. Первое время все было спокойно, но через пятнадцать часов друг за другом стали отказывать приборы. Вероятно, до них постепенно добиралась вода и вызывала короткое замыкание. Сначала в невесомости сработал датчик перегрузки, затем сломался механизм охлаждения скафандра, что могло привести к перегреву астронавта, потом началась избыточная подача кислорода и рост давления, далее закоротило систему ориентации корабля. Астронавт оставался на удивление спокойным и, несмотря на реальную угрозу жизни, выполнил все предписания и вернулся на Землю. Позднее технологию подачи воды усовершенствовали: стали использовать специальные пакеты с клапанами и знаменитые тюбики. Также были добавлены насосы и сушильные системы, которые должны были собирать случайно разлетевшуюся воду.

Буквально в следующем после этого случая полете астронавты допусти похожую ошибку. На американском корабле «Джемини-3» почти сразу после старта пилот корабля Джон Янг достал провезенный контрабандой сэндвич и предложил его капитану Вирджилу Гриссому. Тот откусил кусочек, но сразу заметил, что по станции стали разлетаться крошки, которые могли попасть в приборы или в дыхательные пути. Вспомнив предыдущий полет и его проблемы, астронавты спрятали еду. Сегодня, чтобы не было крошек, хлеб пекут маленькими буханочками размером с конфетку, «на один укус». В таком виде не нужно ничего резать и откусывать, поскольку весь «батон» помещается во рту. Второй вариант – использовать лепешки вместо буханок. Они тонкие, и на срезе крошки практически не образуются. Особые неприятности возникают, когда отказывает насос ассенизационного устройства – туалета.


Космический хлеб


Были проблемы и серьезнее. В 1955 году инженеры проводили испытательные полеты баллистической геофизической ракеты Р-1Е на большую высоту. Внутри в специальном контейнере с парашютом находились тележки с собаками Лисой и Бульбой. Вскоре после старта Р-1Е сбилась с курса. Автоматически включились стабилизационные рули, которые должны были выправить траекторию движения. При этом ракета резко изменила положение, а тележки с собаками, по инерции продолжив движение, пробили корпус и вылетели из контейнера.

Р-1 – простая ракета, которая состоит из двигателя, топливных баков и контейнера с оборудованием. Предельная высота полета груза в 150 кг составляет 110–120 км, а скорость – не более 2 км/с. Для более амбициозных задач необходимо использовать дополнительные отделяемые части – ступени. Ступень – это, по сути, отдельная ракета. Когда в ней заканчивается топливо, она отделяется, а следующая начинает работу.

Нижняя ступень при этом пустая и легкая, а верхняя – тяжелая. По инерции первая может догнать вторую и протаранить ее. Нужно точно рассчитать время разъединения и мощность двигателя. Практически у каждого типа многоступенчатой ракеты на начальном этапе эксплуатации был аварийный пуск, где данный сценарий реализовывался. Ошибки могут быть разные. Так, например, при пуске американского «Авангарда» в 1958 году двигатель второй ступени включился слишком поздно, а у частного «Фалкона-1» двигатель первой ступени оказался более мощным, чем предполагалось. У российского «Союза» в 2018 году не сработала система отвода корабля в сторону и т. д.

Даже если при пуске ракеты все прошло успешно, проблемы могут возникнуть у корабля уже в космосе. В безвоздушном пространстве нет других способов затормозить, кроме как использовать двигатель. Если с ним что-то не так, проблемы обеспечены.

Первого космонавта Юрия Гагарина баллистики намечали запустить на очень низкую орбиту, туда, где есть остатки разреженной атмосферы. Если бы вдруг двигатель для посадки отказал, то за счет сопротивления корабль Гагарина мог затормозиться в течение десяти дней и вернуться на Землю сам. Однако была допущена ошибка в расчете длительности работы двигателя при взлете. Юрий Алексеевич оказался дальше от Земли, чем планировалось. На такой высоте по инерции без двигателя он пролетал бы около двух месяцев, а еды и воды у космонавта было только на десять дней. К счастью, все обошлось, двигатель сработал, и космонавт вернулся.

А вот у двух собак Пчелки и Мушки, которых отправили в полет за полгода до Гагарина, все закончилось плохо. Старт прошел успешно, но при посадке двигатель сработал чуть хуже, чем требовалось. Продолжая двигаться по инерции, корабль перелетел территорию СССР. Чтобы новейшие технологии не достались другим странам, на аппарате была предусмотрена на такой случай система самоуничтожения (автоподрыва). Она и сработала в процессе полета.

Так же перелетели за пределы нашей страны космонавты Владимир Ляхов и Абдул Ахад Моманд при попытке планового приземления на корабле «Союз ТМ-5» в 1988 году. От спускаемого аппарата корабля при подготовке к посадке был отделен бытовой отсек. Эта часть не приспособлена для возвращения на Землю, но именно там располагается всё жизненно необходимое в космическом пространстве: туалет, вода, еда, устройство стыковки и т. д. Затем включился двигатель посадки, но произошло это слишком поздно. Космонавты, увидев неладное, сразу его отключили. Теперь, чтобы приземлиться в нужном месте, требовалось прождать больше суток, пока положение корабля относительно Земли не повторится. Проблема же оказалась в том, что у космонавтов ничего не было для жизни, только воздух, но они справились, проявив хладнокровие и выдержку.

С инерцией связана и забавная история. Ее рассказал в своей книге космонавт Георгий Гречко. Этот случай больше похож на байку, но весьма познавательную. Так вот, под видом лекарства с элеутерококком на борт станции «Салют-6» в достаточно большой фляге был доставлен коньяк. Георгий Гречко и Юрий Романенко нашли его. Алкоголь в космосе строжайшим образом запрещен, так что это была контрабанда. Космонавты потихонечку стали его пить – по паре капель перед сном. Правда, употребить удалось только половину фляги. В невесомости коньяк вспенился. Вытянуть его, как сок из трубочки, уже не получалось. Космонавты вернулись на Землю, так и не опустошив сосуд до конца. На смену прибыли Ковалёнок и Иванченков. Они флягу тоже нашли, но придумали, как ее допить, чем сильно удивили предыдущий экипаж, когда рассказали, как это было сделано. Один из космонавтов медленно подлетал к краю станции, сжимая горлышко губами. Второй резко толкал его в противоположном направлении. Космонавт и фляга начинали двигаться в другую сторону, а коньяк по инерции вылетал прямо в рот. Можно уверенно сказать – инерция правит бал в космосе. Любой маневр, поворот, стыковка, любое, даже незначительное, действие требует учета инерции. Мы ее вспомним еще не раз.

Второе действующее лицо на космическом балу и главный партнер инерции – гравитация. Да, она там есть и никуда не исчезает. Часто можно услышать неверные утверждения, что орбитальные станции не подвержены влиянию гравитации. Они так далеко летают от ее источника, от Земли, что сила всемирного тяготения ослабевает и пропадает. И у этих утверждений есть даже доводы: космонавты легким движением мизинчика перемещают многотонные предметы, и к тому же сами не падают на Землю. Но в реальности гравитация есть, причем там, где летают космонавты, ее сила практически не отличается от той, что действует на людей и предметы на поверхности Земли.

Космонавты не падают из-за скорости. Вернее, они как раз падают все время, постоянно, но благодаря очень быстрому движению от Земли не приближаются к ней. Из-за инерции и многотонные грузы легко перемещаются даже от небольшого толчка. Сами предметы не падают, потому что быстро двигаются, точно так же как космонавты и космические корабли.

Важно, что космические аппараты двигаются по круговым или эллиптическим орбитам. При таком вращении гравитационные силы уравновешиваются центробежными. Если бы мы летели от Земли строго вверх (перпендикулярно) без ускорения (без включенных двигателей), то наша скорость из-за притяжения все время бы падала. Однако чем больше эта скорость была изначально, тем дальше можно было бы пролететь. Сила гравитации зависит и от расстояния. Чем дальше улетим от Земли, тем слабее нас будет притягивать (но все-таки будет). Если изначальная скорость космического объекта очень большая, то он может улететь от Земли и никогда не вернуться. Для этого нужно, чтобы сила притяжения убывала быстрее, чем уменьшалась скорость объекта. На Земле при старте с ее поверхности минимальная скорость для безвозвратного покидания равна 11,2 км/с и называется второй космической.

Первой такую скорость набрала автоматическая межпланетная станция «Луна-1», которую СССР запустил 2 января 1959 года. Ошибки в этом не было. Аппарат и планировали разогнать так, чтобы он улетел от Земли. Правда, ученым хотелось, чтобы он попал в Луну, но произошел промах, корабль улетел и не вернулся. Тут стоит вспомнить, что помимо Земли есть другие объекты с большой гравитацией: планеты, спутники, звезды. Солнце, например, притягивает куда сильнее нашей родной планеты. «Луна-1» в какой-то момент стала первым искусственным спутником Солнца. Необычной была судьба и третьей ступени ракеты-носителя «Сатурн-5». В 2002 году астрономы обнаружили неизвестный объект, который подлетал к Земле. Его приняли за астероид и даже дали ему имя J002E3. Однако анализ показал, что объект сделан из металлических сплавов и имеет гладкую, отполированную, покрытую краской поверхность. Он явно имел искусственное происхождение. Первая мысль, поразившая исследователей, – инопланетяне, но потом стало ясно, что состав краски на объекте совпадает с той, которой покрывали ракеты в США. Вычислив скорость и траекторию движения, ученые поняли, что к Земле вернулась часть носителя из американской пилотируемой лунной программы «Аполлон». В 1971 году в рамках миссии «Аполлон-12» третья ступень ракеты-носителя «Сатурн-5» разогнала корабль до второй космической скорости и отделилась за ненадобностью. Так как ее функция была выполнена, за ней никто не следил, и она улетела от Земли. Став спутником Солнца, ступень летала по орбите, расположенной близко от земной, пока в 2002 году снова не встретила нашу планету. Земля гравитацией уменьшила скорость «астероида» J002E3 и ненадолго сделала его своим спутником. Он вращался вокруг планеты, пока Солнце мощным притяжением снова не разогнало бывшую ступень и не приблизило к себе.


Орбита J002E3. NASA


В этой истории мы упомянули, что космические аппараты вращаются вокруг планеты, а не летают по прямой.

Если аппараты будут двигаться по орбите в виде круга или эллипса, то они смогут не падать на Землю, развивая так называемую первую космическую скорость.

Представим, что некое тело, например камень, летит по прямой, перпендикулярно поверхности планеты, на которой есть сквозное отверстие. У этой планеты нет атмосферы и других причин замедляться. Мы бросили камень вверх со скоростью ниже второй космической. Он будет улетать и постепенно тормозиться, пока его скорость не станет равна нулю. В какой-то момент камень остановится и, влекомый гравитацией, начнет падать. Сначала медленно, потом все быстрее и быстрее. У самой земли камень будет иметь ту же скорость, с которой мы его бросили. В реальной жизни он встретился бы в этот момент с грунтовой поверхностью и разбился, но у нас вымышленный мир с отверстием в планете, куда камень продолжит падать, двигаясь к центру. И вот он пролетел центр и за счет своей вновь набранной огромной скорости начинает от него удаляться и затем тормозиться.

Камень уже с другой стороны планеты поднимется на ту же максимальную высоту, что при подбрасывании в начале. Там его скорость снова станет равна нулю. Камень начнет опять падать и разгоняться. Он быстро пролетит центр планеты, вновь начнет от нее улетать и потом опять тормозиться. И так до бесконечности – падаем и разгоняемся, улетаем и тормозимся. А теперь будем бросать не вверх, а в сторону, параллельно горизонту.

По сути, будет происходить то же самое, только камень будет пролетать некоторое расстояние вбок. Чем сильнее мы бросаем, тем дальше предмет пролетает, пока не успевает упасть. При изначальной скорости в 7,9 км/с за время падения к центру Земли камень сможет преодолеть расстояние, равное радиусу планеты, и пролететь мимо, не врезавшись в ее поверхность. Правда, тогда Земля для камня будет с другой стороны. Он устремится к ней за счет гравитации, но пока будет лететь «вбок» к планете, успеет преодолеть еще один радиус Земли. Ведь за то время, когда он падал «вниз», успел скорость набрать, но потерял изначальную скорость «вбок». Пока второй радиус Земли преодолевается, скорость «вбок» растет, а вниз – убывает. И так по кругу. Камень постоянно падает, постоянно скорость теряет в одном направлении и увеличивает в другом, а расстояние от планеты при этом не меняется. Суммарная скорость во всех направлениях тоже не меняется.

Вот такой полет по кругу со скоростью не менее 7,9 км/с и называется космическим орбитальным полетом, а сама скорость – первой космической. Траектория движения тела называется орбитой. Причем направление движения спутника и направление скорости должно проходить по касательной к поверхности Земли. В истории космонавтики несколько раз не получалось разогнать ракеты в нужном направлении с достаточной скоростью. Тогда одна за одной шли ошибки, и исправлять их не было возможности, поскольку посадки производилась в незапланированных местах.

В 1960 году после Белки и Стрелки ученые собирались запустить на орбиту еще двух собак – Жульку и Жемчужину. Однако на последнем этапе разгона ракеты-носителя «Восток» из-за поломки двигателя третей ступени корабль отклонился от курса и полетел не вбок, а вверх. Он достиг высоты в 214 км и оказался за пределами плотной атмосферы. Но скорость была задана не в том направлении, и стало ясно, что корабль с собаками на орбиту не выйдет и очень скоро упадет на Землю. Аварийная система включила отделение спускаемого аппарата для безопасного приземления животных. В программу спуска входило падение на парашюте в герметичном отсеке корабля, а затем на высоте в 7 км – катапультирование отдельных, уже негерметичных, контейнеров. Посадка произошла в густой тайге на крайнем севере. В тот день на улице температура была –40 °C. Поиск собак из-за сложных условий затянулся на двое суток, и с четвероногими уже попрощались. Привязанные к контейнерам собаки не смогли бы куда-то убежать, а в неотапливаемом контейнере при такой температуре шансов выжить у них не было. Но на третий день, как это ни удивительно, собак нашли живыми. Оказалось, произошла еще одна ошибка. И очень кстати. Не сработала катапульта, и собаки остались в герметичном спускаемом аппарате, куда не проходил холодный воздух.

Меньше повезло макаке Скэтбэк. В 1961 году в США проводился испытательный старт ракеты-носителя «Атлас-Е» с обезьяной в катапультируемом контейнере. Главная цель полета состояла в испытании системы аварийного спасения. На этот раз пуск был удачным, но ошибка закралась в направлении срабатывания катапульты. Капсула с макакой приводнилась где-то в Тихом океане. В предполагаемом месте посадки Скэтбэка так и не нашли. Вероятно, контейнер вместе с обезьяной утонул.

Другой случай произошел с космонавтами Василем Лазаревым и Олегом Макаровым. В процессе старта ракеты-носителя «Союз» возникла аварийная ситуация. (Подробнее о причинах будет рассказано в главе «Равновесие».) Курс сильно изменился, и система аварийного спасения вовремя дала команду на отделение спускаемого аппарата. Техника не подвела, и посадка произошла в горах на границе с Китаем. Выйдя наружу, Лазарев и Макаров прежде всего развели костер, но не потому, что они замерзли. Космонавты решили, что горизонтальная скорость ракеты-носителя была уже велика и из-за этого они улетели в другую страну. По инструкции, если приземление космического корабля будет не на территории СССР, то следует ради сохранения государственной тайны сжечь всю имеющуюся документацию.

Скорость 7,9 км/с – это минимальная скорость для полета по кругу у поверхности Земли. Но чем дальше мы улетаем от планеты, тем меньше сила ее притяжения. Разумеется, и тем меньше нужна скорость, чтобы вращаться вокруг Земли в отдалении от нее. Чтобы улететь от Земли, сначала нужно выйти на минимальную орбиту, а только потом перелетать еще дальше. Затем добавить скорости, чтобы выйти на эллиптическую орбиту, причем такую, чтобы она пересекалась и с первой низкой, и со второй, более далекой круговой орбитой. При движении ко второй орбите скорость спутника будет падать. К моменту, когда он доберется до нужной высоты по овальной траектории, его скорость будет уже нулевая, и теперь, чтобы не падать назад, нужно разогнаться еще. Вроде бы пока спутник улетал вдаль, мы все время его разгоняли, но на выходе получилась более низкая скорость. Вот такой неочевидный парадокс. Чтобы двигаться быстрее, нужно тормозить, а чтобы двигаться медленнее, нужно ускоряться. Решение этого парадокса простое. Как только мы тормозимся, гравитация нас начинает ускорять, и наоборот, мы пытаемся разогнаться, и Земля тут же стремится вернуть нас к себе.

Этот парадокс не раз приводил к ошибкам. Так, у самого первого космического аппарата, который мог маневрировать и возвращаться на Землю, возникла неожиданная проблема. Это был беспилотный прототип корабля «Восток». В разной литературе он имел название «Спутник-4» или «Корабль-спутник-1». После выполнения своей задачи аппарат включил двигатели, чтобы вернуться на Землю. Однако вместо того, чтобы затормозиться и начать падать, аппарат затормозился, но полетел на более высокую орбиту. В космосе из-за инерции ускорение и торможение – это один и тот же процесс, и только от направления работы двигателя (по ходу или против движения) зависит, что именно у нас получится.

Интересно, что через два года спутник все же упал на Землю, причем на небольшой город Манитэвак в США. Никто не пострадал, а потом на месте падения даже установили табличку, увековечившую этот космический казус.

Более известный случай произошел с первой женщиной-космонавтом Валентиной Терешковой. В полете перед ней стояла задача совершить маневры и сымитировать посадку. Однако Валентине Владимировне сделать это сразу не удалось. Позднее она рассказала, что, вероятно, система управления была неверно запрограммирована. Вместо торможения последовал разгон и перелет на орбиту еще выше. Правда, инженеры никак слова Терешковой не подтвердили и уверенно заявляли, что управление кораблем работало нормально. Кроме этой проблемы у первой женщины-космонавта были и другие трудности в полете, из-за чего она нарушила несколько инструкций. Главный конструктор С. П. Королёв даже заявил, что больше в космос женщин запускать не будет, и свое обещание сдержал – в следующий раз женщина отправилась на орбиту уже после его смерти.

Подобные ошибки в полетах допускали и американцы. Корабль «Джемини-4» с астронавтами Эдвардом Уайтом и Джеймсом МакДивиттом на борту должен был после отделения ступени ракеты-носителя «Титан» сблизиться ней. Первая часть эксперимента была выполнена. Ступень отделилась, корабль находился недалеко, и относительная скорость разлетания была небольшая. Однако астронавты к основному заданию приступили не сразу. Ступень оказалась чуть ближе к Земле, чем было запланировано, а значит, скорость стала чуть больше. За несколько минут ступень улетела вперед. Командир МакДивитт решил догнать ее, но при включении двигателя на разгон ситуация только ухудшилась. Сообразив, что делает все не так, он начал тормозить. К тому моменту корабль зашел в тень Земли, и астронавты не могли разглядеть свою цель, да еще и расход топлива был непростительно большим. В итоге это задание так и не было выполнено.

Иногда знание о силе гравитации помогает решить некоторые проблемы. Так, сила притяжения планет позволяет увеличивать скорость межпланетных аппаратов. Например, зонды «Вояджер-1» и «Вояджер-2» смогли разогнаться за счет падения на Юпитер и Сатурн так, что улетели от Солнца в межзвездную среду. Интересен случай с американо-гонконгским спутником связи AsiaSat 3. При запуске аппарата в 1997 году двигатели разгонного блока смогли вывести аппарат на эллиптическую орбиту для перехода на круговую, более удаленную от Земли. Но когда повторно потребовалось совершить для этого разгон, двигатели проработали одну секунду вместо запланированных 130. Естественно, этого было недостаточно, чтобы выйти на расчетный уровень. AsiaSat 3 отделился от неисправного разгонного блока. На спутнике были собственные двигатели, правда, с куда меньшим запасом топлива. Ученые нашли гениальное решение: спутник отправили в совершенно другую сторону – к Луне.

Естественный спутник Земли своим притяжением начал разгонять искусственный. Это помогло значительно сэкономить топливо. Хотя аппарат получил достаточную и даже бо́льшую скорость, он стал перемещаться по траектории, напоминающей восьмерку, – то вокруг Земли, то вокруг Луны, но топливо еще оставалась. В какой-то момент, когда AsiaSat 3 двигался к Земле и пролетал мимо нужной орбиты, его слегка затормозили и вывели в расчетную точку.

Также гравитацию сейчас используют для геологических исследований. Разные точки на Земле имеют разную гравитацию. В силу этого спутники меняют свою орбиту, пусть и ненамного. Так что космические аппараты летают не совсем по кругу или эллипсу. Когда спутник летит над залежами тяжелых пород, например металлической руды, он слегка приближается к Земле, и наоборот, когда пролетает над пустотами, удаляется от нее. Для Луны этот эффект также оказался очень заметным и важным. Советская межпланетная станция «Луна-10», первый искусственный спутник Луны, за один оборот отклонялась на полкилометра от рассчитанной траектории. Правда, эта ошибка в расчетах сильно на миссии не сказалась, а как раз позволила открыть необычную особенность – гравитационную неоднородность ночного светила. Позже регионы с повышенной или пониженной силой притяжения стали называть масконами.


Карта гравитационных аномалий Луны. NASA


Американским астронавтам миссии «Аполлон-11» этот эффект немало потрепал нервы. Знаменитый «Орел» с Нилом Армстронгом и Баззом Олдрином смог прилуниться только в 6 км от предполагаемого безопасного места посадки. Астронавты заметно отклонились от плановой траектории, да еще возникли проблемы с компьютером. Удалось сесть буквально на последних 5 % выделенного для этого топлива. Во второй миссии такой опыт учли, и точность посадки составляла уже около 160 м. Так как Луна очень неоднородна, то и впоследствии случались ошибки в расчетах, хотя инженерам была известна суть проблемы. Например, американский спутник Луны PFS-2 должен был проработать полтора года, но из-за масконов упал уже на 35-й день.

Для расчета околоземных орбит куда более важно учитывать неравномерность распределения массы не в планете, а в спутнике, как искусственном, так и естественном. С Луной, например, уже произошло следующее: она теперь повернута к нашей планете одной стороной. Правда, тут еще играют роль приливы, которые Земля вызывает у своей спутницы. Известно, что Луна образует своим притяжением водяной горб на поверхности нашей планеты. Однако приливное взаимодействие работает и в другую сторону. Гравитация Земли тоже образует на Луне горб, причем из-за большей массы и эффект сильнее. Правда, воды на естественном спутнике нет, но силы было достаточно, чтобы вытянуть всю Луну (в те времена, когда она была молодая и пластичная). Образовавшийся горб на естественном спутнике имеет свое притяжение, и на него тоже действует гравитация Земли. Из-за этой деформации Луна начала замедляться. Этот процесс шел, пока Луна не оказалась повернута одной стороной к Земле.

Такие же проблемы не раз возникали и у ракет. Так, если космический аппарат был плохо сбалансирован, то он начинал вращаться. Земля сильнее притягивала к себе его более тяжелую часть. Жидкое топливо в силу различных причин перемещалось в баке. Это приводило к потере баланса и перевороту ракеты-носителя. Так, например, было при втором пуске ракеты-носителя Р-16 в 1960 году. В результате ее вторая ступень потеряла управление и улетела в сторону Китая. Для решения подобной проблемы сейчас повсеместно применяются механические демпферы колебаний жидкости.

Нечто похожее было на орбите у первого американского спутника «Эксплорер-1». Он имел вытянутую форму, напоминающую карандаш, и был снабжен четырьмя гибкими штыревыми антеннами. Вроде никакой жидкости внутри нет и центр масс сбалансирован. Тем не менее «Эксплорер-1» начал кувыркаться. Дело в том, что антенны были гибкие, и при раскрытии они начали по инерции качаться и менять положение космического аппарата. Аналогичное явление наблюдалось в 1967 году при запуске спутника «Космос-142», у которого было пять длинных гибких антенн.

Американский исследовательский астрономический инструмент Spartan-207 представлял собой надувную антенну. Он был запущен астронавтами с борта шаттла «Индевор». Сразу после того как спутник начал автономную работу, надувная часть аппарата стала растягиваться и наполняться газом. Из-за изменения формы центр масс сместился. Началось вращение, правда, со временем гравитация его остановила. Сегодня используется специальная стабилизация с помощью силы тяжести, но только на спутниках, которые должны быть ориентированы на Землю. У них есть небольшой груз на выдвижной штанге, благодаря которому более тяжелая часть аппарата разворачивается к планете.

Если спутники и приборы всегда чувствуют гравитацию, то люди в состоянии невесомости – нет. Вес и масса – разные понятия, пусть для обычного человека на Земле они проявляются одинаково. Масса в космосе никуда не пропадает, все предметы по-прежнему притягиваются друг к другу и к Земле. Вес же – это сила, действующая на опору, а так как в космосе опор нет, то и веса нет.

Без опоры сложно понять, где вверх, а где низ, где север, а где юг. Ориентиры в космосе есть – Земля, Солнце, звезды, но они могут быть от человека с любой стороны. Что-то похожее бывает в воде. Человек может плыть и горизонтально, и вертикально. Во время попытки первой в СССР стыковки у космонавта Георгия Берегового возникла связанная с этим серьезная проблема. Ему предстояло совершить стыковку корабля «Союз-3» с беспилотным кораблем «Союз-2». Оба аппарата зашли в тень Земли, и космонавт приступил к сближению. Соединение должно осуществляться при одинаковом положении аппаратов, при котором замки механизма захвата и стягивания могли бы попасть в соответствующие пазы. У стыковочной системы есть две антенны, которые помогают определять курс и положение кораблей. Для автоматического соединения нужно, чтобы антенны одного корабля были направлены к антеннам второго. Если есть отклонения, то включаются двигатели для поворота. Георгий Береговой управлял своим «Союзом» вручную и не заметил, что его корабль перевернут относительно другого. На автоматическом «Союзе» система это заметила, но вместо того, чтобы развернуться вниз, вращаясь по ходу движения, «Союз-2» повернулся поперек. Его стыковочный механизм отвернулся от корабля Берегового. Когда же оба аппарата вышли из тени на свет, космонавт заметил свою ошибку, но было уже поздно. Топлива для маневров не осталось. После этого всем космонавтам предписано было стыковаться только на дневной, освещенной стороне орбиты.

Глава 2
Температура

– Товарищи солдаты! Перед вами новый, секретный образец танка. Его броня способна выдержать температуру от –500 до +500 градусов по Цельсию…

– Товарищ майор! Температуры ниже –273 градусов по Цельсию не бывает! Ученые не знают таких температур!

– Повторяю: танк СЕКРЕТНЫЙ! Ученые могут и не знать!

Анекдот

В космосе холодно – чаще всего люди думают именно так, но это неверно. Температура – мера средней энергии движения молекул вещества, так что в космосе ее быть не может. Энергию в безвоздушном пространстве невозможно измерить, так как атомов и молекул там почти нет. Однако у космического аппарата в полете температура будет, и определяется она по энергии излучения. Солнце излучает свет, а все предметы в космосе поглощают его и при этом нагреваются. И, конечно, все предметы, которые имеют температуру, тоже светятся в разных диапазонах спектра, отдают энергию и остывают.

Ошибки, связанные с неверными расчетами температуры, появились уже при запуске второго спутника, на борту которого находилась первая пассажирка – собачка по кличке Лайка. Многие знают эту трагическую историю и считают, что сам полет в принципе являлся большой ошибкой. Спутник не был оборудован никакими системами посадки, даже не было парашюта. Лайка была обречена с самого начала. Были в полете и незапланированные технические проблемы. Предполагалось, что собака проживет в космосе десять дней, и в течение этого времени ученые будут следить за изменениями в организме в условиях невесомости. Однако температура в кабине стала медленно нарастать, и уже на седьмом часу полета Лайка погибла.

Как уже было сказано, в космосе под действием солнечного света космические корабли нагреваются. Представьте, что вы летом сидите внутри машины без окон и дверей под палящими лучами. Конечно, когда спутник двигается в тени Земли, он начинает охлаждаться. Чтобы температура была в норме, нужно держать баланс. У Лайки на борту никаких активных систем контроля температуры не было, только небольшой вентилятор. Кроме того, второй спутник вышел на такую орбиту, что в тень от Земли он попадал на гораздо меньший промежуток времени, чем находился на Солнце. Третий момент был связан с размерами. Спутник был небольшого размера, и все необходимое оборудование в него не влезало. Чтобы сэкономить место, некоторые системы были размещены в ступени ракеты-носителя, которую от спутника конструкторы решили не отделять. В итоге в космосе летал здоровенный 31-метровый цилиндр. Чем больше объект, тем больше на него будет падать света, тем быстрее он будет нагреваться. Три этих момента привели к тому, что температура в кабине, где находилась Лайка, быстро росла и не успевала снижаться до комфортного уровня. В результате собака погибла от перегрева. Конечно, она не выжила бы в любом случае, но эти ошибки приблизили ее гибель. Зато уже третий и последующие советские спутники имели специальные радиаторы, активную систему охлаждения, для них рассчитывались температурные нагрузки с учетом орбиты и размера аппарата.

Четвертый советский аппарат на орбите получил имя Корабль-спутник. Он уже умел поворачиваться к планете и Солнцу разными боками. Кроме того, входящая в его состав кабина, так называемый спускаемый аппарат, могла возвращаться на Землю. На борту имелись небольшие двигатели ориентации и тормозной двигатель для схода с орбиты. Положение в пространстве определялось по солнечному датчику и датчику горизонта. Оба работали с помощью света. В приборе был набор небольших окошек с разных сторон. В какое окошечко проходил свет – с той стороны Солнце. Датчик горизонта Земли работал по тому же принципу, но реагировал не на оптическое излучение, а на инфракрасное тепловое от Земли. Вот только этот прибор забыли защитить от перегрева. Вроде бы датчик был небольшой и не мог нагреться так, чтобы выйти из строя. И действительно прибор работал, но возник неожиданный эффект. Нагретая боковая стенка датчика горизонта, как любой нагретый предмет, стала сама светиться инфракрасным излучением. Чувствительный элемент в приборе решил, что это свет от Земли, и выдал команду на включение двигателей. Однако Земли с той стороны не было. Вместо того чтобы вернуться на планету, Корабль-спутник отлетел от нее.

Охлаждение тоже порой сильно мешает. Так, первая попытка развернуть на орбите активный спутник-ретранслятор провалилась из-за замерзания. Этот космический аппарат получил имя «Молния». Спутнику связи требовалось значительное количество солнечных батарей для выработки электрического тока под приемные и передающие устройства. Солнечные батареи разворачивались веером во все стороны. Только конструкция была такова, что провод от главного инструмента – антенны – всегда находился в тени. Гибкая на Земле изоляция из поливинилхлорида в космосе замерзла и затвердела. При попытке разворачивания антенны провод стал фиксатором и не позволил ей сдвинуться с места.

Первый аппарат, который должен был полететь на Венеру, не смог уйти с орбиты Земли. Его прозвали Тяжелым спутником, чтобы скрыть основное назначение аппарата и выдать неудачу за успех.

Причина, по которой аппарат не смог улететь на Венеру, – испарилась смазка электромеханического преобразователя напряжения. И те части, что должны были поворачиваться, из-за трения не повернулись. Тогда ученым было выдано задание разработать новые смазочные материалы.

Для решения конкретной проблемы преобразователь на дублере поместили в герметичный контейнер. На других аппаратах в качестве смазки использовали легкоплавкие металлы, такие как натрий или литий. При нагреве на солнечной стороне орбиты эти металлы плавятся и образуют тонкую жидкую прослойку для облегчения скольжения. Но это тоже оказалось не лучшим решением, так как при низкой температуре металлы, естественно, находились в твердом состоянии и трение только увеличивали.

В миссии «Джемини-4» был осуществлен выход в открытый космос через специальный люк. Когда же пришло время его закрыть, то у астронавта Джеймса МакДивитта с первого раза это сделать не получилось. Что-то мешало люку закрыться плотно. Только совместными усилиями вместе с Эдвардом Уайтом удалось выходной люк запечатать. Потом, уже на Земле, поняли, что в вакууме из-за нагрева, а потом охлаждения металла сварились вместе витки пружины.

Еще один забавный случай произошел в экспедиции Skylab 3. Астронавты Алан Бин, Оуэн Гэрриотт и Джек Лаусма летели к станции Skylab на корабле Apollo CSM-117. Внезапно они заметили нечто, пролетающее мимо за бортом. Джек Лаусма, который сидел справа ближе всех к иллюминатору, удивленно сообщил: «Я думаю, мимо окна прошел двигатель… Это выглядело точно как наш двигатель!»

На самом деле это была ледяная пробка. По всей видимости, в трубке, подающей топливо к двигателю, появилась течь. Жидкое горючее просачивалось в космос, налипало на стенки элементов двигателя (в первую очередь сопла) и замерзало. При подлете к станции началась подготовка к включению двигателя для маневрирования, и из-за этого кусок льда, повторяющий форму двигателя, оторвался и пролетел мимо астронавтов, изрядно их напугав. В конечном счете позже появилась так называемая твердая смазка из дисульфида молибдена.

Самые высокие тепловые нагрузки на космический аппарат возникают во время вхождения в атмосферу. От трения о воздух при движении на огромной скорости корабли нагреваются до 2000 °C. Для защиты спускаемых аппаратов инженеры используют несколько слоев теплоизолирующего материала под названием асботекстолит. По сути, это ткань, только очень плотная и жаропрочная. Асботекстолит плохо горит и практически не пропускает тепло. Даже если один или два слоя прогорят, это ни на что не повлияет. Для шаттла такой материал не годится, так как кораблям этого типа нужно сохранять вид самолета. Шаттл садится, используя крыло, и потому ему нужна особая аэродинамическая форма. В данном случае днище, крыло и фюзеляж многоразового корабля обклеиваются специальной керамической плиткой. Просветы между плитками заполняются теплоизолирующим клеем. Инженеры замечали, что после нескольких полетов американского аппарата плитка отваливается. Конструкторы недосчитывались иногда до трех сотен плиток. Но при этом ресурс тепловой защиты позволял успешно садиться. Затем инженеры восстанавливали плитку, и можно было лететь повторно.

Серьезная ошибка, связанная с температурой, произошла при катастрофе шаттла «Колумбия». Когда он стартовал, специалисты во время запуска обнаружили, что от топливного бака отделился кусочек пеноуретана. Этот материал тоже использовался для тепловой изоляции, но не корабля, а топливного бака. В этом баке хранился жидкий водород при температуре –259 °C. Чтобы горючее не нагревалось от тепла атмосферы, баки изолируют.

И если бы пеноуретан просто отвалился, ничего страшного бы не произошло, но он попал в левую консоль крыла и сломал на нем теплозащитную плитку. Для дальнейшего полета это было неважно, так как шаттл уже практически вылетел за пределы плотных слоев атмосферы. Однако нужно было еще возвращаться. Несколько специалистов забили тревогу, но руководители программы заверили, что эта ситуация не принесет катастрофических последствий. Как же они ошибались. Запросы на осмотр повреждений были отклонены. К слову сказать, на борту не было возможности починить теплозащиту собственными силами. Технология ремонта шаттла непосредственно в космосе существовала, но так и не была внедрена и ни разу не использовалась. Тем не менее варианты спасательной операции с использованием другого шаттла или Международной космической станции существовали. Все они были отброшены.

«Колумбия» стала возвращаться на Землю. Всего через пять минут после входа в атмосферу температура кромки крыла выросла до 1500 °C. В месте удара прогорела оболочка, и горячий газ стал проходить в полости внутри крыла. Силовой элемент, который придает крылу жесткость, – лонжерон – прогорел уже через несколько секунд. От набегающего потока воздуха крыло начало разрушаться изнутри. Через минуту стали отваливаться первые куски, а на второй минуте повреждения были уже катастрофическими. Шаттл развалился, большая часть его обломков сгорела, а некоторые разлетелись на сотни километров. На борту было семь астронавтов: Дэвид Браун, Рик Хазбанд, Лорел Кларк, Калпана Чаула, Майкл Андерсон, Уильям МакКул и Илан Рамон. Как нетрудно догадаться, никто не выжил. Семь человеческих жизней – цена одной из самых масштабных аварий в истории космонавтики.

Глава 3
Равновесие

Хочешь жить – умей вертеться.

Поговорка

В этой главе речь пойдет об ошибках в области статики. И тут многие могут задать вопрос – какая статика в космосе? Все школьные задачи из этого раздела физики предполагают наличие опоры, а о каких опорах может идти речь в условиях невесомости?

На самом деле статика – это наука о равновесии, балансе приложенных к телам сил и возникших моментов.

Ключевое понятие здесь – центр масс. Если есть сила, помимо силы притяжения, которая действует на тело не на линии центра масс, то тело получит вращательный момент и начнет крутиться. И это большая проблема для ракет. Двигатель должен создавать тягу вдоль линии центра масс. Это всегда было известно, но некоторые детали при подготовке к полетам все же упускались.

Так, на заре космонавтики инженеры ошиблись насчет того, в какое место ракеты прикрепить двигатель. К примеру, на американской ракете «Нелл» он был сверху. Логика проста – главное, что реактивная сила действовала на линии центра масс, а если двигатель выше него, то полет ракеты будет более устойчивым. Гравитация в случае чего сама развернет нижнюю часть к земле. Вот только горячие потоки газов, которые выходили из двигателя, стали прожигать корпус и разрушать ракету.

После этого основным местом расположения двигателей стал хвост. Но теперь возник вопрос равновесия. Ракета оказалась подобна качелям. Если одна из сторон тяжелее или на одну из сторон действует сила, то всю конструкцию будет уводить. Хотя это и большая проблема, но она стала и решением вопроса систем управления. Если мы хотим, чтобы ракета повернулась, достаточно подать на одну из ее частей увеличенный поток воздуха, который ее и отклонит.

Серьезные проблемы были у ракеты Н-1. Она разрабатывалась под лунную программу, была огромной (105 м высотой) и тяжелой (1880 т) и получила прозвище Царь-ракета. В ней была предусмотрена работа пяти ступеней, но в итоге даже вторая не запускалась. Как и Царь-пушка не стреляет, а Царь-колокол не звонит, Царь-ракета свое предназначение так ни разу и не выполнила. Дело в том, что для отрыва от Земли такой громадины требовалось минимум 28 двигателей на первой ступени. Это очень много. Гарантировать, что все они будут выдавать необходимую мощность, было нельзя. Если же один из двигателей создаст слишком большую силу, то возникнет разбалансировка. Чтобы решить эту проблему, инженеры добавили к 28 еще два. Если один из двигателей откажет, то выключится тот, что напротив него. Суммарная тяга уменьшится, но баланс будет удерживаться.

Во время первого испытательного пуска именно так и произошло. Двенадцатый двигатель от скачка напряжения отключился, и тогда двигателю 24 была дана команда тоже отключиться. Тем не менее, хотя ракету-носитель не начало разворачивать, баланса добиться не удалось. Н-1 стала ходить ходуном – то в одну сторону наклонится, то в другую. От таких колебаний начали рваться шланги топливопроводов, а за этим последовал разлив горючего, которое в свою очередь воспламенилось и привело к взрыву всей ракеты-носителя.

Второй пуск Н-1 отличался незначительно. Почти сразу отключился двигатель номер 8. За ним последовали и остальные. В итоге работающим остался только один, и он начал разворачивать ракету-носитель вдоль продольной оси. В итоге Н-1 упала плашмя прямо на стартовый стол космодрома. Последующий взрыв уничтожил всю стартовую площадку и даже сильно повредил соседнюю. Это происшествие на два года отложило все работы по ракете для пилотируемой лунной программы.

Третий старт – и снова проблемы с балансом сил, но на этот раз не по вине двигателей. Достаточно быстро после старта Н-1 начала крутиться вокруг продольной оси. Поначалу вращение было незначительным, но чем больше проходило времени, тем выше становилась скорость вращения. Масса ракеты-носителя огромна, и потому вернуть на место центр тяжести стандартным системам не удалось. Более того, раскручивание привело к разрушению креплений первой и второй ступеней. Памятуя о предыдущей ситуации, инженеры внесли изменения в программу работы. Теперь в течение 50 секунд после взлета двигатели не могли выключиться, чтобы успеть увести ракету-носитель от стартовой площадки. Интересно, что при первом пуске в момент, когда функционировало только 28 двигателей (без № 12 и № 24), раскручивающей силы не было.

Тем временем в США начал набирать популярность проект, сулящий инженерам большие проблемы в области статики: «Спейс Шаттл». Он представляет собой космический аппарат в виде самолета с реактивными двигателями, тяжелыми топливными баками, прикрепленными к днищу, и твердотопливными ускорителями по бокам. Даже если сбалансировать такую систему, то после старта топливо будет уходить из баков, они станут легче, а из-за этого сместится центр масс. Система начнет заваливаться примерно так, как человек, несущий на спине слишком тяжелый рюкзак. У обычных ракет такая проблема, разумеется, тоже может возникнуть. Чтобы ее избежать, их конструкция представляет собой цилиндр или конус (тело вращения) и имеет осевую симметрию. Центр масс в таком случае при истечении топлива будет только опускаться, но оставаться примерно на одной вертикальной линии. Баланс будет сохраняться. У шаттла нет полной симметрии, и реализовать эту простую идею не получится в принципе. У советского шаттла – корабля «Буран» – была похожая конструкция и похожая проблема. Центр масс в полете будет смещаться и выводить из равновесия всю систему.


Макет корабля «Буран»


Для решения проблемы инженеры изготовили двигатели подвижными. Они могли менять направление тяги. Также в конструкцию в хвостовой части был включен так называемый балансировочный щиток.

Главное отличие советского многоразового космического аппарата от его американского собрата – маршевые двигатели. В проекте «Буран» они размещены не на самом корабле, а на ракете-носителе «Энергия». Проблема с балансом произошла как раз при ее старте, но с другим космическим аппаратом – «Скиф-ДМ», который более известен под названием «Полюс». При взлете полезный груз перевесил, и «Энергия» немного завалилась. Это было скорректировано, и ракета-носитель со своим грузом на орбиту все-таки вышла, но на стартовой площадке возникли большие проблемы. Струя от двигателя после отклонения ракеты оказалась направлена не в специальный газоотводный лоток, а в сторону других важных элементов стартового комплекса. Так, например, горячий поток из двигателей своим давлением выбил огромною трехтонную герметичную дверь и создал немалые разрушения.

Интересно, что этого можно было избежать благодаря предложенной инженерами системе сопровождения, от которой все-таки отказались. Она была разработана для предотвращения заваливания ракеты-носителя из-за ветра. Так как воздушный поток должен иметь огромную силу, чтобы сдвинуть многотонную ракету, а шквалистых порывов не предвиделось, это устройство было убрано. Инженеры боялись, что механизм фиксации слишком сложен, и если в нем есть дефект, то неисправный держатель будет мешать пуску.

Опасения были обоснованными, так как в США как раз использовались подобные устройства и их поломки неоднократно происходили как с шаттлами, так и со стандартными ракетами-носителями. Крепление к стартовому комплексу было жестким с применением специальных взрывающихся болтов – пироболтов. Они держали ракету-носитель, не давая ей упасть. Во время пуска по команде пироболты должны были разрываться и тем самым освобождать ракету-носитель от стартового стола. Достаточно часто они не срабатывали.

Правда, к проблемам на старте это не приводило, так как ни один болт не смог бы удержать мощь рвущейся в небо ракеты и удержать ее. Однако при этом крепления вырывались с корнем, и их потом необходимо было восстанавливать.

В СССР для фиксации других ракет-носителей семейства Р-7 на стартовой площадке была разработана система «Тюльпан», которая используется по сей день. Она применяется для решения проблемы с балансом и представляет собой нечто напоминающее качели. Точка опоры с шарнирным механизмом, с одной стороны – стрела с полукруглым держателем, а с другой стороны – тяжелый груз-балансир.

Таких опор четыре штуки. Когда ракету-носитель устанавливают на эти конструкции, сама ракета своим весом прижимает их к себе, а они удерживают ее, не давая наклониться. Когда же двигатели набрали достаточно мощности, чтобы ракета не нуждалась в опоре, нагрузка со стрелы снимается, а тяжелый груз с другой стороны перевешивает и отклоняет опоры от ракеты. Действие напоминает раскрытие лепестков цветка, что и дало системе название «Тюльпан».

Однажды представители США оказались на космодроме Байконур и очень интересовались, как советским инженерам удалось добиться синхронного одномоментного отделения опор. Как видите, все просто: «Тюльпан» – полностью механическая система с минимумом деталей, которая работает на третьем законе Ньютона. Он гласит: сила действия равна силе противодействия.


Часть макета стартовой площадки космодрома Байконур с системой «Тюльпан»


Законы статики были применены и для решения других проблем космических аппаратов, не только при взлете, но и при посадке. Для пилотируемой лунной миссии разрабатывался посадочный модуль корабля. На Луне работают те же, что и на Земле, принципы и законы равновесия, так что их приходилось учитывать.

Для уменьшения объема и массы лунного модуля инженеры хотели сделать его с прямыми опорами по ширине космического корабля. Однако при проектировании выяснилось, что если человеку понадобится выходить из кабины, то системы управления и радиосвязи нельзя будет установить равномерно со всех сторон корабля, поскольку одну из стен придется отдать под «дверь». Кроме того, для датчика расстояния, который станет измерять дистанцию сближения с Луной в ходе посадки, нужно место за этими опорными стойками. В итоге оказалось, что бо́льшая масса лунного корабля сосредоточена с одной стороны. Уже во время испытаний на Земле выяснилось, что аппарат опрокидывается, так как одна его часть перевешивает другую. По законам статики тело, находящееся на поверхности, будет устойчивым, если проекция его центра масс оказывается в площади опоры. Соответственно, решение проблемы было простым – изготовить раздвижные стойки, чтобы центр масс не выходил за пределы увеличенной площади опоры. Выводы были сделаны и для лунного скафандра, с которым тоже могла возникнуть проблема опрокидывания, – инженеры спроектировали специальный обруч. У одежды космонавта, чтобы ходить в безвоздушных условиях, должны быть системы жизнеобеспечения. Логично, что они будут располагаться за спиной, словно в рюкзаке туриста. Вот только скафандр для хождения по Луне под названием «Кречет» имеет массу более 100 кг. Конечно, на естественном спутнике Земли сила тяжести меньше в шесть раз, соответственно, и в шесть раз меньше вес, но с учетом того, что сам космонавт тоже будет легче, возник вопрос, не будет ли он опрокидываться. На всякий случай в комплект скафандра был включен большой обруч вокруг пояса, который не дал бы упасть на спину. Вот только советский космонавт в специально оборудованном скафандре на Луне так и не побывал. Зато там были американские астронавты, которые показали, что опасения наших инженеров были не напрасны. Особенно жаловались на трудности с балансом астронавты миссии «Аполлон-15». Они были первыми людьми, что работали на Луне три дня. Кроме того, в их программу входило много экспериментов с геологическими (селенологическими) образцами. Чтобы собрать для этого материал, астронавтам требовалось приседать, из-за чего смещался центр тяжести и нарушалось равновесие.

Еще одна проблема возникла у того же американского экипажа с ровером. Специальная небольшая электрическая машина должна была использоваться для поездок астронавтов на Луне. Инженеры прикрепили ее в сложенном виде сбоку к лунному модулю. Все было сбалансировано, и никаких проблем не ожидалось. Вот только астронавты прилунились на горке, а сам модуль встал с наклоном вниз как раз со стороны контейнера с ровером. Когда его доставали, он буквально вывалился и сбил людей с ног. Благо упал только один из астронавтов, а второй помог ему подняться. В общем, американские покорители Вселенной вернулись на Землю после полета на Луну в синяках от падений и неловких движений в неудобном скафандре.

В миссии «Аполлон-17» один из астронавтов совершил сразу несколько падений, причем с такими телодвижениями, что его коллега сказал: «Тут уже все телефоны оборвали: Хьюстонский балет хочет пригласить тебя в труппу на следующий сезон». Место, где разразилась борьба за равновесие, получило имя кратер Балет.


Харрисон Шмитт пытается поймать положение равновесия на Луне. NASA


Во время посадок ошибки, связанные со статикой, допускались не только на Луне, но и на Земле.

Так, например, при возвращении корабля «Союз ТМ-12» космонавты нагрузили его под завязку. Одна из запланированных экспедиций была отменена, и нужно было вернуть на Землю больше грузов, чем обычно. Данные об экспериментах и другие важные материалы из космоса располагались в каждом углу спускаемого аппарата. Конечно, космонавты, памятуя о возможных проблемах, старались самые тяжелые вещи располагать у днища, чтобы корабль не перевернулся при посадке. Это не помогло. В месте приземления в тот день был сильный ветер. Он качнул спускаемый аппарат, и тот, будучи перегруженным, завалился набок. И все бы ничего, но тяжелые грузы сместились и придавили одного из космонавтов.

Медики, участвовавшие в эвакуации экипажа, быстро нашли корабль, освободили космонавта и оказали ему первую помощь.

Буквально через полет произошло почти то же самое. «Союз ТМ-14» загруженным возвращался на Землю. И снова ветер. Пока корабль болтался на стропах парашюта, его начало раскачивать из стороны в сторону, как на качелях. По правилам у самой Земли за несколько секунд до касания включаются двигатели мягкой посадки. Это требуется для снижения скорости и смягчения удара. Вот только на этот раз из-за качания на парашюте двигатели включились в тот момент, когда они были направлены не к земле, а от нее. В результате спускаемый аппарат перевернулся, да еще и разогнался, а не затормозил. В итоге люди в корабле оказались вверх ногами, но это было не самое страшное. Из-за качаний провод от наушников одного из космонавтов обвился вокруг шеи и начал его душить, а петлеобразная ручка, которая нужна, чтобы подтянуться, намоталась на замок от выходного люка. В результате спасатели не могли пролезть внутрь, а космонавты, находясь вверх тормашками, не могли освободиться от ремней и вылезти сами. Ситуация безвыходная в прямом и переносном смысле. Все же командир экипажа нашел непонятно где ножницы и смог разрезать петлю, не дававшую спасателям открыть люк. Двух космонавтов быстро отстегнули и вытащили, а вот с третьим – проблема. Если его отстегнуть от ремней безопасности, он повиснет на том проводе, который обвился вокруг шеи. Ни к чему хорошему это не привело бы. Сначала спасатели разрезали фурнитуру системы связи и только потом вызволили космонавта.

Стоит отметить, что оба случая произошли в период распада СССР, когда возникли серьезные трудности с финансированием. Тогда у космонавтов было меньше кораблей и приходилось возвращать на Землю больше грузов за один раз.

Были и другие случаи, когда из-за парашюта спускаемые аппараты с космонавтами заваливались на бок. После посадки ветер иногда наполнял купол парашюта воздухом, и тот, словно парус, мог перевернуть или протащить космонавтов. Так, например, произошло со спускаемыми аппаратами кораблей 7К ОК(А) № 8 («Космос-212») и 7К ОК(П) № 7 («Космос-213»). На орбите задачей космических аппаратов было проведение автоматической стыковки. В космосе все прошло по плану, но на Земле возникли трудности. Автомат, который должен был отстрелить парашют от спускаемого аппарата, не сработал (причем в обоих случаях). Из-за сильнейшего ветра части спускаемых аппаратов протащило пару километров. Правда, корабли были беспилотными, так что никто не пострадал. В пилотируемых версиях космонавты в нештатных ситуациях сами дают команду на отделение, чтобы спускаемый аппарат мог развернуться для сохранения правильного положения центра тяжести. Так было в случае с посадкой корабля «Союз Т-4» космонавтами Владимиром Ковалёнком и Виктором Савиных. До того, как они отстрелили парашют, спускаемый аппарат сделал несколько прыжков и «побил» своих пассажиров.

Но в одном случае парашют спас космонавтов.

Корабль «Союз-18–1» на орбиту выйти не смог из-за аварии ракеты-носителя. Проблема возникла после отделения второй ступени. К этому моменту уже включился двигатель третьей ступени, и по плану следующим действием должны были отсоединиться панели хвостового отсека. Они защищают двигатель и системы третьей ступени, пока работают первая и вторая, а также придают лучшую аэродинамическую форму ракете-носителю. Но на этот раз раньше времени раскрылись три из шести «замков» поперечного стыка хвостового отсека. Это поначалу не привело к серьезным проблемам, так как никакая часть ракеты-носителя не сместилась, и центр масс был там, где положено. Однако затем двигатель третьей ступени набрал мощность, и остальные нераскрытые «замки» под его действием сломались, но не одновременно. Сначала отделилась одна панель, потом вторая и третья. Вот тут-то появилась разбалансировка, которая привела к крену ракеты-носителя. Отклонение от курса было слишком большим, и тогда автоматически запустилась система аварийного спасения. Она отделила спускаемый аппарат с космонавтами Василием Лазаревым и Олегом Макаровым на борту от ракеты-носителя и с помощью парашюта посадила экипаж. Правда, при ее работе возникли огромные перегрузки в 21 g. То есть космонавты ощущали на себе давление, в 21 раз превышавшее их вес. Можно представить себе, что ощущает человек, на которого давит груз массой в 1500 кг. Это была плата за сохранение их жизни. При работе системы аварийного спасения инженерами была заложена в полтора раза меньшая перегрузка, но из-за того, что корабль оказался повернут неверно вследствие потери равновесия ракетой-носителем, замысел конструкторов не сработал.

Другая проблема этого экипажа – место посадки. До срабатывания системы аварийного спасения ракета-носитель работала около 5 минут и за это время успела достаточно далеко отлететь от космодрома и от ровных степей Казахстана в сторону гор Алтая. И как раз на склоне одной из них под названием Теремок-3 космонавты и приземлились и сразу почувствовали, что катятся. Почти сферическому спускаемому аппарату очень сложно было принять устойчивое положение на наклонной поверхности. Но вращение неожиданно остановилось, и космонавты смогли вылезти из импровизированной карусели. В нескольких метрах вниз по склону они увидели крутой обрыв. Если бы не парашют, который сначала не отделился от спускаемого аппарата, а потом запутался в ветках близлежащих кустов, эта история могла бы закончиться для космонавтов очень печально.

Корабль не скатился с горы, но возникла другая опасность – начался сход лавины. Снежная масса накрыла группу спасателей, которые отправились на выручку космонавтам. Второй группе пришлось выдвинуться на спасение коллег и только потом – к нашему многострадальному экипажу. В итоге все разрешилось благополучно и никто сильно не пострадал.

В США были другие проблемы, так как американские корабли не приземлялись, а приводнялись. Оказалось, что это значительно хуже. Во-первых, находясь на воде, все предметы разворачиваются своим центром масс строго к центру притяжения (то есть к земному ядру). Малейший просчет мог привести к наклону. Во-вторых, всё усложняли волны, сила которых больше, чем у ветра. Для астронавтов перевернуться на волнах было обычным делом. Так, уже в миссии «Меркурий-Редстоун-4», которая представляла собой второй в истории пилотируемый суборбитальный полет (так называют короткие 15-минутные полеты, когда космический аппарат после достижения космического пространства сразу же оправляется обратно на Землю), произошла серьезная проблема. Спускаемый аппарат корабля с астронавтом Вирджином Гриссомом на борту при приводнении так развернулся, что и иллюминатор, и выходной люк были погружены в воду. По плану вертолет должен был прилететь, закрепить корабль, поднять его вместе с астронавтом и отбуксировать. Только потом можно было открыть люк и выбраться из спускаемого аппарата. Однако замки открылись раньше времени, и вода хлынула внутрь. Астронавт быстро выбрался и с помощью спасательного жилета смог продержаться на воде до того, как его подняли на борт вертолета. А вот аппарат утонул. Интересно, что его подняли со дна Атлантического океана только через 38 лет. Сам Гриссом тоже чуть не утонул. Он набрал себе в карманы сувениров и не снял тяжелый баллон с кислородом. Все это создавало нагрузку и тянуло его ко дну. Державшегося из последних сил астронавта успели поднять на борт вертолета. После этого во все пилотируемые приводняющиеся корабли была добавлена система надувных баллонов, своего рода поплавков. Она разворачивала корабли в нужном направлении и поддерживала их на плаву. Центр масс оказывался ниже, а площадь опоры – больше. После этого если американские корабли и переворачивались в воде, надувные баллоны возвращали их в правильное положение. Разве что сами астронавты могли сделать что-то не так. Например, астронавт Скотт Карпентер на корабле миссии «Меркурий-Атлас-6» в процессе полета совершил много ошибок: и накрошил едой, и довел некоторые системы корабля до перегрева, и не вовремя включил двигатели, из-за чего по инерции пролетел мимо запланированного места посадки. Все потому, что его отвлекали интересные эффекты в невесомости и виды планеты Земля. В конце полета спускаемый аппарат оказался в воде заваленным на бок более чем в 400 км от места ожидаемой посадки. Понимая, что с таким промахом спасатели найдут астронавта не скоро, он решил вылезти сам, взять с собой надувную лодку и что-то предпринять дальше. Еще одной ошибкой стало то, что ждать, пока специальная система выровняет корабль, он не стал. Естественно, переместившись к краю спускаемого аппарата, астронавт своим весом еще больше нарушил баланс и чуть не опрокинул всю конструкцию. Едва не утонув, Скотт смог все-таки залезть в лодку и дождаться спасателей. Правда, после такой серии ошибок в космос его уже больше не отправляли.

В СССР с кораблем «Союз-21» тоже произошло приводнение, хотя он на это не был рассчитан. Вернее, существовал план действий экипажа при посадке на воду, но, как показал этот единственный в истории случай приводнения корабля «Союз», план не работал. Советский корабль мог держаться на воде какое-то время, которого более чем достаточно, чтобы космонавты смогли быстро эвакуироваться из него при нестандартной посадке. Только у наших героев Вячеслава Зудова и Валерия Рождественского не было даже шанса сделать все по инструкции. Сначала не сработала система сближения и стыковки со станцией «Салют-6». Это привело к тому, что космонавты возвращались на Землю значительно раньше, чем планировалось по их программе.

Тем временем на Земле в бескрайних степях Казахстана разыгрался буран. Поднялся ветер, пошел плотный снег, и температура упала до –20 °C. Посадка проходила в ночное время и в очень сложных условиях. Каким-то невероятным образом экипаж «Союза-21» угодил в небольшое озеро. Чтобы ветер не перевернул корабль, основной парашют отстрелился, но вода попала в парашютную систему, вызвав короткое замыкание и раскрытие запасного парашюта. Второй уже не отстрелился и изменил баланс корабля, потянув его за собой. Космонавты перевернулись вверх ногами, а их единственный выход оказался под водой. Выйти было нельзя, оставалось только ждать помощи, а ее все нет и нет. Из-за холода спасатели не могли подойти с воды, а из-за бурана – с воздуха. В ледяной воде корабль потихоньку промерзал снаружи, и космонавтам внутри становилось все прохладнее. Также потихоньку заканчивался воздух, так как под водой оказался клапан для дыхания, который открывается незадолго до посадки спускаемого аппарата на поверхность Земли и позволяет космонавтам дышать поступающим снаружи воздухом. Так наши герои просидели ночь, пока ветер не стих и не прилетела помощь. Только оказалось, что вертолет не может поднять спускаемый аппарат. Ждать новый, более грузоподъемный вертолет поисковый отряд не стал, и корабль решили тащить волоком по льду. К счастью, космонавты из этой ситуации вышли «сухими». Интересно, что среди всех членов отряда космонавтов Валерий Рождественский был единственным моряком-водолазом, и на его долю выпало испытание погружением в воду.

Проблемы с положением центра масс у космических кораблей могут иметь место не только на Земле, но и в полете. Особенно в процессе входа в атмосферу. Чтобы снизить массу космических аппаратов, инженеры покрывали тяжелой тепловой защитой только один отсек – спускаемый аппарат. Остальные части корабля должны были отделяться, чтобы не мешать посадке. Однако когда этого не происходило, сразу же возникали сложности с фиксацией положения спускаемого аппарата относительно Земли. Так, ошибка в проектировании привела к подобной проблеме в полетах собак Чернушки и Звёздочки. Их корабли по сути уже были такими, как тот, на котором после испытаний должен был полететь и человек. Такой корабль состоял из спускаемого аппарата непосредственно с пассажиром и приборного отсека, где располагались двигатель, система ориентации, приборы навигации и связи. Во время посадки последний должен был отделиться. Но в полете Чернушки это было сделано не полностью. Электрические кабели между двумя частями корабля не разорвались и удерживали рядом две составляющие некогда одного целого. Приборный отсек стал своего рода тяжелым якорем, замедлявшим и утягивающим корабль с собакой в сторону от расчетной точки посадки, где Чернушку уже ждали. Из-за трения о воздух и нагрева кабели расплавились и разорвались сами, но к тому времени перелет составил 412 км. Первым корабль нашли не отряды поисковиков, а местные жители деревни Старый Токмак близ Куйбышева (ныне Самара).

Выводов сделано не было, и буквально через две недели точно такая же ситуация произошла и со Звёздочкой, только теперь перелет составил 660 км. Вместе с собакой на борту корабля был манекен. Он должен был пройти все стадии полета человека. Поэтому манекен выглядел как человек, был облачен в красный скафандр, катапультировался из корабля и совершал посадку на парашюте.

Местные жители деревни близ города Воткинска нашли манекен первыми. Он повис на ветках дерева, за которые зацепился его парашют. По словам одного из очевидцев, селяне наблюдали окровавленного неподвижного пилота космического корабля. Так появился миф о некоем погибшем космонавте, слетавшем на орбиту до Юрия Гагарина.

Сам же герой, открывший эру пилотируемого освоения Вселенной, готовился полететь через три недели. Его корабль получил новое имя «Восток», но от предыдущих кораблей с собаками он почти ничем не отличался.

И с Гагариным возникла похожая ситуация, даже хуже. На этот раз не отделилась не только система кабелей, но и весь приборный отсек. Корабль начал раскручиваться, возникла нерасчетная перегрузка. Космонавт с честью справлялся с трудностями. Это вполне естественно, так как для первого полета выбирали лучшего из лучших. В итоге система автоматики сработала, но не по штатной программе, а после регистрации высокой температуры от трения об атмосферу. Приборный отсек был отделен, но на 10 минут позже необходимого. Перелет получился довольно большим. Вместо района Сталинграда (сейчас Волгоград) космонавт приземлился рядом с деревней Смеловка около города Энгельс. Корабли серии «Восток» не предполагали мягкой посадки спускаемого аппарата, так что космонавт катапультировался и приземлялся уже отдельно под собственным парашютом. Юрий Алексеевич чуть не угодил в Волгу, но его опыт парашютиста помог выйти из трудного положения. Первыми Гагарина нашли местные жители Тахтаровы – бабушка Анихайят и ее шестилетняя внучка Румия. Бабушка, увидев странное пугающее существо, мало похожее на человека, подхватила внучку и стала убегать. Румия с любопытством разглядывала космонавта и вдруг заметила на шлеме Гагарина буквы: СССР. Она остановила бабушку, сказав, что это свои. Интересно, что на шлеме изначально ничего не было. За несколько минут до старта фотограф Гагарина, что вел архивную съемку, решил сделать эту гордую надпись. Неизвестно, как это ему пришло в голову, но Юрию Алексеевичу определенно эта незначительная деталь помогла. С помощью местных жителей Гагарин добрался до ближайшего сельсовета, дозвонился до командования, отчитался о полете и стал ждать эвакуации. Колхозники тем временем решили наградить космонавта за его подвиг, но единственной доступной наградой, которая оказалась под рукой, была медаль «За освоение целинных земель». Такой была первая награда у космонавта Гагарина.


Скафандр СК-1


Несмотря на три случая подряд неразделения частей корабля, в полет был отправлен четвертый аналогичный аппарат. Причем все пошло по тому же сценарию, что и первые два раза с собаками. Кабели электрических цепей удерживали два отсека вместе, раскручивая и меняя траекторию их движения. И снова – перелет. В этом корабле находился второй космонавт планеты Герман Титов, который был вынужден сесть вблизи города Красный Кут. И произошло это недалеко от железной дороги, по которой в это же время шел поезд. Если бы место посадки оказалось всего на пару метров в стороне, то могло произойти страшное. На этот раз выводы были сделаны. Конструкция, соединяющая кабели, так называемая гермоплата, была модернизирована. Кроме того, у руководителей полетами изменилось представление о месте посадки. Сначала считалось, что космонавтам лучше приземляться в населенных районах, чтобы им могли быстро оказать помощь. После этого случая место посадки выбиралось по другой логике. Нельзя допускать, чтобы космический корабль упал кому-нибудь на голову, а космонавт повис на линиях электропередач, попал под поезд или угодил еще куда-нибудь.

В следующих полетах корабля «Восток» отделение приборных отсеков от спускаемых аппаратов шло как надо, но полностью без ошибок не обходилось. Так, четвертый космонавт СССР Павел Попович своим мягким местом ощутил, что бывает, если центр тяжести расположен низко, что такое перевес, и как работает маятник.

Дело в том, что после катапультирования, когда космонавт спускался на парашюте, от кресла как раз с той стороны, где сидят, отделился носимый аварийный запас (НАЗ) и повис на длинном тросе (леере) длиной 40 м.

Носимый аварийный запас – это набор предметов для выживания в сложных условиях. В него входят компас, нож, пила, спички, а также запас продовольствия, медикаменты и устройства для подачи сигнала. Его космонавты берут в полет на всякий случай: вдруг посадка будет в труднодоступном месте и спасатели не смогут их быстро найти или эвакуировать. У Поповича сумка с НАЗом весила 40 кг, и она стала раскачивать космонавта взад-вперед. Это грозило травмами при контакте с Землей. Спасла парашютиста его великолепная подготовка и мгновенная реакция. Когда до земли оставалось 40 м, тяжелый груз уже опустился на твердую поверхность и перестал раскачивать космонавта. У Поповича появилось время поправить ситуацию. Он смог частично погасить скорость, сгруппироваться и затем, цитируем, «трахнулся, встал на голову, хряпнулся, проматерился». Серьезных травм не оказалось, было только несколько ушибов. На помощь космонавту прибыли на самолете врачи. Вот только опыта в прыжках с парашютом у них было мало. Поповичу пришлось бегать от спасателя к спасателю, и помогать им. А одному из врачей, который сильно разодрал лицо об острые камни, пришлось оказывать медицинскую помощь.

С первой женщиной-космонавтом Валентиной Терешковой было что-то похожее. Она упала на спину и лицом ударилась о шлем. Валентина Владимировна отделалась сломанным носом и синяком под глазом.

Впоследствии появился новый корабль «Союз». Он состоял из трех частей – приборно-агрегатного отсека, спускаемого аппарата и бытового отсека. Причем спускаемый аппарат находился посередине. Если приборно-агрегатный отсек не отделится, то из-за перераспределения масс корабль перевернется. Люк спускаемого аппарата, имеющий небольшую теплозащиту, будет направлен к Земле и подвергнется огромным температурным нагрузкам.

Именно так, к сожалению, и произошло во время посадки спускаемого аппарата корабля «Союз-5». Космонавт Борис Волынов вспоминал, что тесное пространство спускаемого аппарата начало наполняться гарью. Это плавилось резиновое уплотнение люка. Еще немного, и в щели от прогоревшей прокладки проникла бы раскаленная плазма, которая в секунду выжгла бы все содержимое спускаемого аппарата. В последний момент приборный отсек отделился. Уже после посадки космонавт отметил, что резина вся превратилось в золу, и даже сталь, из которой был сделан обод люка, вспенилась. Но это была не единственная беда в полете. Оказалось, что вслед за изменением центра тяжести менялось и положение спускаемого аппарата. Он кувыркался, пока новый центр тяжести не оказался снизу, а потом начал крутиться вокруг своей оси. Когда раскрылся парашют, от вращения начали скручиваться стропы. Теперь купол парашюта не так хорошо тормозил, и космонавт с огромной силой ударился о землю, что привело к серьезным травмам.

Еще одна проблема с неучтенным перераспределением масс произошла в нашумевшей миссии «Апполон-13» с астронавтами Ловеллом, Хейзом и Маттингли. Подробности той эпопеи, с чего она началась, в чем ее причины – в главе «Давление». Здесь мы поговорим о последствиях. Корабль американских астронавтов состоит из двух частей: командного и лунного модулей. Последний нужен, чтобы сесть на Луну и взлететь с нее. В то время, пока лунный модуль находится на поверхности естественного спутника Земли, командный ждет его на окололунной орбите. Все остальные операции, не касающиеся непосредственно работы на поверхности Луны, должен выполнять командный модуль. Но как раз он и вышел из строя. Теперь у астронавтов были только ресурсы лунного модуля, то есть в разы меньше энергии, тепла, топлива и т. д. Для экономии, естественно, астронавты посадку на Луну не проводили и лунный корабль не отделяли. Когда же наступило время совершить маневры, сразу посыпались ошибки. Астронавты не тренировались управлять лунным кораблем с тяжеленным грузом, который смещал весь корабль и не давал быстро сориентироваться. Центр масс смещался еще и за счет тех приборов, которые должны были остаться на Луне, а также за счет отсутствующих проб лунного грунта, которые тоже были учтены инженерами в балансе корабля. Однако конструкторы не учли варианта, когда этих грузов не будет. Чтобы сбалансировать связку модулей и облегчить себе жизнь, астронавты перенесли все, что могли, в лунный модуль, но все равно потратили слишком много топлива. Руководители полета провели симуляцию и рассчитали, что энергии астронавтам не хватит. Совсем чуть-чуть, но все же не хватит. Экономить приходилось на всем, астронавты не пили воду, мерзли, почти не спали, и все равно энергии не хватало. На Земле инженеры смогли придумать, как выкачать из командного модуля немного ресурсов. Это дало астронавтам шанс вернуться, и они им воспользовались.

Глава 4
Не вакуум

День первый. К земле приближается гигантский астероид. Группа отважных бурильщиков отправилась к нему для установки ядерного заряда.

День второй. К земле приближается гигантский астероид с ядерным зарядом.

Анекдот

У многих людей есть представление, что в космосе вакуум, а это значит, что уже за пределами плотных слоев атмосферы (выше 100 км) начинается бездонная пустота. На самом деле это не совсем так. Орбита Земли наполнена неоднородным веществом: заряженными частицами солнечного ветра и галактической радиацией, астероидами, микрометеоритами, космической пылью. После начала эры космонавтики появилось еще и множество рукотворных объектов, которые, если они не выполняют какие-нибудь задачи и исследования, называются космическим мусором. Да, вещества на околоземной орбите очень мало, и его концентрация в огромном пространстве очень низкая, но и его тоже надо учитывать.

О наполненности космоса микрометеоритами впервые удалось узнать с помощью советского спутника «Объект-Д». По его данным плотность пылевого облака, через которое проходит Земля, составляет примерно одну частицу пыли на миллион кубических метров. При этом такая частичка будет размером не больше микрона. Для сравнения можно представить во всем Охотском море только одну песчинку. Это на первый взгляд мало, но тем не менее объемы космического пространства настолько велики, что суммарное количество находящегося в нем материала огромно: за сутки на нашу планету падает около 100 т космической пыли.

При этом астероиды летают вблизи планеты с колоссальной скоростью. Спутники, чтобы не упасть на Землю, двигаются с первой космической скоростью. Астероиды и микрометеориты летают еще быстрее. Что будет, если объекты, движущиеся в восемь раз быстрее пули, столкнутся между собой?

Если у космической пылинки масса небольшая, то, может, ничего страшного и не произойдет. У микрометеоритов с массой в тысячную долю грамма не хватит энергии пробить даже тонкий корпус спутника. Но если масса пылинки составляет уже хотя бы полграмма, то она прошьет станцию насквозь. Такие пылинки называются метеороидами. Хотя крупных микрометеоритов гораздо меньше, чем мелких, столкновения с ними происходят часто.

Так, например, из-за метеороида вышла из строя топливная магистраль на станции «Салют-7». Космонавты перешли на запасную систему, но основную надо было починить в любом случае. Инженеры разработали особую методику и инструменты для ремонта, а новый экипаж – космонавты Леонид Кизим и Владимир Соловьёв – еще на Земле несколько месяцев готовился к проведению внеплановой операции. Когда они оказались на орбите и вышли в открытый космос, то столкнулись с неожиданной проблемой. Одна из гаек, которая крепила магистраль к корпусу, была залита клейким веществом – эпоксидной смолой. Никто и не предполагал на Земле, что гайку кто-то будет трогать. Космонавты потратили два часа только на попытки ее отвинтить. После этого инженеры всё оборудование старались делать так, чтобы отремонтировать его было просто.

В 1983 году маленькая песчинка оставила серьезную трещину на иллюминаторе шаттла. Всего за время полетов шаттлов было обнаружено более 170 следов от столкновений и потребовалось более 70 замен иллюминаторов. Шаттл был слишком большим и собирал на себе все удары. При этом, в отличие от станции, он возвращался на Землю целиком, но повреждения, как показала практика, для него критичны.

Почти каждый год 12–15 августа можно увидеть звездопад, который получил имя Персеиды. В эти дни люди видят, что на Землю падают пылинки от кометы Свифта – Таттла. Комета – это снежок изо льда и пыли. Приближаясь к Солнцу, она «тает», и пыль освобождается, разлетаясь в хвост и затем вдоль орбиты кометы. Микрочастицы нагреваются от трения об атмосферу и светятся, словно звезды.

В 1993 году ожидалось, что Земля пересечет очень крупное облако таких частиц, которое осталось после пролета кометы Свифта – Таттла. Многие инженеры испугались этого и, например, в США запуск шаттла отложили. Станцию «Мир», которая на тот момент уже находилась на орбите, спрятать не получилось. Космонавты на ее борту видели поток микрометеоритов и как они врезаются в панели солнечных батарей. Более серьезных повреждений не было. «Мир» уже имел специальный радиатор, который служил первым щитом. Хотя основная функция этого устройства была в контроле температуры, многослойная конструкция позволяла затормозить врезающиеся метеороиды и не дать пробить основной корпус.

Космонавтам повезло, а вот европейскому спутнику связи Olympus-1 – нет. У него друг за другом отключились сначала солнечные батареи, а потом система стабилизации. Это две независимые системы, то есть в Olympus-1 космическая пыль попала минимум дважды. После инженеры доработали конструкцию подобных спутников и укрепили корпус.

16–18 ноября 1998 года станция «Мир» пролетела через еще один подобный «звездный дождь» под названием Леониды. Космонавты даже специально развернули станцию так, чтобы в случае чего пробило станцию, но не корабль, в котором люди смогут эвакуироваться на Землю. В самое опасное согласно данным астрономов время ничего не произошло. Космонавты даже не увидели вспышек от падения метеоров в атмосферу. На самом деле астрономы ошиблись, и станция пролетела через облако пыли на 16 часов позже расчетного времени. Космонавты к тому моменту уже были на отбое и мирно проспали как эффектное зрелище, так и опасность.


Метеор с борта МКС. NASA


В последующем исследовании на солнечной панели станции обнаружилось 150 повреждений, которые появились за десять лет эксплуатации.

Как позже показал анализ солнечных батарей орбитального телескопа «Хаббл», такие проблемы есть у всех космических аппаратов. На следующей после «Мира» станции МКС уже имелись специальные противометеоритные панели, а на солнечных батареях – специальная пленка, уменьшающая повреждение. А вот на роботе-манипуляторе «Канадарм», который используется снаружи станции, защиты нет, и в 2021 году на плече космического робота-руки нашли отверстие от удара метеороида.

На американской станции «Скайлэб» имелся специальный прибор в виде ловушки для регистрации микрометеоритов. Однако в процессе одного из выходов в открытый космос астронавты Джеральд Карр и Эдвард Гибсон его не обнаружили. Вряд ли космическая пыль сбила датчик. Скорее всего, во время предыдущего выхода астронавты задели этот прибор, например, шлангом от скафандра и сбили его с платформы. В итоге датчик сам стал космическим мусором.

В момент написания книги на орбите разворачивалась еще одна история. Под новый 2023 год космонавты Сергей Прокопьев, Дмитрий Петелин и астронавт НАСА Франсиско Рубио наблюдали снежный фонтан, который вырывался из космического корабля «Союз МС-22», доставившего их на Международную космическую станцию.

Выяснилось, что была пробита система охлаждения. Она представляет собой радиатор, наполненный теплопроводной жидкостью, которая сначала циркулирует внутри корабля, забирая (или подводя) тепло, а потом циркулирует снаружи, отдавая энергию за счет излучения (или получая ее от Солнца). И вот теплопроводящая жидкость через небольшое отверстие улетела в космос. При последующем наблюдении за отверстием ученые определили, что его проделал крупный метеороид.


Фонтан из пробитого отверстия в корабле «Союз МС-22». NASA


Через полтора месяца грузовой корабль «Прогресс-МС» получил аналогичное повреждение. Вероятность попадания астероидов в одно и то же место в двух разных кораблях крайне мала. Это породило мысли о систематической технической ошибке в конструкции.

Рукотворные объекты в виде космического мусора создали много трудностей и проблем. Одним из самых «грязных» в этом смысле был американский проект «Вестфорд». В его рамках предполагалось выпустить в космос 480 миллионов медных иголок. Идея заключалась в эффекте отражения радиоволн. Если окутать планету медью, то такая оболочка станет своего рода зеркалом, отражающим информацию во все стороны всем на планете. Радиовышки для телевизионной и сотовой связи делают высокими, чтобы Земля меньше мешала распространению сигнала. С отражением можно было добиться увеличения покрытия, причем чем выше была бы оболочка, тем большего покрытия можно было бы ожидать.

Первая попытка «намусорить» не удалась. На высоту в 3500 км был выпущен утыканный иголками нафталиновый шарик. По мере сублимации нафталина иголки должны были освобождаться и разлетаться по орбите. Однако нафталин неравномерно прогревался Солнцем на своей орбите и не расплавился до конца. Несколько сгустков иголок все еще летают вокруг Земли. Вполне возможно, что при изменении активности Солнца или гравитационного влияния других тел на орбиту сгустков иголки все-таки высвободятся.

Вторая попытка была успешнее. Количество нафталина уменьшили, а число иголок увеличили. Это позволило шарику сильнее нагреваться от Солнца. В итоге около 190 миллионов иголок окутали кольцом планету. В этом случае нафталин тоже расплавился не полностью, и потому высвободился не весь заряд. В итоге вокруг Земли образовалось своего рода кольцо из иголок. На Земле осуществили сеанс дальней связи, но уже через несколько дней пояс рассеялся за счет солнечного ветра и давления света. Иголочки оказались на слишком большом расстоянии друг от друга и уже плохо справлялись со своей задачей отражения. Зато они стали очень мешать астрономам, особенно тем, которые занимались изучением Вселенной в радиодиапазоне. К тому же появился риск повреждения этими частицами космических аппаратов.

В международном сообществе возникли волнения и протесты против этой программы. Представители США успокаивали ученых и инженеров тем, что орбита иголок такова, что запуску пилотируемых космических кораблей они помешать не могут. Со временем колечко должно было рассеяться под действием солнечного ветра, а большая часть иголок – упасть в район полюсов Земли. Действительно, через пять лет большая часть мусора покинула орбиту планеты, но много иголок до сих пор там. В США планировали и третий заход, но проект все-таки был закрыт.

В СССР космический мусор задумывался учеными как оружие. Правда, к этой мысли военные пришли не сразу. Сначала предполагалась устанавливать орудия на борт станций и космических аппаратов.

Так, на военную станцию программы «Алмаз», которая стала известна миру под именем «Салют-3», установили пушку. В это же время разрабатывался «Спейс шаттл». Военные оценили параметры американского челнока и решили, что он вполне может украсть с орбиты секретную военную разработку. Для защиты станции от возможных посягательств была выбрана авиационная пушка Нудельмана – Рихтера калибра 23 мм. Ее доработали для применения в условиях космоса. В итоге она выстрелила один раз при завершении своей работы.

Дальнейшие проекты с данной пушкой были отменены, и с космических аппаратов, где орудие предварительно было установлено, оно снималось. Пушки убирали за ненадобностью. Инженеры быстро сообразили, что сама скорость движения космического аппарата потенциально имеет гораздо более разрушительную силу, чем любое огнестрельное оружие. Даже если просто выпустить гвоздь с борта орбитальной станции, относительно Земли он полетит с начальной скоростью, совпадающей со скоростью станции, а это 7,91 км/с. Инженеры приступили к разработке спутников-перехватчиков и истребителей спутников, которые могли взорваться в космосе. Шрапнель внутри таких аппаратов должна была разлететься по всем орбитам, уничтожая все на своем пути. Осколки от разрушенных спутников тоже становились бы шрапнелью и в свою очередь множили бы космический мусор. Военные понимали, что после этого долгие годы в космос летать будет нельзя; в этом и заключалась их цель.

Прототипами истребителей спутников были маневрирующие спутники «Полет-1». Новую технологию нужно было испытать. Сначала инженеры отрабатывали только маневры на орбите и осуществляли перехват спутников-мишеней, а затем было несколько экспериментов со взрывом, но без шрапнели. Например, спутник-перехватчик «Космос-252» уничтожил спутник-мишень «Космос-248». Оказалось, что и сам взрыв несет опасность. Образовались осколки спутников, которые непредсказуемо вращались. За ними до сих пор ведется наблюдение.

В США тоже было много проектов, которые предусматривали уничтожение вражеских спутников. Правда, все они представляли собой не спутники-перехватчики, а ракеты, которые должны были подлететь к космическому аппарату и взорваться вблизи него. Так, в качестве испытания, ракетой противоспутниковой системы ASM-135 была сбита солнечная обсерватория Solwind. После перехвата и уничтожения от научного орбитального инструмента осталось более 1200 опасных обломков. Но больше всего сокрушались не сотрудники, отслеживающие космический мусор, а астроном Дэвид Раст. Почему же? Ведь подобных испытаний США провели уже несколько, так что к образованию космического мусора астрономы привыкли, хотя на тот момент это был рекорд по числу фрагментов. Проблема в том, что Solwind еще частично работал, и исследования Дэвида Раста могли продолжаться еще несколько лет. Военные выбрали для испытания пусть не в полную силу, но работающий аппарат, а могли бы уничтожить какой-нибудь уже отслуживший свое спутник.

Другой проект Aegis разрабатывался не для уничтожения целей на орбите, а для противоракетной обороны. Ракеты RIM-161 Standard Missile 3 устанавливались на боевых кораблях ВМФ США. Они несли боевое дежурство с 2002 года. Поначалу в ход их пускали только в процессе испытаний. Однако в феврале 2008 года произошел инцидент на орбите. Секретный американский спутник USA-193 сразу после выведения вышел из строя. Через несколько месяцев президент Джордж Буш-младший отдал приказ на уничтожение аппарата. Операции дали имя Burnt Frost, а уничтожение должно было производиться как раз при помощи RIM-161 Standard Missile 3. Официальной причиной подрыва аппарата на орбите заявлялось наличие на борту большого количества ядовитого топлива. Инженеры боялись, что в месте падения спутника из-за высокой концентрации отравляющего вещества кто-то может пострадать. Если же аппарат разрушить на орбите, то топливо рассеется, и это не приведет к серьезным последствиям. Некоторые страны в этой версии усомнились. Вероятность заражения местности после падения обломков спутника была крайне мала. Аппараты с этим видом топлива уже запускались ранее, и никто никогда их намеренно не сбивал. Другое дело секретность. США не предоставили информацию ни о целях, ни о составе оборудования спутника. Обломки могли упасть на территории другой страны, и секретные технологии попали бы «не в те руки». Необходимость в разрушении спутника была поставлена под сомнение. Тем не менее ракета RIM-161 Standard Missile 3 во время первого боевого вылета сбила USA-163 и создала более 200 новых проблем, а именно объектов космического мусора.


Фото разрушения спутника USA-193. NASA


Предвидя возможные последствия, военные США перед тем, как осуществить задуманное, взяли небольшую паузу. Дело в том, что как раз в это время на орбите находился экипаж шаттла «Атлантис» STS-122. Осколки от взорванного спутника могли нанести вред американским астронавтам, и поэтому было принято решение дождаться их возвращения на Землю. Правда, на орбите на борту Международной космической станции остались россиянин, француз и американец. О них, видимо, переживать военные не стали. К счастью, опасность для космонавтов миновала. Позже, оценивая риски, руководители операции Burnt Frost сказали, что «лучше сделать и пожалеть, чем не сделать и пожалеть».

Китай присоединился к испытаниям противоспутникового оружия в 2007 году. Представители Поднебесной сбили свой метеорологический спутник «Фенгюн-1С». В результате взрыва образовалось облако космического мусора, в котором зарегистрировали 2347 осколков. По некоторым оценкам, помимо них возникло еще около 150 000 неотслеживаемых частиц. Это было, как говорят некоторые специалисты, «самое драматическое» событие возникновения космического мусора. Одним этим испытанием Китай обогнал СССР и стал второй страной после США по загрязнению космоса.

Еще одна случайность, которую трудно было предвидеть, привела к образованию космического мусора.

Спутник «Космос-1818» представлял собой радар, который питался от ядерного реактора. Для его охлаждения вода не годилась, так как температура в активной зоне превышала 100 °C. Поэтому тепло от источника энергии переносил натрий-калиевый сплав. Этот материал бывает жидким при высоких температурах. Спутник выполнил задачу, выработал свой ресурс и просто остался болтаться в космосе. Ничто не предвещало беды, но в 2008 году специалисты контроля орбитального пространства заметили, что от «Космоса-1818» отлетают куски. Оказалось, что система терморегуляции повредилась и вся жидкость вылетела в космос. Пока сплав калия и натрия нагревался реактором, он был жидким, а оказавшись в космическом пространстве, он практически мгновенно застыл в виде блестящих шариков. Теперь на этой орбите находился уже не один объект космического мусора, а больше сотни.

Обычно один выведенный из строя спутник, хоть и является опасным объектом, в огромном космическом пространстве ни с чем столкнуться не может. Однако есть геостационарная орбита, на которой разные страны хотят разместить свои аппараты, так как она идеально подходит для многих научных, военных и телекоммуникационных спутников.

Дело в том, что на расстоянии в 36 тыс. км от Земли спутники двигаются с той же угловой скоростью, что и Земля вокруг своей оси – один оборот за 24 часа. Получается, что космический аппарат как бы «зависает» над одной и той же точкой на поверхности Земли. Правда, особенность этой орбиты такова, что эта точка может располагаться только на экваторе.

С 1964 года на геостационарную орбиту запускались космические аппараты для осуществления связи и определения погоды. В 1977 году стало очевидно, что места там не так много, как кажется. Тогда некоторые ученые заговорили о способах увода спутников, выполнивших свою задачу. Когда срок годности подходит к концу, космический аппарат должен на остатке ресурсов улететь на более высокую и менее важную орбиту, которую назвали орбитой захоронения.

Однако только в 1979 году спутник после завершения работы впервые свели с геостационарной орбиты. Это был аппарат Intelsat III F-3.

Хотя в большинстве случаев с современными спутниками связи поступают именно так, не всегда все получается по плану. Аппарат может выйти из строя до окончания срока годности, или для получения большей прибыли его могут оставить работать за пределами срока гарантии (до тех пор, пока он не сломается). Так что, несмотря на прилагаемые усилия, геостационарная орбита замусоривается все больше и больше.

Немало мусорят не только инженеры, но и сами космонавты. Ранее все отходы жизнедеятельности просто выбрасывались в космос, но сейчас утилизация происходит по-другому. Мусор копят на станции и ждут грузовой корабль с едой, одеждой, инструментами и прочими полезными вещами. Все доставленное с Земли перемещают на борт станции, и космический грузовик освобождается. После этого накопленный мусор отправляют в грузовой корабль, который летит на Землю и сгорает с содержимым в плотных слоях атмосферы.

При выходах в открытый космос космонавты могут ошибаться и что-то упускать. Так, в прессе в 2008 году появился заголовок, гласящий, что американская женщина-астронавт «потеряла сумочку стоимостью 100 000 долларов». Дело было так: Хайдемари Стефанишин-Пайпер работала в открытом космосе и пролила масло из смазочного пистолета. Оно в невесомости разлетелось и испачкало видеокамеру и специальный контейнер с инструментами для ремонта. Пока астронавт чистила камеру, контейнер выскользнул у нее из рук и улетел. Этот объект стал самым большим из потерянных космонавтами в открытом космосе. Чаще инструменты терялись по одному. Скотт Парадзински упустил плоскогубцы, Талгат Мусабаев и Николай Бударин – карданный шарнир разводного ключа, Кристофер Кэссиди потерял зеркальце, Пирс Селлерс случайно отпустил шпатель. Количество утерянных болтов сосчитать никто не возьмется.

Особенно жалко утраченные в открытом космосе фото- и телекамеры, которые несли важную научную и техническую информацию и историческую память. Майкл Коллинз потерял фотокамеру во время миссии «Джемини-10»; Юджин Сернан в ходе миссии «Джемини-9» менял пленку и упустил камеру; у Кристины Кук от скафандра отстегнулись камера и фонарь подсветки; Сунита Вильямс, работая в открытом космосе, упустила фотоаппарат, и тот уплыл в неизвестность.

Алексей Елисеев проводил съемку процесса надевания новых скафандров, а потом должен был положить кинокамеру в специальный диван-комод в бытовом отсеке. Закрыть крышку дивана на замки космонавту не удалось. Когда он выплыл из бытового отсека в открытый космос, вслед за ним вылетела и кинокамера.

Загадочная история произошла во время стыковки модуля «Квант» с орбитальным комплексом «Мир». Выведение и сближение прошло идеально, но когда настало время стягивания, процесс стыковки остановился. Между блоками было всего 5 см. Космонавты Александр Лавейкин и Юрий Романенко вышли в открытый космос, чтобы узнать причину проблемы. Между блоками они обнаружили мешок со средствами личной гигиены. Как он оказался снаружи станции, до сих пор непонятно. Космонавты пошутили, что это мешок с подарками к празднику – ведь выход в открытый космос состоялся накануне 12 апреля. Сразу вытащить мусор космонавтам не удалось. Мешок зажало. Тогда его распороли, и содержимое пакета улетело в космос. Основная версия происшедшего – космонавты ошиблись и плохо упаковали мусор в грузовом корабле, пока тот был пристыкован. Когда он отсоединился, чтобы освободить место для «Кванта», часть груза из него, вероятно, вывалилась.

Так как убрать с орбиты космический мусор очень сложно, единственное, что можно сделать, чтобы не случилось беды, – отслеживать его. Если узнать об опасности заранее, то работающую технику можно спасти и уклониться от столкновения, изменив орбиту. Однако за всем не уследишь, и в истории было несколько случаев столкновения.

Первый задокументированный эпизод произошел в 1996 году. Тогда фрагмент ракеты-носителя «Ариан», представляющий собой штангу с датчиком, столкнулся с небольшим французским военным микроспутником радиоэлектронной разведки CERISE. На удивление спутник продолжил работать, хотя половина его функций больше не выполнялась. Это был первый звоночек, но его почти никто не услышал. Куда больший резонанс вызвало столкновение действующего американского коммерческого спутника связи Iridium-33 с вышедшим из строя советским военным спутником «Космос-2251». На этот раз оба аппарата оказались крупными, и встретились они лоб в лоб.

Столкновение было фееричным. Спутники вдребезги разбились на 2300 крупных отслеживаемых кусочков и множество более мелких обломков.

Часто происходят столкновения и с неопознанным мусором. В данных случаях остается неизвестно, рукотворный объект или астероид разрушил космический аппарат.

В феврале 1986 года радар в Турции обнаружил 465 новых космических объектов. Ими оказались фрагменты ракеты-носителя «Ариан V-16». Небольшое тело пробило ее бак, который был под давлением, он взорвался, разметав осколки во все стороны.

Затем выяснилось, что осколков гораздо больше. К 500 фрагментам добавилось еще 5000 более мелких осколков. Они образовали буквально кольцо вокруг планеты.

В 2008 году на орбите, пересекающейся с орбитой МКС, также с помощью радара стали обнаруживаться новые объекты. В отличие от ранее описанных случаев, источник появления мусора долго не удавалось найти. Просто на орбите, где летает МКС, не было спутников, которые могли бы взрываться. Их все деактивируют, сливают топливо и разряжают батарею с помощью радиокоманд с Земли.

Источником проблемы оказался российский военный спутник «Космос-2421». Вероятно, небольшой рукотворный объект с малой скоростью врезался в его солнечную батарею. Та разрушилась, но не полностью. После этого спутник стал крошиться и производить всё новые объекты космического мусора. Это событие стало самым опасным именно для космонавтов, так как после разрушения этого военного спутника количество потенциальных снарядов, готовых пронзить МКС, выросло в три раза.

26 октября 2010 года спутник UARS шел на опасное сближение с Международной космической станцией, но ее траекторию изменили для уклонения. Это был, пожалуй, самый большой кусок мусора, с которым МКС могла столкнуться. В целом за год происходит около 750 опасных сближений станции с более мелкими объектами. За их орбитами следят, но это получается не всегда.

29 июня 2011 года космонавтов, находящихся на МКС, экстренно разбудили. Им было приказано приготовиться к срочному возвращению на Землю. Космонавты надели аварийно-спасательные скафандры и переместились с борта станции на космические корабли. Причиной переполоха стало то, что операторы ЦУПа проморгали сближение МКС с космическим мусором. В случае повреждения стации космонавты должны были отстыковаться от нее и в корабле направиться к Земле (по аналогии со спасательными шлюпками). В оправдание нужно отметить, что траектория мусора была очень необычной и сложной. В тот раз все обошлось и космонавты продолжили работу на орбите в штатном режиме.

Помимо космического мусора Вселенная полна радиацией. В ходе термоядерных реакций в недрах Солнца выделятся огромное число заряженных частиц: протонов, электронов, ядер гелия, а также нейтральных элементарных частиц и излучения. Например, каждую секунду Солнце генерирует 180 000 000 000 000 000 000 000 000 000 000 000 000 нейтрино (или, если записать компактно, 1,8·1038 штук). Через ноготь космонавта за секунду пролетает 100 миллиардов таких частиц. Однако если говорить о нейтрино, оно не имеет массы, очень маленькое по размеру, ни с чем не взаимодействует и пролетает насквозь, не доставляя никаких проблем. А вот другие частицы иногда оказывают неприятное воздействие.

Во-первых, их заряд может нарушать работу электрических систем. Радиация обладает свойством ионизировать вещество. Частицы и излучение обладают такой энергией, что способны выбить электроны с поверхности металлов.

Тогда образуется поверхностный заряд, который порождает электрические поля и разряды электрического тока. Также радиация способна выбивать электроны из полупроводников, которые участвуют в работе компьютеров и бортовой электроники.

Инженеры стараются защитить спутники от негативного влияния заряженных частиц, покрывая их золотом, которое по совокупности свойств лучше других материалов подходит для этой цели, или нанося дополнительные слои защиты.

В случае с аппаратом «Фобос-Грунт» инженеры об этом забыли. Этот аппарат должен был полететь к Фобосу, спутнику Марса, и взять материал с его поверхности. Однако уже через два с половиной часа после того, как станция отделилась от ракеты-носителя, план полета был нарушен. Двигатели для вывода на орбиту к Марсу не включились, и «Фобос-Грунт» продолжал вращаться вокруг Земли. Выяснилось, что в электронно-вычислительной схеме использовалась микросхема для бортовых систем самолетов, которая, в отличие от подобных схем для космических аппаратов, не была защищена от радиации. В схеме от воздействия заряженных частиц возникли короткие замыкания. На случай разного вида сбоев в программном коде современных спутников есть команда перехода в безопасный режим. При признаках повышенного напряжения и коротких замыканий основной бортовой компьютер отключается и запускается вторая резервная система. Она берет управление на себя и ожидает радиокоманд с Земли. Так произошло и с «Фобосом-Грунтом». Руководители полета после перехода в безопасный режим ожидали восстановления связи с межпланетной станцией на следующий день, но этого не произошло. В резервном комплекте тоже были самолетные микросхемы, и, вероятно, он тоже вышел из строя по той же причине.

Даже если защита у спутников есть, ее может не хватить. Солнце имеет одиннадцатилетний цикл активности. В 1994 году как раз был пик этого цикла. Одна из вспышек на Солнце привела к появлению мощного потока заряженных частиц, направленного к Земле.

Канадский спутник Anik E1 как раз был на его пути и вышел из строя. В управляющей электронике возник электрический заряд. С помощью резервной системы аппарат удалось восстановить, однако пока проводились работы, вышел из строя еще один такой же спутник Anik E2, причем у него одновременно перестали работать и основная, и резервная системы ориентации. На этот раз починить аппарат сразу не удалось. Авария принесла большие убытки. В следующий пик солнечной активности проблемы испытали спутники Teslar 401, Equator-S, Polar и Galaxy-IV.

Парадоксальная ситуация произошла с гамма-обсерваторией «Интеграл». Она была создана для изучения высокоэнергетического излучения от разных объектов в Галактике и за ее пределами. Однако от него «Интеграл» и вышел из строя. Излучение привело к короткому замыканию. Оно вывело из строя систему ориентации. По инструкции аппарат ушел в безопасный режим. Космический телескоп начал лихорадочно крутиться, и его солнечные батареи не могли нацелиться на Солнце. Инженеры успели включить резервную систему до полной потери заряда аккумуляторов.

Еще одна проблема, которую вызывают заряженные космические частицы, связана с системой звездной или солнечной ориентации. Датчики космического аппарата представляют собой оптические приборы – своего рода фотокамеры. Их чувствительные элементы реагируют на свет, которой выбивает с поверхности электроны, и тем самым создается электрический ток для регистрации. Частицы радиации и в обычном объекте могут выбивать электроны, а в чувствительном приборе – тем более. Только у радиации энергии больше, чем у видимого света, поэтому тока выделяется так много, что прибор «слепнет» или думает, что Солнце находится с другой стороны.

В результате система ориентации сбивается, спутник отворачивает солнечные батареи от звезды, быстро разряжается и отключается. В режим ожидания аппарат не входит, так как не фиксирует сбоя. Без электроэнергии спутник выходит из строя, и восстановить его невозможно. Для решения этой проблемы на борту спутников размещают систему ориентации, основанную на других принципах. Чаще всего это специальные маховики, которые при вращении сохраняют свое положение в пространстве, – гироскопы.

В 2014 году гидрометеорологический спутник «Электро-Л» потерял ориентацию после того, как инженеры решили дать «отдохнуть» маховикам и временно их отключили. Некоторое время аппарат был направлен своей фотокамерой на Землю. За это отвечали солнечные датчики и двигатели. Сбой произошел как раз в то время, когда специалисты центра управления полетами раскручивали маховики командами с Земли.

С большой долей вероятности INSAT 2d вышел из строя в 1998 году тоже по причине радиации в космосе. На тот момент он был главным индийским спутником связи, при помощи которого на Земле передавались не только телевизионные сигналы, но и, например, информация о торговых операциях на бирже.

Солнечная радиация доставила много проблем космическим аппаратам. Да и людям тоже. В 1958 году в США зародился проект «Аргус». В его рамках за пределы плотных слоев атмосферы запускались ядерные заряды, которые взрывались на больших высотах. Идея данного эксперимента заключалась в использовании электромагнитной волны от детонации для блокирования связи на Земле. Известно, что ядерный взрыв имеет несколько поражающих факторов. Первый и самый опасный – это ударная волна. Взрыв порождает колебание воздуха, которое сметает все на своем пути. Но на высоте более 150 км над поверхностью Земли воздуха очень мало, и ударная волна не образуется. Второй поражающий фактор – температура. В космосе нечему нагреваться, так что и это не страшно. Следующий момент – электромагнитное излучение. Оно имеет такую силу, что связь на всех частотах прекращается и электроника выходит из строя. При взрыве на поверхности Земли до третьего фактора не доходит, так как все устройства, которым нужна связь и электричество, уже могут быть уничтожены. Военные в США полагали, что взрыв в космосе не приведет к разрушениям, но сможет отключить военную технику, например, ядерные боеголовки противника.

Для подтверждения теории ученые запустили за пределы плотных слоев атмосферы три боеголовки. Оказалось, что эффект есть, но достаточно слабый. Дальше в планах американских военных было запустить боеголовки помощнее. Дипломаты из Великобритании, США и СССР видели опасность в продолжении работы с радиоактивным оружием и несколько раз инициировали переговоры об ограничениях, но безуспешно. В Женеве в 1958 году состоялась конференция с участием восьми стран, где СССР и США представляли ученые, а не только правительственные чиновники. По результатам удалось найти согласие и был подписан временный договор об ограничении ядерных испытаний. Однако уже через три года в США разработки продолжились в проекте «Доминик». Самый мощный из взрывов получил имя Starfish Prime. В эксперименте использовалась боеголовка мощностью 1,44 мегатонны. Ее подорвали на высоте всего 400 км. Использование такого мощного снаряда привело к огромным проблемам. Хотя испытание проводилось над необитаемой зоной в Тихом океане, все равно до обычных людей последствия дошли. На Гавайях, на расстоянии 1500 км от эпицентра взрыва, из строя вышли три сотни уличных фонарей, телевизоры, радиоприемники и другая электроника. На орбите сразу отключились спутники TRAAC и Transit 4B. Еще один поражающий фактор ядерного взрыва – радиация. Для людей на Земле она не страшна, так как ее не пропустит атмосфера планеты. На орбите – другое дело. Во время взрыва Starfish Prime заряженные частицы вызвали сбои в семи космических аппаратах. Ariel 1 был первым спутником Великобритании, и он тоже попал под раздачу. В СССР специально для изучения последствий ядерных взрывов запускался спутник «Космос-5», и даже он вышел из строя.


Взрыв Starfish Prime. Фото с архипелага Гавайи. NASA


О таких последствиях ученые в США не думали, так как орбиты аппаратов были далеко от взрыва. Хотя предыдущие эксперименты с меньшими зарядами проходили без столь тяжелых последствий, в данном случае уже требовалось учитывать магнитное поле Земли, которое увлекает заряженные частицы и заставляет их двигаться вдоль силовых линий к полюсам. По сути, именно это явление ответственно за полярные сияния. Однако движущиеся частицы сами создают магнитное поле. Но такие расчеты не были сделаны. В итоге радиация полетела во все стороны, пересекая орбиты и разрушая космическую технику. После взрыва Starfish Prime радиационная обстановка сильно поменялась. Магнитное поле Земли – это своего рода щит, который не позволяет альфа- и бета-излучению попасть в планету. Однако сами частицы никуда не пропадают, а концентрируются в нескольких зонах. Их называют пояса Ван Алена, или радиационные пояса. Так вот, после Starfish Prime этот пояс оказался в несколько раз ближе к планете, магнитный щит ослаб, и в нем появились дырки, а полярные сияния при этом стали наблюдаться и на экваторе. Все спутники, которые запускались в течение пяти лет после этого события, быстро выходили из строя.

Военные в СССР в ответ начали подготовку космических ядерных испытаний, которые получили имя «Операция К». Но тоже допустили ошибку. Проблема, как ни странно, оказалась в том, что обширных безлюдных акваторий, где возможно провести эксперимент, в стране не было. Северный ледовитый океан не в счет, так как в то время запустить там ракету было очень сложно. Место выбрали над малонаселенными степями Казахстана. Хотя заряд был в 100 раз менее мощным, чем в американском проекте, из-за непосредственной близости взрыва к объектам инфраструктуры возникло много последствий. Силовые кабели под землей и линии электропередач на поверхности, соединявшие Целиноград (сейчас Астана) и Алма-Ату (сейчас Алматы), были выведены из строя. В обоих городах наблюдались проблемы со связью. Вследствие коротких замыканий многие электроприборы в домах загорелись. Возник пожар на карагандинской ТЭЦ-3.

В США после происшествия со Starfish Prime от идеи проекта «Доминик» не отказались, просто заряды стали использовать поменьше. Но и во время подготовки совершались ошибки. Так, планировался эксперимент Bluegill Prime, и в результате отказа клапана в двигателе жидкий кислород загорелся и создал крупный пожар на стартовом столе. Офицеры испытательного полигона приказали отряду солдат отправиться на тушение огня и деактивацию ядерного заряда. В результате их действий ракета была повреждена, а потом и вовсе взорвалась. К счастью, ядерная боеголовка от этого не детонировала, но несколько килограммов радиоактивного оружейного плутония разлетелось в разные стороны. Заражение местности оказалось очень серьезным. Как минимум три месяца проводились работы только по снижению уровня радиации вблизи стартовой площадки.

В это время дипломаты разных стран обсуждали опасности таких экспериментов. В итоге в Москве был подписан «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой». На этом история космических ядерных взрывов закончилась.

Инженеры переключились на мирный атом. Так, в серии советских спутников «ИС-А» имелся небольшой ядерный реактор. Он использовался для питания активного радиолокатора, который применялся в разведывательных целях. Энергии от солнечных батарей было недостаточно, и потому инженеры создали ядерную электрическую установку «Бук». В ней в качестве топлива использовалось 30 кг радиоактивного урана. Первые несколько спутников «ИС-А» работали успешно, но в 1977 году аппарат этой серии «Космос-954» по неизвестным причинам вышел из строя, и связь с ним прервалась. Со временем он стал тормозиться и в итоге упал на Землю. Из-за трения о воздух спутник частично сгорел и развалился на части. Инженеры сделали реактор так, что при нагревании специальная стяжка, скрепляющая различные части, должна была раскрыться. Предполагалось, что уран в таком случае высвободится и сгорит, не долетев до поверхности Земли. Идея инженеров не сработала. Обломки вместе с радиоактивным ураном упали на территории Канады и вызвали серьезное заражение территории, составляющей 800 км в диаметре. К счастью, регион был малонаселен, и никто не пострадал. Неприятностей добавил тот факт, что по требованию властей Канады для решения сложившейся экологической проблемы СССР пришлось выплатить 3 млн канадских долларов компенсации, которые пошли на организацию работ по поиску и деактивации источников радиации.

После этого случая конструкция аппаратов серии «ИС-А» была изменена. Активная зона теперь отделялась и уводилась на орбиту захоронения отдельным механизмом с отдельным двигателем.

В ситуации со спутником «Космос-1402» эта мера не помогла. Отделение реактора произошло, а отвод на более высокую орбиту – нет. На этот раз все страны были проинформированы о возможном падении реактора на Землю. За ним внимательно следили. В итоге более 30 кг урана вошли в плотные слои атмосферы над Индийским океаном и частично сгорели. На этот раз последствий для экологии не наблюдалось, так как опасные остатки быстро рассеялись, но еще около трех месяцев регистрировалось незначительное повышение радиоактивного фона.

В этих историях речь шла о том, что спутники теряют свою скорость и падают. Причиной этого является атмосфера планеты. У воздушной оболочки Земли нет четкого края. Ионы водорода и кислорода, принадлежащие нашей планете, обнаруживаются даже за орбитой Луны. Их относительная скорость и энергия гораздо меньше, чем у ионов, идущих от Солнца. Поэтому они не воздействуют на электронику. Однако эти редкие частички атмосферы оказывают сопротивление и тормозят космические аппараты. Чем дальше от Земли, тем эффект меньше. Причем на одной и той же высоте количество атомов атмосферы разное в разных местах. Когда спутник пролетает над освещенной стороной нашей планеты, он испытывает меньше сопротивления, чем пролетая над ночной стороной. Земля – своего рода комета. Солнечное излучение сдувает часть атмосферы в направлении от светила. В годы повышенной солнечной активности эта разница в сопротивлении становится еще больше, так как атмосферный хвост удлиняется. Для Валерия Быковского ученые запланировали экспериментов на десять дней. Его полет на корабле «Восток-5» должен был стать рекордным. Однако перед самым стартом Мстислав Келдыш сообщил о возрастании солнечной активности и предупредил о росте уровня радиации. Старт был отложен, но через четыре дня, когда ситуация нормализовалась, космонавт полетел. Тут-то и обнаружилось, что орбита «Востока-5» быстро снижается. Сопротивление атмосферы было слишком большим и росло с каждой минутой. Корабль плавно возвращался на Землю. Первоначальную длительность полета снизили до восьми суток, а потом и вовсе до пяти дней. Руководители полета испугались, что корабль может неконтролируемо упасть в труднодоступном регионе, откуда космонавта будет сложно спасти, или на территории другой страны, где будут раскрыты секреты советской космической технологии. В итоге Быковский не пролетал и половины намеченного срока. Хотя рекорд все-таки был установлен и для одиночного полета держится до сих пор, он мог быть более внушительным.

Другая история произошла со станцией «Салют-7». В 1986 году состоялся последний пилотируемый полет к ней. В экипаж корабля «Союз Т-15» входили Леонид Кизим и Владимир Соловьёв, которые забрали бо́льшую часть съемного оборудования и перевезли его на новую станцию «Мир».

Сам «Салют-7» они законсервировали. На Земле руководители программы решили оставить станцию на орбите и подняли ее на большую высоту, чтобы она могла там долго находиться. В будущем ученые планировали изучать работоспособность автоматических систем, а в еще более далеком будущем к ней мог быть совершен полет многоразового корабля «Буран». Еще 8–10 лет станция должна была приносить научную пользу. Однако из-за выросшей солнечной активности уже через два года топливо для поддержания орбиты и противодействия атмосфере на борту закончилось. Проект «Энергия-Буран» после 1988 года своего продолжения не получил и, соответственно, помочь станции не мог. «Салют-7» неуправляемо стал падать на Землю. Это многих испугало. Хотя на борту не было опасных (например радиоактивных) материалов, к станции был пристыкован транспортный корабль снабжения (ТКС) «Космос-1686». Этот аппарат был способен выдержать полет в атмосфере и не сгореть, вследствие чего вполне мог бы рухнуть кому-нибудь на голову. К счастью, этого не произошло.

Правительство СССР заранее выразило готовность возместить возможный ущерб. Ситуация разрешилась благополучно. Станция в 1991 году вошла в плотные слои атмосферы и развалилась на части, которые упали в малонаселенных регионах Чили и Аргентины. Никто не пострадал, даже наоборот. Местные жители находили кусочки аппарата и присваивали их себе. Известно, что один фермер использовал материалы от советской космической техники для создания камина в своем доме, а другой сделал из обломков станции курятник. СССР к тому времени испытывал проблемы другого рода и был не против таких действий.

Впоследствии, когда руководители космической программы объявили об окончании работы станции «Мир», то аппарат целенаправленно и управляемо был сведен с орбиты. Он упал в самом удаленном от жилых районов месте планеты – неподалеку от так называемой точки Немо в южной части Тихого океана. Сейчас это место называют кладбищем космических кораблей.

Американский шаттл «Индевор» в миссии STS-99 имел на своем борту огромную антенну, которая являлась частью радиолокатора. Основной задачей корабля было составление точной карты поверхности нашей планеты. Работа 60-метровой фермы планировалась на низкой и при этом сильно наклоненной орбите. Но сопротивление атмосферы было сильным, и антенна тормозила аппарат. Шаттлу приходилось каждый день поднимать свою орбиту, чтобы не рухнуть на Землю. Но так как двигатель выдавал тягу меньше расчетной, оказалось, что топлива на борту для постоянных маневров недостаточно. Инженеры на Земле стали придумывать, как сэкономить топливо. Озвучивались разные идеи, даже парадоксальные. Одна из них заключалась в том, что астронавт Герхард Тиле мог бы своими мышцами поворачивать станцию вместо двигателей. Когда на борту космического корабля кто-то занимается спортом на тренажере, соединенном с корпусом, можно увидеть, что вся конструкция двигается. В невесомости усилие, создаваемое руками или ногами при использовании спортивного снаряда, передается всему кораблю. Также предлагали отходы космонавтов, например струю урины, превратить в топливо и выбрасывать в космос для реализации реактивного движения. Эти забавные предложения так и не понадобилось воплощать в жизнь. Астронавты и без этого решили проблему, исправив двигатель и увеличив его тягу.

С современной Международной космической станцией периодически возникают подобные проблемы. МКС огромна – 108×74 метра. Ее размеры сопоставимы с размерами футбольного поля. На станцию сильно воздействует атмосфера, а ее орбиту приходится поднимать несколько раз в год. Это успешно делали и делают прилетающие периодически грузовые корабли.

Со спутниками такую операцию не провернуть. У них есть только то топливо, что было заправлено в них перед стартом. Поэтому если ученые не рассчитают воздействие атмосферы, спутник может со временем потеряться навсегда. Один из самых дорогих таких просчетов случился со спутниками связи Starlink. В 2022 году было запущено 40 аппаратов этой серии. Сначала они вышли на низкую опорную орбиту, а затем должны были улететь от Земли подальше, на целевую орбиту, но этого сделать не успели – выросла солнечная активность. Буквально за пару дней «Старлинки» потеряли скорость и стали падать на Землю. Чтобы исправить ситуацию, операторы дали спутникам команду развернуться узкой гранью по направлению движения, чтобы уменьшить сопротивление. Но это только на пару часов отсрочило неизбежное. Такое большое число аппаратов еще ни разу не сходило с орбиты разом. Зрелище падения было похоже на звездопад, а в прессе данное событие окрестили спутниковым дождем. Все аппараты сгорели в плотных слоях атмосферы.

Глава 5
Давление

Заходит Паскаль в бар, а в баре уже сто тысяч паскалей.

Анекдот

В этой главе речь пойдет о давлении.

Это основополагающая физическая величина для космонавтики. Давление должно быть в топливных баках, в двигателях, в скафандрах, и его практически не бывает в открытом космическом пространстве.

Говорят, что в космосе вакуум. Что это значит? В прошлой главе говорилось, что в космосе много чего есть, а значит, вакуум – это не пустота. Он имеет низкое давление, значительно ниже атмосферного. Все имеющиеся определения довольно размыты и оставляют большое поле для фантазий, поэтому на всякий случай введем более конкретное понятие вакуума. Это пространство, где вероятность столкновения одной частицы с другой меньше вероятности пролета одной частицы мимо другой без соприкосновений.

Давление – это физическая величина, характеризующая воздействие силы на единицу площади. Так как описанные ранее объекты в космосе в большинстве своем имеют практически точечный размер, ни о какой площади речь идти не может. Сила зависит от массы, и потому маленькие частицы космоса не могут иметь большую силу. Атмосфера берет числом: чем больше плотность и количество частиц, тем большее они оказывают давление. Еще до эры космонавтики во время полетов на аэростатах инженеры знали, что чем дальше мы находимся от Земли, тем меньше будут давление и содержание кислорода. А за пределами плотных слоев атмосферы делать без скафандров нечего. Более того, если бы проблема заключалась лишь в отсутствии кислорода для дыхания, то ее можно было бы решить кислородной маской. Внутри человека давление есть, да еще и не одно. Когда кровь воздействует на сосуды, говорят об артериальном и венозном давлении, когда воздух воздействует на легкие, говорят об альвеолярном давлении, плевральном давлении. В глазах есть особая жидкость, которая оказывает глазное давление, и т. д. Обычно давление атмосферы совпадает с давлением внутри организма, а если погода меняется, могут возникать головные боли, вызванные несоответствием внутреннего и наружного давлений. А в космосе этот эффект будет еще сильнее. Конечно, человек не взорвется, но сосуды могут лопнуть.

Также воздух будет двигаться в область, где давление ниже. То есть если скафандр или космический корабль будут иметь отверстие, то из него воздух будет выходить до тех пор, пока давление внутри и снаружи не будет одинаковым. При полной разгерметизации давление упадет до нуля.

В итоге первая обезьяна Альберт, которая полетела на ракете, была помещена в небольшую герметичную кабину, чтобы она не погибла в процессе полета. Хотя полет был еще не космическим, но на высоте в 60 км давление слишком низкое, чтобы находиться без скафандра или кабины. Вот только инженеры не подумали, о том, что воздух должен циркулировать для дыхания. Кислород должен приходить, а выдыхаемый углекислый газ выходить. Это не было предусмотрено. В итоге, пока ракета еще стояла на стартовом столе и готовилась к пуску, внутри кабины закончился кислород и сильно нагрелся воздух. Обезьяна погибла от удушья. В СССР произошла обратная ситуация с собаками Чижиком и Мишкой. В их кабине был регулятор давления. Специальное устройство должно было выпускать излишки углекислого газа, когда его давление росло, и освобождать место для кислорода. Оно представляло собой иглу, которая выходила из отверстия и входила в него при определенных значениях количества углекислого газа в кабине. Данный регулятор сработал на большой высоте, но после того как излишки углекислого газа вышли, механизм не выключился. Воздух продолжил выходить. В итоге результат тот же, что и с обезьяной.

В последующих стартах регулятор не использовали. Вместо него в стенке кабины просверлили отверстие, диаметр которого был точно рассчитан на стравливание газовой смеси при избыточном давлении. И это сработало. Затем испытывались другие кабины и скафандры, и, увы, уже в первом полете новой системы разгерметизировались конструкции, показав ошибки инженеров. Это стоило жизни собакам Рыжей, Джойне, Пальме и Пушку.

На собаках проблемы не закончились. У Юрия Гагарина герметичным был не только спускаемый аппарат, но и скафандр. На всякий случай, если корабль разгерметизируется, у космонавта будет шанс выжить. Его скафандр был соединен с креслом, где и находились баллоны с воздухом для дыхания. Однако во время посадки после катапультирования Юрий Гагарин опускался на отдельном парашюте и не мог использовать запас кислорода, оставшийся в кресле. На такой случай в скафандре имелся клапан, который открывался за счет тросика. Гагарин должен был его потянуть, и тогда в скафандр пошел бы воздух из атмосферы. Когда же первый космонавт планеты потянулся к механизму, то понял, что тросик затерялся в складках одежды. Гагарин мог погибнуть от удушья уже на Земле. Все же наш герой не зря был выбран первым космонавтом. Благодаря ловкости и смекалке Гагарин смог вывернуться, дотянуться до тросика и открыть клапан для дыхания.

У экипажа корабля «Союз-11» скафандров как раз не было, и это оказалось трагической ошибкой. Миссия космонавтов Добровольского, Волкова и Пацаева заключалась в первой в истории работе на орбитальной станции «Салют». И уже в самом начале возникли проблемы с воздухом. Корабль успешно доставил космонавтов на станцию, но когда они оказались на борту «Салюта», резкий запах гари омрачил радость от достижения цели. Оказалось, пока станция летала в автоматическом режиме, перегорела проводка двух вентиляторов. Первый день после стыковки с «Салютом» космонавты провели на борту корабля «Союз», пока система регенерации очищала воздух. В середине полета случилось еще одно задымление, но где именно произошел мини-пожар, было непонятно. Космонавты вновь забрались в корабль и стали наблюдать. Либо пожар разрастется и придется экстренно возвращаться на Землю, либо воздух очистится еще раз и достаточно будет немного переждать. События пошли по второму варианту. И вот, наконец, все задачи решены, и космонавты с чувством выполненного долга готовятся к возвращению. В последний момент перед самым стартом загорается предупреждающий сигнал об открытии люка между спускаемым аппаратом и бытовым отсеком. И это послужило поводом для нешуточных волнений. Скафандров у космонавтов не было. Еще несколько попыток закрыть люк также сопровождались сигналом опасности. На Земле решили, что датчик соединения работает неверно. Он срабатывает, когда нет электрического соединения между контактами на обрезе люка и корпусе. Космонавты залепили датчик пластырем, и после закрытия люка сигнал потух. Давление внутри бытового отсека для проверки было уменьшено. Из спускаемого аппарата воздух не проходил. Это означало, что соединение герметично. Корабль отделился от станции и отправился к Земле. Космонавты переживали насчет люка, но с ним проблем не было. После отделения от корабля двух отсеков – приборно-агрегатного и бытового – связь с Землей нарушилась. Даже после успешной посадки космонавты ничего не доложили. Оказалось, опасность ждала их с другой стороны. Под креслом Добровольского находился клапан, который, как и в случае с Гагариным, должен был открываться для вентиляции, когда спускаемый аппарат находился недалеко от поверхности Земли. Только он открылся раньше, когда корабль был в разреженных слоях атмосферы на высоте 150 км. Через получившееся отверстие воздух выходил, пока давление снаружи и внутри не выровнялось, то есть пока весь воздух не вышел. Это и стало причиной трагедии. А причиной открытия клапана, согласно официальному расследованию, считается маловероятное стечение обстоятельств при его изготовлении. Во время тестов при одной или двух ошибках в технологии сборки механизма все равно не удавалось повторить ситуацию «Союза-11», и только когда клапан собрали со всеми возможными ошибками да еще разок ударили по нему, трагическое событие удалось смоделировать. Другая неофициальная версия указывает на то, что виновато было крепление. Место расположения клапана труднодоступно, и когда происходило закручивание гаек, техники могли просто не докрутить. Согласно инструкции усилие для затягивания должно быть не меньше 50 кг, а на всех спускаемых аппаратах слетавших кораблей оно меньше, в одном случае даже было почти нулевое.

Все следующие полеты на кораблях «Союз» проходили только с использованием аварийно-спасательных скафандров, в спускаемый аппарат была добавлена возможность закрыть клапан вручную, а также аварийная система наддува воздухом. Сам механизм открытия тоже переделали, сделав его более устойчивым к физическому воздействию.

В дальнейшем произошел еще один случай, когда этот клапан открылся раньше времени. Это случилось на спускаемом аппарате корабля «Союз МС-02» – новой модификации с изменением многих систем. На высоте 8 км в корабле резко снизилось давление, но благодаря дополнительным мерам безопасности и скафандрам это не имело никаких последствий. К тому же высота была не настолько большой, а падение давления – не очень сильным.

Не только в кораблях и скафандрах были проблемы с давлением. На МКС недавно произошел случай разгерметизации. В одном из блоков появилась трещина, слишком маленькая, чтобы ее обнаружить визуально, но достаточно большая, чтобы из нее выходил воздух. На борту на такой случай есть специальная клейкая лента наподобие скотча. Но в этом случае было непонятно, куда ее клеить. Трещина была небольшой, и воздух выходил медленно. Потерю легко компенсировали регенераторы, но и их ресурс не бесконечен. Через год темпы утечки выросли вдвое, потому нужно было найти источник падения давления. Тут помогла находчивость космонавтов. Анатолий Иванишин и Иван Вагнер взяли пакетик с чаем и рассыпали его в невесомости. Увлекаемые потоками воздуха от перепада давления, чаинки начали двигаться к трещине. За ними космонавты и проследили, а потом успешно заделали источник проблемы.

Эта трещина появилась сама собой, а вот в 2018 году в корабле «Союз МС-09» отверстие кто-то просверлил. В середине миссии на МКС сработали датчики, которые зарегистрировали падение давления. Быстро обнаружилось, что воздух выходит из бытового отсека, пристыкованного к станции корабля. Там в укромном месте космонавты обнаружили ровное просверленное отверстие, а рядом с ним следы соскальзывания, как будто дрель срывалась. Серьезной угрозы для жизни эта ситуация не создала. Отверстие было в таком месте, что МКС можно было изолировать и самую важную часть корабля – спускаемый аппарат – тоже. К тому же дырку быстро заделали. Тем не менее встал вопрос, кто просверлил отверстие. Это либо ошибка, либо саботаж. После проведенного криминалистического расследования представители Роскосмоса с согласия и поддержки представителей NASA заявили, что виновник обнаружен, но подробности оглашены не будут. Варианта на самом деле только два. Первое: кто-то на земле во время монтажа в обход всех инструкций просверлил отверстие, а потом его заделал. Поначалу заплатка держалась, а потом слетела. Второй вариант: это сделал кто-то из экипажа МКС, нарушая правила здравого смысла. Известны следующие факты: отверстие было просверлено изнутри, а не снаружи, следы соскальзывания могут свидетельствовать о работе инструмента без упора, например в невесомости, во время инцидента на борту были отключены камеры, в воздушных фильтрах обнаружена стружка от корпуса. Все эти факты не склоняют чашу весов ни в одну сторону. Появившаяся чуть позже новость о том, что один из членов экипажа имел заболевание, которое может влиять на психику, дала много поводов для разговоров. Тем не менее все представительные органы отвергли выдвинутые этому человеку обвинения.

Самая страшная авария с разгерметизацией произошла со станцией «Мир» в 1997 году. Ее основные причины будут рассмотрены в другой главе. Главное, что грузовой корабль «Прогресс М-34» протаранил один из модулей этой станции, который назывался «Спектр». От удара образовалось отверстие площадью 2 кв. см, которое невозможно было заделать. Через него воздух выходил с огромной скоростью. Среднее время критического падения давления при таком повреждении составляет 26 минут с учетом работы аварийного нагнетания. На станции находились Василий Циблиев, Александр Лазуткин, а также американский астронавт Майкл Фоул. У космонавтов было два варианта спасения. Первый – это покинуть станцию в корабле. Второй вариант – изолировать разгерметизированный модуль. Каждый из сегментов станции присоединялся отдельно, как деталь от конструктора. Однако многие системы были взаимозависимы. В «Спектре», например, находился самый крупный массив солнечных батарей. От них электрические кабели шли к другим модулям. Они как раз и стали проблемой при закрытии люка во время аварии. Александр Лазуткин перебирал многочисленные разъемы, отсоединял и разбрасывал в разные стороны. Некоторые провода не отсоединялись, космонавт их разрезал ножницами по металлу, за которыми нужно было лететь в другой модуль. От падения давления стало закладывать уши, причем уже до болевых ощущений. Время решало всё. Тут еще проблема – нет ключа, который закрывает люк. Космонавт находит один ключ, но он не годится. Затем он находит второй ключ, который подошел, и люк закрылся. Правда, проблемы на этом не закончились. Так как станция оказалась отрезанной от солнечных батарей модуля, она потеряла почти половину своего энергоресурса. Начались сбои всех остальных систем. Окончательно ситуация нормализовалась после того, как космонавты уже другого экипажа Анатолий Соловьёв и Павел Виноградов, которые прибыли для ремонта, провели переподключение солнечных батарей. Для этого они вышли в «закрытый космос». Это как в вакууме открытого космоса, только внутри космического аппарата. Когда космонавты проникли в брошенный «Спектр», внутри все работало, в том числе и вентиляторы, которые должны были перегонять воздух, а теперь крутились вхолостую.


Модуль «Спектр» после тарана кораблем «Прогресс М-34». NASA


Был в истории случай, когда космонавты на орбите на борту станции «Салют-5» специально открыли «форточку». Такая потребность возникла после аварии и жалоб космонавтов из предыдущего экипажа на здоровье. Все грешили на то, что в воздух мог попасть ядовитый материал: топливо, жидкость для охлаждения или еще что-то. Приборы никаких отклонений в воздухе не фиксировали, но на всякий случай инженеры решили полностью заменить воздух на станции. Для этого был подготовлен экипаж корабля «Союз-24», состоящий из космонавтов Виктора Горбатко и Юрия Глазкова. Когда они прибыли на станцию, никаких запахов или других признаков отравляющих веществ не обнаружили. Тем не менее обидно было не использовать дополнительную подготовку, и космонавты решили испытать новые приборы. Глазков открыл клапаны – ту самую «форточку», – и воздух со свистом стал утекать. Когда давление упало, автоматически включилась система наддува. Из-за перепада давления возникла волна разрежения и сжатия, то есть звук. По словам Горбатко, «было такое впечатление, что станция разорвется». Корпус выдержал, и в итоге один из самых необычных и опасных экспериментов оказался удачным. Однако эта экспедиция на станцию была последней. Продолжение работы «Салюта-5» оказалось невозможным, потому что для корректировки орбиты был израсходован весь запас топлива.

Еще одним уникальным экспериментом в области давления является совместный полет двух принципиально разных кораблей – «Союз-19» и «Аполлон». Объединение двух враждующих стран, США и СССР, или, как потом это событие назвали в прессе, – «рукопожатие в космосе», было актом дружбы и началом сотрудничества. Но этому мешал тот факт, что космонавты из разных стран буквально дышали разным воздухом. В советском корабле использовался воздух, по составу близкий к обычному, – 21 % кислорода и 79 % азота. В американском корабле астронавты дышали чистым кислородом, но под давлением 0,4 атмосферы. Это в два раза больше, чем парциальное давление кислорода в атмосфере Земли. Парциальным называют давление, которое имел бы газ, входящий в состав газовой смеси, если бы он был один. То есть если из атмосферы Земли убрать все газы, кроме кислорода, то давление было бы 0,21 атмосферы. В организме человека есть много азота, который попадает туда из воздуха. Если азот убрать, то и внутри организма давление будет 0,21 атмосферы. Однако если человек резко перейдет из одного корабля в другой, из-за перепада давления азот (и другие газы) начнет расширяться в виде пузырьков и будет стремиться выйти из плена плоти. Это называется декомпрессионной или кессонной болезнью, и ею часто страдают подводники. Процесс похож на процесс кипения. Декомпрессионная болезнь может привести к серьезным последствиям для организма – повреждению клеток органов (в первую очередь легких), сосудов. Однако если давление азота в воздухе немного ниже, чем в крови, то он будет за счет диффузии постепенно без травматических последствий вымываться. После процедуры полного очищения организма от азота человек может дышать чистым кислородом.

Для космонавтов «Союза» сделали специальный переходный отсек, который работает как барокамера – медленно снижает давление азота и, чтобы процесс шел быстрее, увеличивает давление кислорода. Астронавты «Аполлона» тоже должны были проходить через это устройство, но для них оно работало наоборот, увеличивая давление азота и снижая давление кислорода. С людьми это работало, а вот с рыбками нет. На борту «Сюза-19» располагался запаянный аквариум, а в нем – рыбки данио-рерио и вместе с ними вода, корм и растворенный запас кислорода на десять дней. Эксперимент должен был показать, как органы живых существ, которые плавают в воде, то есть практически в невесомости, развиваются в космосе. Данио-рерио – это прозрачные рыбки, и все изменения их организма хорошо видны.

Командир «Союза-19» Алексей Леонов решил перенести в американский корабль аквариум и залетел в переходный отсек. Там из-за перепада давления кислорода снаружи и внутри аквариум треснул. Вода из получившегося крошечного отверстия не вытекала, а воздух как из крови космонавта, так и из аквариума стал выходить. Потом космонавт занес в бортовой журнал следующее: «Как себя чувствуют рыбки? Хорошо, они все погибли». Леонов как никто другой должен был понимать свою ошибку, но об этом позже. Нужно разобраться, почему же возникло различие в составе атмосферы кораблей.

В США используется чистый кислород, так как это позволяет экономить кучу ресурсов. Не нужно брать с собой азот, а вместо него можно взять в три раза больше кислорода и удлинить тем самым время работы внутри корабля. Есть и минус – чистый кислород пожароопасен. В СССР эту проблему осознали очень рано. В первом отряде космонавтов проходил подготовку Валерий Бондаренко. Одним из испытаний было нахождение в сурдобарокамере. Это устройство имитирует тишину и одиночество космоса, а также работу с повышенным содержанием кислорода. Медики должны были убедиться, что организм кандидата может долгое время выдерживать космический полет на тот случай, если двигатель для возвращения не сработает и полет продлится дольше запланированного. В ходе медицинского обследования космонавт снял закрепленные на теле датчики, протер места их закрепления смоченным в спирте ватным тампоном, после чего его выкинул. Вот только предмет гигиены попал на нагревательный элемент и вспыхнул. Вся сурдобарокамера начала гореть, а выйти быстро из нее тоже было нельзя из-за перепада давления. Загорелся и шерстяной костюм. Когда медики смогли открыть дверь, Бондаренко был еще жив, но помощь пришла слишком поздно. В итоге в отечественной практике чистым кислородом космонавты дышали только в скафандрах во время выходов в открытый космос и в ходе тренировок. Это снизило ресурс корабля, но снизило и риски. В США в программе «Аполлон» тоже не обошлось без жертв во время предполетных тестов. Виджил Гриссом, Эдвард Уайт и Роджер Чаффи зашли в кабину «Аполлона-1». Через пять часов астронавты сообщили, что кабина в огне, а через две минуты внутри полыхало всё. В отличие от барокамеры, где мало горючих материалов, в кабине их много. К тому же давление кислорода и его содержание в кабине инженеры увеличили, чтобы туда не попадал атмосферный воздух. Горение было таким сильным, что ручка люка снаружи была раскалена, и за нее невозможно было ухватиться голыми руками. Непосредственной причиной возгорания, вероятно, стало короткое замыкание в электропроводке. В дублирующей кабине, которая полностью имитирует основную, обнаружилось около десятка возможных проблем с электропроводкой. Также ошибочной была конструкция люка, которая не позволила астронавтам быстро выбраться самим. Люк был двойным. Одна створка открывалась вовнутрь, а его крышка – наружу. Люк прижимался более высоким давлением, а когда начался пожар и выросла температура, давление стало еще больше. Если бы люк мог открываться в другую сторону, то у астронавтов был бы шанс спастись. В итоге открыть аппарат удалось только после того, как давление внутри выросло настолько, что кабина лопнула. Но к тому времени все было испепелено. От чистого кислорода в программе «Аполлон» не отказались, так как это сильно усложнило бы конструкцию. Только в следующих за «Аполлоном» проектах американские космонавты стали дышать другим воздухом. А вот двери поменяли. Теперь люк открывался наружу легко и быстро, от среды с большим давлением в сторону среды с меньшим давлением.

Здесь речь шла про орбитальный корабль программы «Аполлон». Когда же стали делать лунный модуль «Орел», то в нем также люк открывался внутрь. Из-за этого астронавты Нил Армстронг и Базз Олдрин могли так и остаться внутри модуля после успешной посадки на Луну. Сначала они надели скафандры, а потом запустили процесс стравливания воздуха в кабине. Однако давление внутри, хоть и упало, не все-таки оставалась высоким. Снаружи на поверхности Луны давления, как и атмосферы, нет. Подергав ручку, астронавты открыть люк не смогли. Прилагать силу было небезопасно, так как корпус очень тонкий. Все же Базз Олдрин решился и отогнул на себя один угол, нарушив уплотнение. Остатки воздуха вышли, и астронавты смогли совершить свои знаменитые шаги по Луне.

Вернемся к Алексею Леонову. Он больше знаменит не участием в первой международной экспедиции «Союз-Аполлон», а тем, что стал первым человеком, вышедшим из корабля «Восход-2» в открытый космос. Причем это было не робкое высовывание половины тела, как это было в первом выходе американского астронавта позже, а полноценный вылет. Возможно, если бы задача стояла поскромнее, проблем у Алексея Архиповича было бы меньше.

Проблема оказалась в скафандре. Он выполняет две основные функции: не выпускать воздух и держать давление внутри, а также быть подвижным, чтобы человек мог свободно работать. Задачи скафандра похожи на задачи акваланга, и потому и то, и другое делают из резины. Вот только если толщина оболочки будет маленькая, то из-за перепада давления скафандр будет надуваться в вакууме подобно воздушному шарику. Часто можно услышать, что с Леоновом это и произошло. Скафандр, который получил имя «Беркут», надулся и стал чуть ли не больше самого корабля. Это заблуждение, и ситуация была совершенно иная. Миф возник из-за того, что сам космонавт описывал ощущения неоднозначными словами: «Скафандр так раздулся, что руки вышли из перчаток, когда я брался за поручни, а ноги – из сапог». Леонов чувствовал, что скафандр натянулся, но не увеличился в размерах. На самом деле инженеры заранее подумали о возможном «надувании». Экипировка космонавта имела несколько слоев, а резина использовалась толщиной почти как у баскетбольного мяча. Стать больше в объеме «Беркут» не мог в принципе. Баскетбольные мячи не раздуваются, как воздушные шарики, но сжать их, когда они накачаны, практически невозможно. То же произошло и со скафандром, внутри которого был Леонов. Под давлением резина натянулась и стала словно каменной. Леонов, тем не менее, оттолкнулся от поручня и вылетел из корабля. Первой его задачей было сделать несколько кадров на шпионский маленький фотоаппарат, который был у него на груди. Космонавт стал сжимать руку в локте, чтобы дотянуться до спускового механизма, но ничего не вышло. Сил согнуть толстую резину до конца не хватало, и рука распрямлялась. Леонов предпринял несколько попыток, но каждый раз дотянуться не удавалось. Отдельная видеокамера на корабле засняла неловкие движения космонавта, но на Земле движения рукой наблюдающие восприняли как «передачу приветов».


Скафандр «Беркут»


Бросив попытки сделать селфи, Леонов переключился на другую проблему. По инструкции космонавту требовалось зайти в шлюз ногами вперед. Согнуть и просунуть ноги в узкий люк ему не удалось. Инженеры потом сокрушались, что не подумали поставить поручень не только внутри, но и снаружи люка. Если бы они это сделали, то Леонов смог бы залезть в шлюз по инструкции, просто оттолкнувшись, и ничего сгибать не потребовалось бы. Немного помучившись, Алексей Архипович решает «сдуть» свой скафандр, то есть сбросить давление внутри и сделать резину мягче. Инженеры предусмотрели два режима работы: с давлением в 0,4 атмосферы и 0,27 атмосферы, но второй режим можно было использовать, только если в крови космонавта не осталось азота. Леонов уже час дышал чистым кислородом и понадеялся, что азот к этому времени вышел. Он пошел на большой риск, но не прогадал. Декомпрессионной болезни не было. Затем Леонов нарушил инструкцию второй раз и залетел в шлюз не ногами, а головой вперед. Теперь возникла проблема, как закрыть внешний люк. Инженеры снова схватились за голову. Космическая «дверь» открывается внутрь и занимает добрых 30 % объема шлюза. Теперь, чтобы решить проблему, Леонову было необходимо развернуться внутри резинового цилиндра диаметром 1 м, да еще и в жестком скафандре. По словам Леонова, пока он залезал обратно в корабль, за 5 минут у него выделилось 6 литров пота, он чуть не утонул в выделившейся жидкости и чудом не схлопотал тепловой удар. С неимоверными усилиями космонавт смог развернуться и закрыть внешний люк. Далее в шлюз был накачан воздух под тем же давлением, что и внутри корабля. Затем Павел Беляев – второй член экипажа «Восхода-2» – открыл внутренний люк шлюза, и наконец Леонов оказался в корабле. Шлюз после выполнения своей задачи был отделен. На этом проблемы с давлением не закончились. Из-за перепадов температуры после отсоединения шлюзовой камеры во внутреннем люке появилась щель, через которую стал выходить воздух. Приборы это зафиксировали и дали команду начать резервную подачу кислорода. Нагнетание газа шло быстрее, чем утечка воздуха. В итоге огнеопасного кислорода стало столько, что любая искра могла спровоцировать пожар. Внутри было много того, что могло гореть, так как корабль разрабатывался для относительно безопасной азотно-кислородной атмосферы. К тому же давление выросло до значений больше 960 мм рт. ст., при том, что нормальное значение – 750 мм рт. ст. Разрешилось все само. Под воздействием кислорода люк придавило к ободу плотнее, датчики перестали регистрировать утечку, и подача кислорода прекратилась. В следующий раз инженеры сделали люк, который открывался внутрь корабля, что было правильным решением.

В США первый выход в открытый космос оказался гораздо проще. Не было никаких шлюзов. Астронавты «Джемини-4» разгерметизировали весь корабль, и Эдвард Уайт вылетел из кабины. Трудности со сжиманием скафандра также были. Уайт перегрелся от нагрузки, похудел на 3,6 кг. Но благодаря более простой конструкции выйти и зайти обратно в корабль ему труда не составило.

Может показаться, что использование шлюза в советском аппарате было ошибкой, но это не так. Если бы что-то произошло, то американский корабль мог бы и не вернуться на Землю. Например, астронавты «Джемини-4» очень испугались, когда их единственный люк не закрылся с первой попытки. В итоге на современных американских станциях шлюз есть, хотя он и не такой конструкции, какой был на корабле «Восход-2».

Скафандры тоже претерпели изменения. Например, в скафандре «Ястреб», модификации «Беркута», рюкзак с кислородом был не за спиной, а в ногах. Там он занимал меньше места, а ходить, как мы привыкли на Земле, в невесомости все равно не нужно. В еще более современном скафандре «Орлан» используется полужесткая конструкция, которая не дает резине растягиваться, но сохраняет подвижность. Тем не менее космонавты очень устают во время работы в открытом космосе.

Также в скафандрах есть возможность работать с пониженным давлением, если работа требует больших усилий или особой подвижности. Александр Лавейкин во время длительного полета в 1987 году забыл об этом. Когда он выходил в открытый космос с борта станции «Мир», то случайно задел рычаг переключения режимов и не заметил этого. Давление стало падать, и Лавейкин забил тревогу. На Земле все встали на уши, но космонавт сообразил, в чем была проблема, и работа продолжилась.

Космонавты Александр Викторенко и Александр Серебров собирались выходить в открытый космос тоже с борта «Мира». Конструкция этой станции сборная. «Мир» имел специальный переходный отсек, который был предназначен для стыковки четырех целевых модулей и перехода членов экипажа между ними. Он также мог выполнять функции шлюзового отсека при выходе в открытый космос, для чего на нем был установлен клапан сброса давления. Викторенко и Серебров начали откачивать воздух, но давление стало падать и внутри бытового отсека космического корабля «Союз ТМ-8», пристыкованного к переходному отсеку. Люки были закрыты, а причиной этого стало отсутствие прибора измерения давления. После стыковки двух модулей или кораблей космонавтам требуется выровнять давление в двух до того независимых аппаратах. Для контроля этого процесса используется манометр. Стыковка корабля и станции прошла давно, прибор был уже не нужен, и чтобы он не мешался, космонавты его сняли, но не закрыли оставшееся от прибора отверстие.

Давление важно не только для космонавтов внутри корабля, оно важно и для баков ракеты-носителя. Чтобы топливо шло в двигатель, нужна сила, которая будет выталкивать горючее и окислитель.

Первая ошибка, связанная с давлением, имела место еще при попытке запустить первую в СССР ракету ГИРД-09. Последовательность действий для ее запуска была следующей. Сначала инженеры заливали в бак охлажденный жидкий кислород. Затем он начинал нагреваться и испаряться и тем самым создавал необходимое давление. Во время экспериментов на земле инженеры определили, что на этот процесс требовалось 6 минут 5 секунд. По истечении этого времени открывались клапаны подачи кислорода в двигатель, а затем происходило зажигание. И вроде все шло по плану, но вместо оглушительного рокота двигатель ракеты еле-еле журчал. Тонкая струйка пламени из-под ракеты не смогла ее даже приподнять. По плану полет должен был занимать 15 секунд, а пламя выходило из двигателя две минуты. В чем оплошность, было совершенно непонятно, пока инженеры не догадались поставить в бак датчик давления и залить в него кислород еще раз. В тот день была холодная и пасмурная погода. Оказалось, что кислород испарялся в таких условиях гораздо медленнее, чем во время испытаний в теплой лаборатории. На достижение нужного давления требовалось в три раза больше времени, но логика запуска этого не предусматривала.


Макет ракеты «ГИРД-09»


Самая известная авария, которую мы рассмотрим в этой главе, – взрыв модуля американского пилотируемого лунного корабля «Аполлон-13». Космический аппарат состоял из двух частей: командного и лунного модулей. Командный отвечал за движение по орбите от Земли до спутника и обратно, а также за движение по орбите вокруг Луны. На нем стояли более мощные двигатели и большего размера баки с топливом по сравнению с лунным модулем, который отвечал за посадку и взлет только со спутника. Когда астронавты Джеймс Ловелл, Джон Суайгерт и Фред Хейз удалились от планеты на расстояние в 330 тыс. км, они увидели, что приборы показывают аномально высокое значение уровня жидкого кислорода. В невесомости такое бывает, и чтобы все исправить, нужно только перемешать содержимое бака. Астронавты запустили специальный механизм, и через несколько секунд снаружи модуля произошел взрыв. После этого пошли электрические сбои и падение напряжения в разных системах, а также возникла тряска, вибрация и вращение.

Виновниками взрыва оказались сразу несколько систем. Еще на Земле во время подготовки к старту была заменена полка для крепления кислородного бака. Во время монтажа один болт крепления не был откручен. Когда инженеры попытались достать полку, она не далась. Тогда специалисты приложили силу. Вероятно, при этом возникли повреждения сливного отверстия бака. Это было замечено, но устранять поломку никто не стал. Инженеры решили не сливать, а выпарить топливо. В баках для контроля температуры и давления имелся специальный нагреватель. Он помогал увеличивать давление в баке при необходимости, например, при включении двигателя или с целью отправки кислорода в топливный элемент для генерации электрического тока, или для подачи его дополнительно в кабину для дыхания экипажа. Суть в том, что если кислород из бака уходит на нужды экипажа, а остатки окислителя в баке расширяются, то температура в баке падает (а с ней уменьшается и давление).

Нагреватель запустили не в космосе, а на космодроме. Идея сработала, и топливо выпарилось. Все бы ничего, но последовала еще одна ошибка. Система контроля давления и температуры в баке рассчитана на напряжение 28 В, а на космодроме использовалось напряжение 65 В. Из-за этого автоматический термоконтроль не сработал. Уже после, когда проводился эксперимент в рамках расследования аварии, специалисты отметили, что температура во время «процедуры выпаривания» могла доходить до 538 °C, хотя по инструкции не должна превышать 27 °C. На самом деле из-за перегрева внутри оголились провода электрических датчиков и от стенки бака отслоилась тефлоновая изоляция, которая может гореть в чистом кислороде. Это на Земле никто не заметил.

В итоге в процессе полета Джон Суайгерт после регистрации очередного снижения давления в баке запустил нагреватель, который стал увеличивать температуру и не выключился вовремя. Оголенные провода датчика температуры стали коротить и искрить, а изоляция оторвалась. Когда же астронавты запустили перемешивание, от искры загорелся тефлон и начал медленно и неуправляемо тлеть в чистом кислороде. Температура в баке начала стремительно расти, а с ней и давление. В итоге оно выросло настолько, что корпус бака не выдержал и лопнул, а окислитель отправился в космос. Осколки разорванного корпуса повредили и топливные элементы, и второй бак с кислородом.

И все это случилось из-за проблемы с давлением и сливом топлива на космодроме. В итоге командный модуль лишился топлива для маневров и электричества, на котором была построена вся система жизнеобеспечения. В итоге воздух не вырабатывается, тепло не подается, вода не регенерируется, связи нет, ориентироваться невозможно.


Командный модуль после аварии. NASA


На помощь пришел лунный модуль. Так как на поверхности Луны он должен работать автономно, то все системы у него были свои, но и ресурса у него было значительно меньше. Надо было экономить. Астронавты все время, пока возвращались на Землю, боролись за жизнь, они почти ничего не пили, не спали, работали в холоде при температуре 5–6 °C и сырости. Возникла еще и проблема с очисткой воздуха от выдыхаемого углекислого газа. Он постепенно стал вытеснять кислород, без которого дышать невозможно. Лунный модуль рассчитан на двоих человек, а в случае «Аполлона-13» в нем ради выживания пришлось ютиться втроем. В командном модуле были запасные фильтры-поглотители, но они не подходили для использования в лунном модуле. Они были прямоугольными, а в лунном модуле использовались цилиндрические. Астронавты это отметили еще за три года до описываемых событий, когда готовилась миссия «Аполлон-8». Тогда большого значения унификации не придали, но теперь это стало проблемой. Тем не менее с помощью клейкой ленты и деталей скафандра астронавты сделали переходник, и эта ситуация нормализовалась.

В итоге Джеймс Ловелл, Джон Суайгерт и Фред Хейз вернулись на Землю, показав пример отваги, выдержки и смекалки.

В баках давление может достигать 10 атмосфер. А какова сила одной атмосферы? На самом деле огромна. На один квадратный метр атмосфера давит массой 10 тонн (силой 100 000 ньютонов).

Воздействие, которое может оказать атмосфера, наглядно наблюдать на баках, в которых создается вакуум или низкое давление. Такое, например, произошло на полигоне Капустин Яр с цистерной спирта. Горючий материал использовался в качестве топлива для ракет. Об интересном содержимом цистерны узнали военнослужащие испытательной площадки. Они проковыряли снизу дырочку, из которой спирт капля за каплей вытекал. Однажды отверстие забыли заделать, и через него вытекло почти все топливо. Так как цистерна была герметична, а отверстие было снизу под жидкостью, внутрь воздух не поступал. Под толстой металлической оболочкой возникла разреженная среда с низким давлением газа, а атмосферное давление никуда не делось и буквально смяло стальной цилиндр, как лист бумаги. Этому помогла еще и сложная погода космодрома. Днем там было очень жарко, +40… +50. Спирт активно испарялся в баке. Пары спирта создавали давление, которое помогало жидкому спирту вытекать. Ночью температура падала ниже нуля, и пары спирта оседали. От этого давление внутри цистерны резко падало.

Похожие истории приключались и с ракетами. На том же полигоне готовили к проведению испытательного пуска ракету Р-11. Однако из-за обнаруженной неисправности старт был отложен. Из ракеты сотрудники полигона стали сливать топливо, но забыли по халатности открыть дренажный клапан, который позволяет воздуху попасть внутрь и выровнять давление. В итоге ракета схлопнулась.

В США такие ситуации тоже были. Например, с ракетой Сатурн –1Б. На ней на станцию «Скайлаб» готовились отправиться Джералд Карр, Эдвард Гибсон и Уильям Поуг.

Первую ступень специалисты заправили керосином, а после этого пошел дождь. Чтобы в ракету не залилась вода, инженеры закрыли отверстия дренажных клапанов пластиковыми крышками и благополучно об этом забыли. Когда потребовалось слить излишек топлива, о перепаде давления никто не подумал, да и о крышках никто не вспомнил. Так как керосина из баков изъяли немного, последствия были не самыми страшными – образовалась вмятина глубиной 15 см и диаметром 2 м. Тем не менее в таком состоянии ракета-носитель полететь не могла, а замена влетела бы в крупную сумму.

Поэтому через день баки решено было выправить, используя тот же принцип перепада давления, который и привел к изначальной проблеме. В бак закачали гелий под избыточным давлением. Это сработало. Через несколько дней ракета-носитель успешно стартовала.

Очень большая проблема с давлением связана еще и с парашютом. Он должен раскрываться на высоте, где давление воздуха намного ниже, чем в корабле. По официальной версии именно это стало причиной гибели космонавта Владимира Комарова на корабле «Союз-1». Первый полет космического аппарата нового типа был сопряжен с огромным количеством проблем: не раскрылась солнечная батарея, не раскрылась дублирующая антенна рад

Скачать книгу

© Яровитчук А.Г., 2024

© Стебалина А.С., 2024

© ООО «Издательство АСТ», 2024

* * *

От авторов

Ошибаются все. Ошибки неизменно сопровождают процессы познания, творчества, созидания.

Каждому из нас лучше всего запоминается собственный опыт. Однако учиться стоит не только на своих ошибках. Опыт других людей порой помогает по-новому взглянуть на личные успехи и неудачи. Казалось бы, при чем здесь космонавтика? Но ведь эта область науки основана на соединении смелых новаторских идей, инженерного гения и жажды познания. В масштабах человеческой истории она совсем молода, а больше всего ошибок допускают именно первопроходцы. Описанные на страницах этой книги реальные случаи могут многому научить, ведь чем бы мы ни занимались, в первую очередь мы остаемся людьми, а люди могут ошибаться.

Космические программы СССР, продолженные Россией, а также разработки США, Японии, Европы дали миру огромное количество новых знаний и открыли невиданные горизонты. Грандиозный триумф невозможен без большой кропотливой работы, а значит – вероятных ошибок и неизбежного поиска путей их преодоления. Мы не ставим перед собой цель принизить чьи-либо заслуги. Наша книга прежде всего о том, как извлечь урок из ошибок, как не сдаться и продолжить идти к намеченной цели. Мы хотим показать космонавтику с менее эффектной и привлекательной, более непарадной, будничной стороны и надеемся, что собранные нами истории не только послужат уроком читателю, но и дадут вдохновение для новых идей и увлечений. Мы хотим показать, что космос не такой уж недосягаемый, и если приложить усилия, то многое, даже кажущееся поначалу фантастическим, становится возможным.

Глава 1

Орбиты, инерция и гравитация

Тише едешь – дальше будешь.

Пословица

В космосе нет ничего необычного. Законы природы на то и законы, что выполняются везде. Однако происходящее с космонавтом или спутником на орбите будет отличаться от того, к чему мы привыкли на Земле.

Первое – в космосе правит инерция. Тело будет двигаться с постоянной скоростью, пока на него не подействуют другие силы. На Земле этот принцип тоже работает, но мы обычно его не замечаем. Если мы что-то бросили, разогнали или сдвинули, оно будет потихоньку останавливаться, замедляться. На Земле на нас постоянно действует множество сил: трение о воздух, о землю, сила тяжести, сила реакции опоры, сила упругости и так далее. В космосе подобных явлений гораздо меньше, и поэтому инерцию прекрасно видно. Даже если совсем немного воздействовать на космонавта, например, легким касанием, он начнет двигаться и может улететь на любое расстояние, хоть на миллион, хоть на миллиард километров, пока его что-то не остановит. Причем инерция работает как снаружи, так и внутри космического корабля.

Сколько космонавты упускали предметов в космосе – не сосчитать. Началось все с обычного карандаша, которым Юрий Гагарин должен был вести записи в бортовом журнале. Первый космонавт планеты сделал вывод, что на орбите все нужно крепить. Сейчас у каждого космического приспособления есть способы фиксации – липучки, карабины, винты.

Но все еще есть трудности с крошащимися и жидкими материалами. Показательным примером стал полет американского астронавта № 6 Гордона Купера на корабле «Меркурий-Атлас-9». При попытке приготовить еду он случайно разлил бо́льшую часть отведенной на это воды. Капельки разлетелись по кораблю. Первое время все было спокойно, но через пятнадцать часов друг за другом стали отказывать приборы. Вероятно, до них постепенно добиралась вода и вызывала короткое замыкание. Сначала в невесомости сработал датчик перегрузки, затем сломался механизм охлаждения скафандра, что могло привести к перегреву астронавта, потом началась избыточная подача кислорода и рост давления, далее закоротило систему ориентации корабля. Астронавт оставался на удивление спокойным и, несмотря на реальную угрозу жизни, выполнил все предписания и вернулся на Землю. Позднее технологию подачи воды усовершенствовали: стали использовать специальные пакеты с клапанами и знаменитые тюбики. Также были добавлены насосы и сушильные системы, которые должны были собирать случайно разлетевшуюся воду.

Буквально в следующем после этого случая полете астронавты допусти похожую ошибку. На американском корабле «Джемини-3» почти сразу после старта пилот корабля Джон Янг достал провезенный контрабандой сэндвич и предложил его капитану Вирджилу Гриссому. Тот откусил кусочек, но сразу заметил, что по станции стали разлетаться крошки, которые могли попасть в приборы или в дыхательные пути. Вспомнив предыдущий полет и его проблемы, астронавты спрятали еду. Сегодня, чтобы не было крошек, хлеб пекут маленькими буханочками размером с конфетку, «на один укус». В таком виде не нужно ничего резать и откусывать, поскольку весь «батон» помещается во рту. Второй вариант – использовать лепешки вместо буханок. Они тонкие, и на срезе крошки практически не образуются. Особые неприятности возникают, когда отказывает насос ассенизационного устройства – туалета.

Космический хлеб

Были проблемы и серьезнее. В 1955 году инженеры проводили испытательные полеты баллистической геофизической ракеты Р-1Е на большую высоту. Внутри в специальном контейнере с парашютом находились тележки с собаками Лисой и Бульбой. Вскоре после старта Р-1Е сбилась с курса. Автоматически включились стабилизационные рули, которые должны были выправить траекторию движения. При этом ракета резко изменила положение, а тележки с собаками, по инерции продолжив движение, пробили корпус и вылетели из контейнера.

Р-1 – простая ракета, которая состоит из двигателя, топливных баков и контейнера с оборудованием. Предельная высота полета груза в 150 кг составляет 110–120 км, а скорость – не более 2 км/с. Для более амбициозных задач необходимо использовать дополнительные отделяемые части – ступени. Ступень – это, по сути, отдельная ракета. Когда в ней заканчивается топливо, она отделяется, а следующая начинает работу.

Нижняя ступень при этом пустая и легкая, а верхняя – тяжелая. По инерции первая может догнать вторую и протаранить ее. Нужно точно рассчитать время разъединения и мощность двигателя. Практически у каждого типа многоступенчатой ракеты на начальном этапе эксплуатации был аварийный пуск, где данный сценарий реализовывался. Ошибки могут быть разные. Так, например, при пуске американского «Авангарда» в 1958 году двигатель второй ступени включился слишком поздно, а у частного «Фалкона-1» двигатель первой ступени оказался более мощным, чем предполагалось. У российского «Союза» в 2018 году не сработала система отвода корабля в сторону и т. д.

Даже если при пуске ракеты все прошло успешно, проблемы могут возникнуть у корабля уже в космосе. В безвоздушном пространстве нет других способов затормозить, кроме как использовать двигатель. Если с ним что-то не так, проблемы обеспечены.

Первого космонавта Юрия Гагарина баллистики намечали запустить на очень низкую орбиту, туда, где есть остатки разреженной атмосферы. Если бы вдруг двигатель для посадки отказал, то за счет сопротивления корабль Гагарина мог затормозиться в течение десяти дней и вернуться на Землю сам. Однако была допущена ошибка в расчете длительности работы двигателя при взлете. Юрий Алексеевич оказался дальше от Земли, чем планировалось. На такой высоте по инерции без двигателя он пролетал бы около двух месяцев, а еды и воды у космонавта было только на десять дней. К счастью, все обошлось, двигатель сработал, и космонавт вернулся.

А вот у двух собак Пчелки и Мушки, которых отправили в полет за полгода до Гагарина, все закончилось плохо. Старт прошел успешно, но при посадке двигатель сработал чуть хуже, чем требовалось. Продолжая двигаться по инерции, корабль перелетел территорию СССР. Чтобы новейшие технологии не достались другим странам, на аппарате была предусмотрена на такой случай система самоуничтожения (автоподрыва). Она и сработала в процессе полета.

Так же перелетели за пределы нашей страны космонавты Владимир Ляхов и Абдул Ахад Моманд при попытке планового приземления на корабле «Союз ТМ-5» в 1988 году. От спускаемого аппарата корабля при подготовке к посадке был отделен бытовой отсек. Эта часть не приспособлена для возвращения на Землю, но именно там располагается всё жизненно необходимое в космическом пространстве: туалет, вода, еда, устройство стыковки и т. д. Затем включился двигатель посадки, но произошло это слишком поздно. Космонавты, увидев неладное, сразу его отключили. Теперь, чтобы приземлиться в нужном месте, требовалось прождать больше суток, пока положение корабля относительно Земли не повторится. Проблема же оказалась в том, что у космонавтов ничего не было для жизни, только воздух, но они справились, проявив хладнокровие и выдержку.

С инерцией связана и забавная история. Ее рассказал в своей книге космонавт Георгий Гречко. Этот случай больше похож на байку, но весьма познавательную. Так вот, под видом лекарства с элеутерококком на борт станции «Салют-6» в достаточно большой фляге был доставлен коньяк. Георгий Гречко и Юрий Романенко нашли его. Алкоголь в космосе строжайшим образом запрещен, так что это была контрабанда. Космонавты потихонечку стали его пить – по паре капель перед сном. Правда, употребить удалось только половину фляги. В невесомости коньяк вспенился. Вытянуть его, как сок из трубочки, уже не получалось. Космонавты вернулись на Землю, так и не опустошив сосуд до конца. На смену прибыли Ковалёнок и Иванченков. Они флягу тоже нашли, но придумали, как ее допить, чем сильно удивили предыдущий экипаж, когда рассказали, как это было сделано. Один из космонавтов медленно подлетал к краю станции, сжимая горлышко губами. Второй резко толкал его в противоположном направлении. Космонавт и фляга начинали двигаться в другую сторону, а коньяк по инерции вылетал прямо в рот. Можно уверенно сказать – инерция правит бал в космосе. Любой маневр, поворот, стыковка, любое, даже незначительное, действие требует учета инерции. Мы ее вспомним еще не раз.

Второе действующее лицо на космическом балу и главный партнер инерции – гравитация. Да, она там есть и никуда не исчезает. Часто можно услышать неверные утверждения, что орбитальные станции не подвержены влиянию гравитации. Они так далеко летают от ее источника, от Земли, что сила всемирного тяготения ослабевает и пропадает. И у этих утверждений есть даже доводы: космонавты легким движением мизинчика перемещают многотонные предметы, и к тому же сами не падают на Землю. Но в реальности гравитация есть, причем там, где летают космонавты, ее сила практически не отличается от той, что действует на людей и предметы на поверхности Земли.

Космонавты не падают из-за скорости. Вернее, они как раз падают все время, постоянно, но благодаря очень быстрому движению от Земли не приближаются к ней. Из-за инерции и многотонные грузы легко перемещаются даже от небольшого толчка. Сами предметы не падают, потому что быстро двигаются, точно так же как космонавты и космические корабли.

Важно, что космические аппараты двигаются по круговым или эллиптическим орбитам. При таком вращении гравитационные силы уравновешиваются центробежными. Если бы мы летели от Земли строго вверх (перпендикулярно) без ускорения (без включенных двигателей), то наша скорость из-за притяжения все время бы падала. Однако чем больше эта скорость была изначально, тем дальше можно было бы пролететь. Сила гравитации зависит и от расстояния. Чем дальше улетим от Земли, тем слабее нас будет притягивать (но все-таки будет). Если изначальная скорость космического объекта очень большая, то он может улететь от Земли и никогда не вернуться. Для этого нужно, чтобы сила притяжения убывала быстрее, чем уменьшалась скорость объекта. На Земле при старте с ее поверхности минимальная скорость для безвозвратного покидания равна 11,2 км/с и называется второй космической.

Первой такую скорость набрала автоматическая межпланетная станция «Луна-1», которую СССР запустил 2 января 1959 года. Ошибки в этом не было. Аппарат и планировали разогнать так, чтобы он улетел от Земли. Правда, ученым хотелось, чтобы он попал в Луну, но произошел промах, корабль улетел и не вернулся. Тут стоит вспомнить, что помимо Земли есть другие объекты с большой гравитацией: планеты, спутники, звезды. Солнце, например, притягивает куда сильнее нашей родной планеты. «Луна-1» в какой-то момент стала первым искусственным спутником Солнца. Необычной была судьба и третьей ступени ракеты-носителя «Сатурн-5». В 2002 году астрономы обнаружили неизвестный объект, который подлетал к Земле. Его приняли за астероид и даже дали ему имя J002E3. Однако анализ показал, что объект сделан из металлических сплавов и имеет гладкую, отполированную, покрытую краской поверхность. Он явно имел искусственное происхождение. Первая мысль, поразившая исследователей, – инопланетяне, но потом стало ясно, что состав краски на объекте совпадает с той, которой покрывали ракеты в США. Вычислив скорость и траекторию движения, ученые поняли, что к Земле вернулась часть носителя из американской пилотируемой лунной программы «Аполлон». В 1971 году в рамках миссии «Аполлон-12» третья ступень ракеты-носителя «Сатурн-5» разогнала корабль до второй космической скорости и отделилась за ненадобностью. Так как ее функция была выполнена, за ней никто не следил, и она улетела от Земли. Став спутником Солнца, ступень летала по орбите, расположенной близко от земной, пока в 2002 году снова не встретила нашу планету. Земля гравитацией уменьшила скорость «астероида» J002E3 и ненадолго сделала его своим спутником. Он вращался вокруг планеты, пока Солнце мощным притяжением снова не разогнало бывшую ступень и не приблизило к себе.

Орбита J002E3. NASA

В этой истории мы упомянули, что космические аппараты вращаются вокруг планеты, а не летают по прямой.

Если аппараты будут двигаться по орбите в виде круга или эллипса, то они смогут не падать на Землю, развивая так называемую первую космическую скорость.

Представим, что некое тело, например камень, летит по прямой, перпендикулярно поверхности планеты, на которой есть сквозное отверстие. У этой планеты нет атмосферы и других причин замедляться. Мы бросили камень вверх со скоростью ниже второй космической. Он будет улетать и постепенно тормозиться, пока его скорость не станет равна нулю. В какой-то момент камень остановится и, влекомый гравитацией, начнет падать. Сначала медленно, потом все быстрее и быстрее. У самой земли камень будет иметь ту же скорость, с которой мы его бросили. В реальной жизни он встретился бы в этот момент с грунтовой поверхностью и разбился, но у нас вымышленный мир с отверстием в планете, куда камень продолжит падать, двигаясь к центру. И вот он пролетел центр и за счет своей вновь набранной огромной скорости начинает от него удаляться и затем тормозиться.

Камень уже с другой стороны планеты поднимется на ту же максимальную высоту, что при подбрасывании в начале. Там его скорость снова станет равна нулю. Камень начнет опять падать и разгоняться. Он быстро пролетит центр планеты, вновь начнет от нее улетать и потом опять тормозиться. И так до бесконечности – падаем и разгоняемся, улетаем и тормозимся. А теперь будем бросать не вверх, а в сторону, параллельно горизонту.

По сути, будет происходить то же самое, только камень будет пролетать некоторое расстояние вбок. Чем сильнее мы бросаем, тем дальше предмет пролетает, пока не успевает упасть. При изначальной скорости в 7,9 км/с за время падения к центру Земли камень сможет преодолеть расстояние, равное радиусу планеты, и пролететь мимо, не врезавшись в ее поверхность. Правда, тогда Земля для камня будет с другой стороны. Он устремится к ней за счет гравитации, но пока будет лететь «вбок» к планете, успеет преодолеть еще один радиус Земли. Ведь за то время, когда он падал «вниз», успел скорость набрать, но потерял изначальную скорость «вбок». Пока второй радиус Земли преодолевается, скорость «вбок» растет, а вниз – убывает. И так по кругу. Камень постоянно падает, постоянно скорость теряет в одном направлении и увеличивает в другом, а расстояние от планеты при этом не меняется. Суммарная скорость во всех направлениях тоже не меняется.

Вот такой полет по кругу со скоростью не менее 7,9 км/с и называется космическим орбитальным полетом, а сама скорость – первой космической. Траектория движения тела называется орбитой. Причем направление движения спутника и направление скорости должно проходить по касательной к поверхности Земли. В истории космонавтики несколько раз не получалось разогнать ракеты в нужном направлении с достаточной скоростью. Тогда одна за одной шли ошибки, и исправлять их не было возможности, поскольку посадки производилась в незапланированных местах.

В 1960 году после Белки и Стрелки ученые собирались запустить на орбиту еще двух собак – Жульку и Жемчужину. Однако на последнем этапе разгона ракеты-носителя «Восток» из-за поломки двигателя третей ступени корабль отклонился от курса и полетел не вбок, а вверх. Он достиг высоты в 214 км и оказался за пределами плотной атмосферы. Но скорость была задана не в том направлении, и стало ясно, что корабль с собаками на орбиту не выйдет и очень скоро упадет на Землю. Аварийная система включила отделение спускаемого аппарата для безопасного приземления животных. В программу спуска входило падение на парашюте в герметичном отсеке корабля, а затем на высоте в 7 км – катапультирование отдельных, уже негерметичных, контейнеров. Посадка произошла в густой тайге на крайнем севере. В тот день на улице температура была –40 °C. Поиск собак из-за сложных условий затянулся на двое суток, и с четвероногими уже попрощались. Привязанные к контейнерам собаки не смогли бы куда-то убежать, а в неотапливаемом контейнере при такой температуре шансов выжить у них не было. Но на третий день, как это ни удивительно, собак нашли живыми. Оказалось, произошла еще одна ошибка. И очень кстати. Не сработала катапульта, и собаки остались в герметичном спускаемом аппарате, куда не проходил холодный воздух.

Меньше повезло макаке Скэтбэк. В 1961 году в США проводился испытательный старт ракеты-носителя «Атлас-Е» с обезьяной в катапультируемом контейнере. Главная цель полета состояла в испытании системы аварийного спасения. На этот раз пуск был удачным, но ошибка закралась в направлении срабатывания катапульты. Капсула с макакой приводнилась где-то в Тихом океане. В предполагаемом месте посадки Скэтбэка так и не нашли. Вероятно, контейнер вместе с обезьяной утонул.

Другой случай произошел с космонавтами Василем Лазаревым и Олегом Макаровым. В процессе старта ракеты-носителя «Союз» возникла аварийная ситуация. (Подробнее о причинах будет рассказано в главе «Равновесие».) Курс сильно изменился, и система аварийного спасения вовремя дала команду на отделение спускаемого аппарата. Техника не подвела, и посадка произошла в горах на границе с Китаем. Выйдя наружу, Лазарев и Макаров прежде всего развели костер, но не потому, что они замерзли. Космонавты решили, что горизонтальная скорость ракеты-носителя была уже велика и из-за этого они улетели в другую страну. По инструкции, если приземление космического корабля будет не на территории СССР, то следует ради сохранения государственной тайны сжечь всю имеющуюся документацию.

Скорость 7,9 км/с – это минимальная скорость для полета по кругу у поверхности Земли. Но чем дальше мы улетаем от планеты, тем меньше сила ее притяжения. Разумеется, и тем меньше нужна скорость, чтобы вращаться вокруг Земли в отдалении от нее. Чтобы улететь от Земли, сначала нужно выйти на минимальную орбиту, а только потом перелетать еще дальше. Затем добавить скорости, чтобы выйти на эллиптическую орбиту, причем такую, чтобы она пересекалась и с первой низкой, и со второй, более далекой круговой орбитой. При движении ко второй орбите скорость спутника будет падать. К моменту, когда он доберется до нужной высоты по овальной траектории, его скорость будет уже нулевая, и теперь, чтобы не падать назад, нужно разогнаться еще. Вроде бы пока спутник улетал вдаль, мы все время его разгоняли, но на выходе получилась более низкая скорость. Вот такой неочевидный парадокс. Чтобы двигаться быстрее, нужно тормозить, а чтобы двигаться медленнее, нужно ускоряться. Решение этого парадокса простое. Как только мы тормозимся, гравитация нас начинает ускорять, и наоборот, мы пытаемся разогнаться, и Земля тут же стремится вернуть нас к себе.

Этот парадокс не раз приводил к ошибкам. Так, у самого первого космического аппарата, который мог маневрировать и возвращаться на Землю, возникла неожиданная проблема. Это был беспилотный прототип корабля «Восток». В разной литературе он имел название «Спутник-4» или «Корабль-спутник-1». После выполнения своей задачи аппарат включил двигатели, чтобы вернуться на Землю. Однако вместо того, чтобы затормозиться и начать падать, аппарат затормозился, но полетел на более высокую орбиту. В космосе из-за инерции ускорение и торможение – это один и тот же процесс, и только от направления работы двигателя (по ходу или против движения) зависит, что именно у нас получится.

Интересно, что через два года спутник все же упал на Землю, причем на небольшой город Манитэвак в США. Никто не пострадал, а потом на месте падения даже установили табличку, увековечившую этот космический казус.

Более известный случай произошел с первой женщиной-космонавтом Валентиной Терешковой. В полете перед ней стояла задача совершить маневры и сымитировать посадку. Однако Валентине Владимировне сделать это сразу не удалось. Позднее она рассказала, что, вероятно, система управления была неверно запрограммирована. Вместо торможения последовал разгон и перелет на орбиту еще выше. Правда, инженеры никак слова Терешковой не подтвердили и уверенно заявляли, что управление кораблем работало нормально. Кроме этой проблемы у первой женщины-космонавта были и другие трудности в полете, из-за чего она нарушила несколько инструкций. Главный конструктор С. П. Королёв даже заявил, что больше в космос женщин запускать не будет, и свое обещание сдержал – в следующий раз женщина отправилась на орбиту уже после его смерти.

Подобные ошибки в полетах допускали и американцы. Корабль «Джемини-4» с астронавтами Эдвардом Уайтом и Джеймсом МакДивиттом на борту должен был после отделения ступени ракеты-носителя «Титан» сблизиться ней. Первая часть эксперимента была выполнена. Ступень отделилась, корабль находился недалеко, и относительная скорость разлетания была небольшая. Однако астронавты к основному заданию приступили не сразу. Ступень оказалась чуть ближе к Земле, чем было запланировано, а значит, скорость стала чуть больше. За несколько минут ступень улетела вперед. Командир МакДивитт решил догнать ее, но при включении двигателя на разгон ситуация только ухудшилась. Сообразив, что делает все не так, он начал тормозить. К тому моменту корабль зашел в тень Земли, и астронавты не могли разглядеть свою цель, да еще и расход топлива был непростительно большим. В итоге это задание так и не было выполнено.

Иногда знание о силе гравитации помогает решить некоторые проблемы. Так, сила притяжения планет позволяет увеличивать скорость межпланетных аппаратов. Например, зонды «Вояджер-1» и «Вояджер-2» смогли разогнаться за счет падения на Юпитер и Сатурн так, что улетели от Солнца в межзвездную среду. Интересен случай с американо-гонконгским спутником связи AsiaSat 3. При запуске аппарата в 1997 году двигатели разгонного блока смогли вывести аппарат на эллиптическую орбиту для перехода на круговую, более удаленную от Земли. Но когда повторно потребовалось совершить для этого разгон, двигатели проработали одну секунду вместо запланированных 130. Естественно, этого было недостаточно, чтобы выйти на расчетный уровень. AsiaSat 3 отделился от неисправного разгонного блока. На спутнике были собственные двигатели, правда, с куда меньшим запасом топлива. Ученые нашли гениальное решение: спутник отправили в совершенно другую сторону – к Луне.

Естественный спутник Земли своим притяжением начал разгонять искусственный. Это помогло значительно сэкономить топливо. Хотя аппарат получил достаточную и даже бо́льшую скорость, он стал перемещаться по траектории, напоминающей восьмерку, – то вокруг Земли, то вокруг Луны, но топливо еще оставалась. В какой-то момент, когда AsiaSat 3 двигался к Земле и пролетал мимо нужной орбиты, его слегка затормозили и вывели в расчетную точку.

Также гравитацию сейчас используют для геологических исследований. Разные точки на Земле имеют разную гравитацию. В силу этого спутники меняют свою орбиту, пусть и ненамного. Так что космические аппараты летают не совсем по кругу или эллипсу. Когда спутник летит над залежами тяжелых пород, например металлической руды, он слегка приближается к Земле, и наоборот, когда пролетает над пустотами, удаляется от нее. Для Луны этот эффект также оказался очень заметным и важным. Советская межпланетная станция «Луна-10», первый искусственный спутник Луны, за один оборот отклонялась на полкилометра от рассчитанной траектории. Правда, эта ошибка в расчетах сильно на миссии не сказалась, а как раз позволила открыть необычную особенность – гравитационную неоднородность ночного светила. Позже регионы с повышенной или пониженной силой притяжения стали называть масконами.

Карта гравитационных аномалий Луны. NASA

Американским астронавтам миссии «Аполлон-11» этот эффект немало потрепал нервы. Знаменитый «Орел» с Нилом Армстронгом и Баззом Олдрином смог прилуниться только в 6 км от предполагаемого безопасного места посадки. Астронавты заметно отклонились от плановой траектории, да еще возникли проблемы с компьютером. Удалось сесть буквально на последних 5 % выделенного для этого топлива. Во второй миссии такой опыт учли, и точность посадки составляла уже около 160 м. Так как Луна очень неоднородна, то и впоследствии случались ошибки в расчетах, хотя инженерам была известна суть проблемы. Например, американский спутник Луны PFS-2 должен был проработать полтора года, но из-за масконов упал уже на 35-й день.

Для расчета околоземных орбит куда более важно учитывать неравномерность распределения массы не в планете, а в спутнике, как искусственном, так и естественном. С Луной, например, уже произошло следующее: она теперь повернута к нашей планете одной стороной. Правда, тут еще играют роль приливы, которые Земля вызывает у своей спутницы. Известно, что Луна образует своим притяжением водяной горб на поверхности нашей планеты. Однако приливное взаимодействие работает и в другую сторону. Гравитация Земли тоже образует на Луне горб, причем из-за большей массы и эффект сильнее. Правда, воды на естественном спутнике нет, но силы было достаточно, чтобы вытянуть всю Луну (в те времена, когда она была молодая и пластичная). Образовавшийся горб на естественном спутнике имеет свое притяжение, и на него тоже действует гравитация Земли. Из-за этой деформации Луна начала замедляться. Этот процесс шел, пока Луна не оказалась повернута одной стороной к Земле.

Такие же проблемы не раз возникали и у ракет. Так, если космический аппарат был плохо сбалансирован, то он начинал вращаться. Земля сильнее притягивала к себе его более тяжелую часть. Жидкое топливо в силу различных причин перемещалось в баке. Это приводило к потере баланса и перевороту ракеты-носителя. Так, например, было при втором пуске ракеты-носителя Р-16 в 1960 году. В результате ее вторая ступень потеряла управление и улетела в сторону Китая. Для решения подобной проблемы сейчас повсеместно применяются механические демпферы колебаний жидкости.

Нечто похожее было на орбите у первого американского спутника «Эксплорер-1». Он имел вытянутую форму, напоминающую карандаш, и был снабжен четырьмя гибкими штыревыми антеннами. Вроде никакой жидкости внутри нет и центр масс сбалансирован. Тем не менее «Эксплорер-1» начал кувыркаться. Дело в том, что антенны были гибкие, и при раскрытии они начали по инерции качаться и менять положение космического аппарата. Аналогичное явление наблюдалось в 1967 году при запуске спутника «Космос-142», у которого было пять длинных гибких антенн.

Американский исследовательский астрономический инструмент Spartan-207 представлял собой надувную антенну. Он был запущен астронавтами с борта шаттла «Индевор». Сразу после того как спутник начал автономную работу, надувная часть аппарата стала растягиваться и наполняться газом. Из-за изменения формы центр масс сместился. Началось вращение, правда, со временем гравитация его остановила. Сегодня используется специальная стабилизация с помощью силы тяжести, но только на спутниках, которые должны быть ориентированы на Землю. У них есть небольшой груз на выдвижной штанге, благодаря которому более тяжелая часть аппарата разворачивается к планете.

Если спутники и приборы всегда чувствуют гравитацию, то люди в состоянии невесомости – нет. Вес и масса – разные понятия, пусть для обычного человека на Земле они проявляются одинаково. Масса в космосе никуда не пропадает, все предметы по-прежнему притягиваются друг к другу и к Земле. Вес же – это сила, действующая на опору, а так как в космосе опор нет, то и веса нет.

Без опоры сложно понять, где вверх, а где низ, где север, а где юг. Ориентиры в космосе есть – Земля, Солнце, звезды, но они могут быть от человека с любой стороны. Что-то похожее бывает в воде. Человек может плыть и горизонтально, и вертикально. Во время попытки первой в СССР стыковки у космонавта Георгия Берегового возникла связанная с этим серьезная проблема. Ему предстояло совершить стыковку корабля «Союз-3» с беспилотным кораблем «Союз-2». Оба аппарата зашли в тень Земли, и космонавт приступил к сближению. Соединение должно осуществляться при одинаковом положении аппаратов, при котором замки механизма захвата и стягивания могли бы попасть в соответствующие пазы. У стыковочной системы есть две антенны, которые помогают определять курс и положение кораблей. Для автоматического соединения нужно, чтобы антенны одного корабля были направлены к антеннам второго. Если есть отклонения, то включаются двигатели для поворота. Георгий Береговой управлял своим «Союзом» вручную и не заметил, что его корабль перевернут относительно другого. На автоматическом «Союзе» система это заметила, но вместо того, чтобы развернуться вниз, вращаясь по ходу движения, «Союз-2» повернулся поперек. Его стыковочный механизм отвернулся от корабля Берегового. Когда же оба аппарата вышли из тени на свет, космонавт заметил свою ошибку, но было уже поздно. Топлива для маневров не осталось. После этого всем космонавтам предписано было стыковаться только на дневной, освещенной стороне орбиты.

Глава 2

Температура

– Товарищи солдаты! Перед вами новый, секретный образец танка. Его броня способна выдержать температуру от –500 до +500 градусов по Цельсию…

– Товарищ майор! Температуры ниже –273 градусов по Цельсию не бывает! Ученые не знают таких температур!

– Повторяю: танк СЕКРЕТНЫЙ! Ученые могут и не знать!

Анекдот

В космосе холодно – чаще всего люди думают именно так, но это неверно. Температура – мера средней энергии движения молекул вещества, так что в космосе ее быть не может. Энергию в безвоздушном пространстве невозможно измерить, так как атомов и молекул там почти нет. Однако у космического аппарата в полете температура будет, и определяется она по энергии излучения. Солнце излучает свет, а все предметы в космосе поглощают его и при этом нагреваются. И, конечно, все предметы, которые имеют температуру, тоже светятся в разных диапазонах спектра, отдают энергию и остывают.

Ошибки, связанные с неверными расчетами температуры, появились уже при запуске второго спутника, на борту которого находилась первая пассажирка – собачка по кличке Лайка. Многие знают эту трагическую историю и считают, что сам полет в принципе являлся большой ошибкой. Спутник не был оборудован никакими системами посадки, даже не было парашюта. Лайка была обречена с самого начала. Были в полете и незапланированные технические проблемы. Предполагалось, что собака проживет в космосе десять дней, и в течение этого времени ученые будут следить за изменениями в организме в условиях невесомости. Однако температура в кабине стала медленно нарастать, и уже на седьмом часу полета Лайка погибла.

Как уже было сказано, в космосе под действием солнечного света космические корабли нагреваются. Представьте, что вы летом сидите внутри машины без окон и дверей под палящими лучами. Конечно, когда спутник двигается в тени Земли, он начинает охлаждаться. Чтобы температура была в норме, нужно держать баланс. У Лайки на борту никаких активных систем контроля температуры не было, только небольшой вентилятор. Кроме того, второй спутник вышел на такую орбиту, что в тень от Земли он попадал на гораздо меньший промежуток времени, чем находился на Солнце. Третий момент был связан с размерами. Спутник был небольшого размера, и все необходимое оборудование в него не влезало. Чтобы сэкономить место, некоторые системы были размещены в ступени ракеты-носителя, которую от спутника конструкторы решили не отделять. В итоге в космосе летал здоровенный 31-метровый цилиндр. Чем больше объект, тем больше на него будет падать света, тем быстрее он будет нагреваться. Три этих момента привели к тому, что температура в кабине, где находилась Лайка, быстро росла и не успевала снижаться до комфортного уровня. В результате собака погибла от перегрева. Конечно, она не выжила бы в любом случае, но эти ошибки приблизили ее гибель. Зато уже третий и последующие советские спутники имели специальные радиаторы, активную систему охлаждения, для них рассчитывались температурные нагрузки с учетом орбиты и размера аппарата.

Четвертый советский аппарат на орбите получил имя Корабль-спутник. Он уже умел поворачиваться к планете и Солнцу разными боками. Кроме того, входящая в его состав кабина, так называемый спускаемый аппарат, могла возвращаться на Землю. На борту имелись небольшие двигатели ориентации и тормозной двигатель для схода с орбиты. Положение в пространстве определялось по солнечному датчику и датчику горизонта. Оба работали с помощью света. В приборе был набор небольших окошек с разных сторон. В какое окошечко проходил свет – с той стороны Солнце. Датчик горизонта Земли работал по тому же принципу, но реагировал не на оптическое излучение, а на инфракрасное тепловое от Земли. Вот только этот прибор забыли защитить от перегрева. Вроде бы датчик был небольшой и не мог нагреться так, чтобы выйти из строя. И действительно прибор работал, но возник неожиданный эффект. Нагретая боковая стенка датчика горизонта, как любой нагретый предмет, стала сама светиться инфракрасным излучением. Чувствительный элемент в приборе решил, что это свет от Земли, и выдал команду на включение двигателей. Однако Земли с той стороны не было. Вместо того чтобы вернуться на планету, Корабль-спутник отлетел от нее.

Охлаждение тоже порой сильно мешает. Так, первая попытка развернуть на орбите активный спутник-ретранслятор провалилась из-за замерзания. Этот космический аппарат получил имя «Молния». Спутнику связи требовалось значительное количество солнечных батарей для выработки электрического тока под приемные и передающие устройства. Солнечные батареи разворачивались веером во все стороны. Только конструкция была такова, что провод от главного инструмента – антенны – всегда находился в тени. Гибкая на Земле изоляция из поливинилхлорида в космосе замерзла и затвердела. При попытке разворачивания антенны провод стал фиксатором и не позволил ей сдвинуться с места.

Первый аппарат, который должен был полететь на Венеру, не смог уйти с орбиты Земли. Его прозвали Тяжелым спутником, чтобы скрыть основное назначение аппарата и выдать неудачу за успех.

Причина, по которой аппарат не смог улететь на Венеру, – испарилась смазка электромеханического преобразователя напряжения. И те части, что должны были поворачиваться, из-за трения не повернулись. Тогда ученым было выдано задание разработать новые смазочные материалы.

Для решения конкретной проблемы преобразователь на дублере поместили в герметичный контейнер. На других аппаратах в качестве смазки использовали легкоплавкие металлы, такие как натрий или литий. При нагреве на солнечной стороне орбиты эти металлы плавятся и образуют тонкую жидкую прослойку для облегчения скольжения. Но это тоже оказалось не лучшим решением, так как при низкой температуре металлы, естественно, находились в твердом состоянии и трение только увеличивали.

В миссии «Джемини-4» был осуществлен выход в открытый космос через специальный люк. Когда же пришло время его закрыть, то у астронавта Джеймса МакДивитта с первого раза это сделать не получилось. Что-то мешало люку закрыться плотно. Только совместными усилиями вместе с Эдвардом Уайтом удалось выходной люк запечатать. Потом, уже на Земле, поняли, что в вакууме из-за нагрева, а потом охлаждения металла сварились вместе витки пружины.

Еще один забавный случай произошел в экспедиции Skylab 3. Астронавты Алан Бин, Оуэн Гэрриотт и Джек Лаусма летели к станции Skylab на корабле Apollo CSM-117. Внезапно они заметили нечто, пролетающее мимо за бортом. Джек Лаусма, который сидел справа ближе всех к иллюминатору, удивленно сообщил: «Я думаю, мимо окна прошел двигатель… Это выглядело точно как наш двигатель!»

На самом деле это была ледяная пробка. По всей видимости, в трубке, подающей топливо к двигателю, появилась течь. Жидкое горючее просачивалось в космос, налипало на стенки элементов двигателя (в первую очередь сопла) и замерзало. При подлете к станции началась подготовка к включению двигателя для маневрирования, и из-за этого кусок льда, повторяющий форму двигателя, оторвался и пролетел мимо астронавтов, изрядно их напугав. В конечном счете позже появилась так называемая твердая смазка из дисульфида молибдена.

Самые высокие тепловые нагрузки на космический аппарат возникают во время вхождения в атмосферу. От трения о воздух при движении на огромной скорости корабли нагреваются до 2000 °C. Для защиты спускаемых аппаратов инженеры используют несколько слоев теплоизолирующего материала под названием асботекстолит. По сути, это ткань, только очень плотная и жаропрочная. Асботекстолит плохо горит и практически не пропускает тепло. Даже если один или два слоя прогорят, это ни на что не повлияет. Для шаттла такой материал не годится, так как кораблям этого типа нужно сохранять вид самолета. Шаттл садится, используя крыло, и потому ему нужна особая аэродинамическая форма. В данном случае днище, крыло и фюзеляж многоразового корабля обклеиваются специальной керамической плиткой. Просветы между плитками заполняются теплоизолирующим клеем. Инженеры замечали, что после нескольких полетов американского аппарата плитка отваливается. Конструкторы недосчитывались иногда до трех сотен плиток. Но при этом ресурс тепловой защиты позволял успешно садиться. Затем инженеры восстанавливали плитку, и можно было лететь повторно.

Серьезная ошибка, связанная с температурой, произошла при катастрофе шаттла «Колумбия». Когда он стартовал, специалисты во время запуска обнаружили, что от топливного бака отделился кусочек пеноуретана. Этот материал тоже использовался для тепловой изоляции, но не корабля, а топливного бака. В этом баке хранился жидкий водород при температуре –259 °C. Чтобы горючее не нагревалось от тепла атмосферы, баки изолируют.

И если бы пеноуретан просто отвалился, ничего страшного бы не произошло, но он попал в левую консоль крыла и сломал на нем теплозащитную плитку. Для дальнейшего полета это было неважно, так как шаттл уже практически вылетел за пределы плотных слоев атмосферы. Однако нужно было еще возвращаться. Несколько специалистов забили тревогу, но руководители программы заверили, что эта ситуация не принесет катастрофических последствий. Как же они ошибались. Запросы на осмотр повреждений были отклонены. К слову сказать, на борту не было возможности починить теплозащиту собственными силами. Технология ремонта шаттла непосредственно в космосе существовала, но так и не была внедрена и ни разу не использовалась. Тем не менее варианты спасательной операции с использованием другого шаттла или Международной космической станции существовали. Все они были отброшены.

«Колумбия» стала возвращаться на Землю. Всего через пять минут после входа в атмосферу температура кромки крыла выросла до 1500 °C. В месте удара прогорела оболочка, и горячий газ стал проходить в полости внутри крыла. Силовой элемент, который придает крылу жесткость, – лонжерон – прогорел уже через несколько секунд. От набегающего потока воздуха крыло начало разрушаться изнутри. Через минуту стали отваливаться первые куски, а на второй минуте повреждения были уже катастрофическими. Шаттл развалился, большая часть его обломков сгорела, а некоторые разлетелись на сотни километров. На борту было семь астронавтов: Дэвид Браун, Рик Хазбанд, Лорел Кларк, Калпана Чаула, Майкл Андерсон, Уильям МакКул и Илан Рамон. Как нетрудно догадаться, никто не выжил. Семь человеческих жизней – цена одной из самых масштабных аварий в истории космонавтики.

Глава 3

Равновесие

Хочешь жить – умей вертеться.

Поговорка

В этой главе речь пойдет об ошибках в области статики. И тут многие могут задать вопрос – какая статика в космосе? Все школьные задачи из этого раздела физики предполагают наличие опоры, а о каких опорах может идти речь в условиях невесомости?

На самом деле статика – это наука о равновесии, балансе приложенных к телам сил и возникших моментов.

Ключевое понятие здесь – центр масс. Если есть сила, помимо силы притяжения, которая действует на тело не на линии центра масс, то тело получит вращательный момент и начнет крутиться. И это большая проблема для ракет. Двигатель должен создавать тягу вдоль линии центра масс. Это всегда было известно, но некоторые детали при подготовке к полетам все же упускались.

Так, на заре космонавтики инженеры ошиблись насчет того, в какое место ракеты прикрепить двигатель. К примеру, на американской ракете «Нелл» он был сверху. Логика проста – главное, что реактивная сила действовала на линии центра масс, а если двигатель выше него, то полет ракеты будет более устойчивым. Гравитация в случае чего сама развернет нижнюю часть к земле. Вот только горячие потоки газов, которые выходили из двигателя, стали прожигать корпус и разрушать ракету.

После этого основным местом расположения двигателей стал хвост. Но теперь возник вопрос равновесия. Ракета оказалась подобна качелям. Если одна из сторон тяжелее или на одну из сторон действует сила, то всю конструкцию будет уводить. Хотя это и большая проблема, но она стала и решением вопроса систем управления. Если мы хотим, чтобы ракета повернулась, достаточно подать на одну из ее частей увеличенный поток воздуха, который ее и отклонит.

Серьезные проблемы были у ракеты Н-1. Она разрабатывалась под лунную программу, была огромной (105 м высотой) и тяжелой (1880 т) и получила прозвище Царь-ракета. В ней была предусмотрена работа пяти ступеней, но в итоге даже вторая не запускалась. Как и Царь-пушка не стреляет, а Царь-колокол не звонит, Царь-ракета свое предназначение так ни разу и не выполнила. Дело в том, что для отрыва от Земли такой громадины требовалось минимум 28 двигателей на первой ступени. Это очень много. Гарантировать, что все они будут выдавать необходимую мощность, было нельзя. Если же один из двигателей создаст слишком большую силу, то возникнет разбалансировка. Чтобы решить эту проблему, инженеры добавили к 28 еще два. Если один из двигателей откажет, то выключится тот, что напротив него. Суммарная тяга уменьшится, но баланс будет удерживаться.

Во время первого испытательного пуска именно так и произошло. Двенадцатый двигатель от скачка напряжения отключился, и тогда двигателю 24 была дана команда тоже отключиться. Тем не менее, хотя ракету-носитель не начало разворачивать, баланса добиться не удалось. Н-1 стала ходить ходуном – то в одну сторону наклонится, то в другую. От таких колебаний начали рваться шланги топливопроводов, а за этим последовал разлив горючего, которое в свою очередь воспламенилось и привело к взрыву всей ракеты-носителя.

Второй пуск Н-1 отличался незначительно. Почти сразу отключился двигатель номер 8. За ним последовали и остальные. В итоге работающим остался только один, и он начал разворачивать ракету-носитель вдоль продольной оси. В итоге Н-1 упала плашмя прямо на стартовый стол космодрома. Последующий взрыв уничтожил всю стартовую площадку и даже сильно повредил соседнюю. Это происшествие на два года отложило все работы по ракете для пилотируемой лунной программы.

Третий старт – и снова проблемы с балансом сил, но на этот раз не по вине двигателей. Достаточно быстро после старта Н-1 начала крутиться вокруг продольной оси. Поначалу вращение было незначительным, но чем больше проходило времени, тем выше становилась скорость вращения. Масса ракеты-носителя огромна, и потому вернуть на место центр тяжести стандартным системам не удалось. Более того, раскручивание привело к разрушению креплений первой и второй ступеней. Памятуя о предыдущей ситуации, инженеры внесли изменения в программу работы. Теперь в течение 50 секунд после взлета двигатели не могли выключиться, чтобы успеть увести ракету-носитель от стартовой площадки. Интересно, что при первом пуске в момент, когда функционировало только 28 двигателей (без № 12 и № 24), раскручивающей силы не было.

Тем временем в США начал набирать популярность проект, сулящий инженерам большие проблемы в области статики: «Спейс Шаттл». Он представляет собой космический аппарат в виде самолета с реактивными двигателями, тяжелыми топливными баками, прикрепленными к днищу, и твердотопливными ускорителями по бокам. Даже если сбалансировать такую систему, то после старта топливо будет уходить из баков, они станут легче, а из-за этого сместится центр масс. Система начнет заваливаться примерно так, как человек, несущий на спине слишком тяжелый рюкзак. У обычных ракет такая проблема, разумеется, тоже может возникнуть. Чтобы ее избежать, их конструкция представляет собой цилиндр или конус (тело вращения) и имеет осевую симметрию. Центр масс в таком случае при истечении топлива будет только опускаться, но оставаться примерно на одной вертикальной линии. Баланс будет сохраняться. У шаттла нет полной симметрии, и реализовать эту простую идею не получится в принципе. У советского шаттла – корабля «Буран» – была похожая конструкция и похожая проблема. Центр масс в полете будет смещаться и выводить из равновесия всю систему.

Макет корабля «Буран»

Для решения проблемы инженеры изготовили двигатели подвижными. Они могли менять направление тяги. Также в конструкцию в хвостовой части был включен так называемый балансировочный щиток.

Главное отличие советского многоразового космического аппарата от его американского собрата – маршевые двигатели. В проекте «Буран» они размещены не на самом корабле, а на ракете-носителе «Энергия». Проблема с балансом произошла как раз при ее старте, но с другим космическим аппаратом – «Скиф-ДМ», который более известен под названием «Полюс». При взлете полезный груз перевесил, и «Энергия» немного завалилась. Это было скорректировано, и ракета-носитель со своим грузом на орбиту все-таки вышла, но на стартовой площадке возникли большие проблемы. Струя от двигателя после отклонения ракеты оказалась направлена не в специальный газоотводный лоток, а в сторону других важных элементов стартового комплекса. Так, например, горячий поток из двигателей своим давлением выбил огромною трехтонную герметичную дверь и создал немалые разрушения.

Интересно, что этого можно было избежать благодаря предложенной инженерами системе сопровождения, от которой все-таки отказались. Она была разработана для предотвращения заваливания ракеты-носителя из-за ветра. Так как воздушный поток должен иметь огромную силу, чтобы сдвинуть многотонную ракету, а шквалистых порывов не предвиделось, это устройство было убрано. Инженеры боялись, что механизм фиксации слишком сложен, и если в нем есть дефект, то неисправный держатель будет мешать пуску.

Опасения были обоснованными, так как в США как раз использовались подобные устройства и их поломки неоднократно происходили как с шаттлами, так и со стандартными ракетами-носителями. Крепление к стартовому комплексу было жестким с применением специальных взрывающихся болтов – пироболтов. Они держали ракету-носитель, не давая ей упасть. Во время пуска по команде пироболты должны были разрываться и тем самым освобождать ракету-носитель от стартового стола. Достаточно часто они не срабатывали.

Правда, к проблемам на старте это не приводило, так как ни один болт не смог бы удержать мощь рвущейся в небо ракеты и удержать ее. Однако при этом крепления вырывались с корнем, и их потом необходимо было восстанавливать.

В СССР для фиксации других ракет-носителей семейства Р-7 на стартовой площадке была разработана система «Тюльпан», которая используется по сей день. Она применяется для решения проблемы с балансом и представляет собой нечто напоминающее качели. Точка опоры с шарнирным механизмом, с одной стороны – стрела с полукруглым держателем, а с другой стороны – тяжелый груз-балансир.

Таких опор четыре штуки. Когда ракету-носитель устанавливают на эти конструкции, сама ракета своим весом прижимает их к себе, а они удерживают ее, не давая наклониться. Когда же двигатели набрали достаточно мощности, чтобы ракета не нуждалась в опоре, нагрузка со стрелы снимается, а тяжелый груз с другой стороны перевешивает и отклоняет опоры от ракеты. Действие напоминает раскрытие лепестков цветка, что и дало системе название «Тюльпан».

Однажды представители США оказались на космодроме Байконур и очень интересовались, как советским инженерам удалось добиться синхронного одномоментного отделения опор. Как видите, все просто: «Тюльпан» – полностью механическая система с минимумом деталей, которая работает на третьем законе Ньютона. Он гласит: сила действия равна силе противодействия.

Часть макета стартовой площадки космодрома Байконур с системой «Тюльпан»

Законы статики были применены и для решения других проблем космических аппаратов, не только при взлете, но и при посадке. Для пилотируемой лунной миссии разрабатывался посадочный модуль корабля. На Луне работают те же, что и на Земле, принципы и законы равновесия, так что их приходилось учитывать.

Для уменьшения объема и массы лунного модуля инженеры хотели сделать его с прямыми опорами по ширине космического корабля. Однако при проектировании выяснилось, что если человеку понадобится выходить из кабины, то системы управления и радиосвязи нельзя будет установить равномерно со всех сторон корабля, поскольку одну из стен придется отдать под «дверь». Кроме того, для датчика расстояния, который станет измерять дистанцию сближения с Луной в ходе посадки, нужно место за этими опорными стойками. В итоге оказалось, что бо́льшая масса лунного корабля сосредоточена с одной стороны. Уже во время испытаний на Земле выяснилось, что аппарат опрокидывается, так как одна его часть перевешивает другую. По законам статики тело, находящееся на поверхности, будет устойчивым, если проекция его центра масс оказывается в площади опоры. Соответственно, решение проблемы было простым – изготовить раздвижные стойки, чтобы центр масс не выходил за пределы увеличенной площади опоры. Выводы были сделаны и для лунного скафандра, с которым тоже могла возникнуть проблема опрокидывания, – инженеры спроектировали специальный обруч. У одежды космонавта, чтобы ходить в безвоздушных условиях, должны быть системы жизнеобеспечения. Логично, что они будут располагаться за спиной, словно в рюкзаке туриста. Вот только скафандр для хождения по Луне под названием «Кречет» имеет массу более 100 кг. Конечно, на естественном спутнике Земли сила тяжести меньше в шесть раз, соответственно, и в шесть раз меньше вес, но с учетом того, что сам космонавт тоже будет легче, возник вопрос, не будет ли он опрокидываться. На всякий случай в комплект скафандра был включен большой обруч вокруг пояса, который не дал бы упасть на спину. Вот только советский космонавт в специально оборудованном скафандре на Луне так и не побывал. Зато там были американские астронавты, которые показали, что опасения наших инженеров были не напрасны. Особенно жаловались на трудности с балансом астронавты миссии «Аполлон-15». Они были первыми людьми, что работали на Луне три дня. Кроме того, в их программу входило много экспериментов с геологическими (селенологическими) образцами. Чтобы собрать для этого материал, астронавтам требовалось приседать, из-за чего смещался центр тяжести и нарушалось равновесие.

Скачать книгу