Нелокальность: Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего бесплатное чтение

Джордж Массер
Нелокальность: Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего


Редактор В. Ионов

Научный редактор Д. Горбунов, доктор физ. – мат. наук

Переводчики В. Ионов, М. Томс

Руководитель проекта И. Серёгина

Корректоры М. Миловидова, С. Чупахина

Дизайн обложки Ю. Буга

Компьютерная верстка А. Фоминов

Иллюстрация на обложке Shutterstock.com


© George Musser, 2015

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2018



Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека «Династия». Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».

Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель». Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте ziminbookprojects.ru.

Посвящается Талии и Элиане


Введение: воздушный замок Эйнштейна

Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод.

В обыденном английском языке locality[1] – это немного вычурное слово для обозначения района, города или другого места. Но его первоначальное значение, появившееся в XVII в., относится к самому понятию «место». Оно означает, что у всего есть место. Вы всегда можете указать на предмет и сказать: «Вот он». Если этого сделать нельзя, должно быть, предмет, на самом деле не существует. Если преподаватель спросит, где ваше домашнее задание и вы ответите, что нигде, то вам придется представить оправдания.

Мир, в котором мы живем, наделен всеми признаками локальности. У нас сильно развито чувство места и чувство связи между местами. Мы ощущаем боль разлуки с теми, кого любим, и беспомощность от того, что находимся слишком далеко от чего-то, на что хотим повлиять. Вместе с тем квантовая механика и другие разделы физики наводят на мысль о том, что на более глубоком уровне может не быть места и расстояния. Физические эксперименты позволяют связывать судьбы двух частиц таким образом, что они ведут себя, как пара волшебных монет: сколько бы вы их ни подбрасывали, на них всегда выпадает что-то одинаковое – орел или решка. Их поведение согласовано несмотря на то, что в пространстве они не связаны никакими силами. Эти частицы могут разлететься по разным концам Вселенной и все же вести себя в унисон. Такие частицы нарушают принцип локальности. Пространство им не помеха.

Очевидно, природа нашла особое и тонкое равновесие: в большинстве случаев она подчиняется локальности, как это и должно быть, раз мы существуем, но все же намекает на то, что она нелокальна в своих глубинных основах. Именно данное противоречие я буду исследовать в этой книге. Для тех, кто ее изучает, нелокальность – мать всех физических загадок, причастная к широкому спектру головоломок, с которыми сталкиваются физики в наши дни: это не только странное поведение квантовых частиц, но и судьба черных дыр, происхождение космоса и присущее природе единство.

Для Альберта Эйнштейна локальность была одним из аспектов более широкого философского вопроса: почему мы, люди, вообще можем заниматься наукой? Почему мир таков, что мы можем понять его устройство? В знаменитом эссе 1936 г. Эйнштейн написал, что самое непостижимое в этом мире – это его постижимость. На первый взгляд такое утверждение само по себе кажется непостижимым. Вселенная не то что бы очень логична. Она сумасбродна и капризна, полна путаницы и произвола, несправедливости и несчастий. Многое из происходящего не поддается логике (особенно если дело касается романтических отношений или вождения). И все же на фоне этих необъяснимых событий с обнадеживающей регулярностью проступают законы этого мира. Солнце встает на востоке. Предметы падают, если их уронить. После дождя появляется радуга. Люди идут в физику в уверенности, что это не просто приятные исключения из анархии жизни, а проблески лежащего в основе порядка.

Эйнштейн полагал, что физики на самом деле не имеют права ожидать этого. Мир не обязан быть упорядоченным. Он не должен подчиняться законам; при других обстоятельствах он бы мог быть совершенно беспорядочным. Когда друг Эйнштейна спросил в письме, что он имеет в виду, говоря о постижимости, тот ответил: «A priori следует ожидать, что мир хаотичен и не может быть понят умом каким-либо образом».

Хотя Эйнштейн и говорил, что постижимость – чудо, которое мы никогда не поймем, это не помешало ему попытаться его понять. Всю свою профессиональную жизнь он посвятил формулированию того, что же именно во Вселенной делает ее постижимой, и его размышления задали курс современной физике. Например, он понял, что внутренние механизмы природы обладают высокой степенью симметрии, т. е. выглядят одинаково, если посмотреть на мир с другой точки зрения. Симметрия привносит порядок в сбивающее с толку разнообразие частиц, открытых физиками; целые группы частиц одного вида являются, в каком-то смысле, зеркальными отражениями друг друга. Но среди свойств мира, дающих нам надежду понять его, Эйнштейн не раз возвращался к локальности как к самому важному из них.

Локальность – это тонкое понятие, которое может означать разное для разных людей. Для Эйнштейна она имела два аспекта. Первый аспект он называл «отделимостью», подразумевая, что можно отделить любые два предмета или части одного предмета друг от друга и рассматривать их по отдельности, по крайней мере в принципе. Можно взять стулья из столового гарнитура и поставить их в разных углах комнаты. Они не прекратят свое существование и не потеряют никаких качеств, таких как размер, стиль, удобство. Свойства набора в целом определяются свойствами составляющих его стульев; если на каждом стуле умещается один человек, то четыре стула позволят сесть четверым. Целое является суммой его составляющих. Второй аспект, который отметил Эйнштейн, известен как «локальное действие»: он гласит, что объекты взаимодействуют только при столкновении друг с другом или через чье-то посредство, позволяющее преодолеть пространство между ними. На расстоянии мы не можем повлиять на другого человека, для этого нужно приблизиться к нему, дотронуться, заговорить, похлопать по плечу, т. е. войти в прямой контакт или отправить кого-то или что-то для выполнения этой задачи. Современные технологии не нарушают этого принципа – они просто задействуют новых посредников. Телефон преобразует звуковые волны в электрические сигналы или радиоволны, которые распространяются по проводам или в эфире и преобразуются обратно в звуковые волны на другом конце. На каждом этапе этого пути что-то должно напрямую контактировать с чем-то еще. Если в проводе есть хотя бы крошечный разрыв, сообщение распространится так же далеко, как крик на Луне, лишенной атмосферы. Проще говоря, отделимость определяет сущность объектов, а локальное воздействие – их поведение.

Эйнштейн обозначил эти принципы в своей теории относительности. Так, теория относительности гласит, что ни один материальный объект не может двигаться быстрее света. Без такого ограничения скорости объекты могли бы двигаться бесконечно быстро и расстояние потеряло бы свой смысл. Все силы природы должны преодолевать пространство, а не перепрыгивать его, как раньше считали физики. Таким образом, теория относительности дает нам меру отдаленности отдельных объектов и обеспечивает их отличимость друг от друга.

В зависимости от образа мышления теория относительности и другие законы физики воспринимаются либо как убедительный внутренний порядок Вселенной, либо как занудный набор правил вроде тех, что насаждают авторитарные родители, пытающиеся лишить вас всех радостей в жизни. Как замечательно было бы взмахнуть руками и полететь, но, извините, это невозможно. Мы могли бы решить мировые проблемы, создавая энергию, увы, физика не позволяет и этого – нам дозволено лишь преобразовывать энергию из одного вида в другой. И вот теперь появляется локальность, еще один драконовский закон, разрушающий наши мечты о сверхсветовых космических кораблях и экстрасенсорных способностях. Локальность убивает свойственную болельщикам надежду на то, что, скрестив пальцы или проревев какой-нибудь мудрый комментарий из своего кресла, они могут поддержать свою любимую команду на поле. К сожалению, если ваша любимая команда проигрывает, а вы серьезно хотите поддержать ее, вам придется встать и добраться до стадиона.

И все же локальность нужна для нашего собственного блага. На ней держится наше самоощущение, уверенность в том, что наши мысли и чувства принадлежат нам самим. При всем уважении к Джону Донну[2] каждый человек – действительно остров, сам по себе. Мы изолированы друг от друга морями пространства, и мы должны быть благодарны за это. Если бы не локальность, мир обладал бы магическими свойствами, причем не в хорошем, диснеевском смысле. Болельщикам, желающим иметь возможность влиять на игру, не выходя из дома, пришлось бы осмотрительно относиться к своим желаниям, поскольку болельщики соперников, надо думать, тоже имели бы такую возможность. Миллионы домоседов по всей стране пытались бы обеспечить своим кумирам преимущество, лишая игру смысла: она превратилась бы в противоборство воли болельщиков, а не талантов на поле. Не только спортивные состязания, но и весь мир стал бы враждебным для нас. В мире без локальности внешние для нас объекты могли бы проникать внутрь тела (для этого им не нужно было бы даже преодолевать кожу), и мы потеряли бы способность контролировать свое внутреннее состояние. Мы бы слились с окружающей средой. А это, по определению, и есть смерть.

Сосредоточившись на локальности как на ключевом необходимом условии для понимания природы, Эйнштейн придал единую форму философским и научным идеям, накопленным за 2000 лет. Для древнегреческих мыслителей, таких как Аристотель и Демокрит, локальность сделала возможным рациональное объяснение. Когда объекты влияют друг на друга только при прямом контакте, можно объяснить любое событие, дав последовательное описание того, как «то ударило это, которое, в свою очередь, столкнулось с тем, а оно, в свою очередь, отскочило от чего-то еще». Каждое следствие имеет причину, связанную с ним цепью событий, которая неразрывна во времени и пространстве. Нет такого, когда остается лишь всплеснуть руками и пробормотать: «А затем происходит чудо». Греческие философы возражали не столько против чуда – они не были атеистами, – сколько против бормотания. Они считали, что даже боги должны оказывать свое влияние по ясным и объяснимым правилам. Локальность необходима не только для тех типов объяснений, которые ищут философы и ученые, но также и для методов, которыми они пользуются. Они могут отделять объекты друг от друга, постигать их по одному и шаг за шагом строить картину мира. Перед ними не стоит невыполнимая задача восприятия всего сразу.

В 1948 г., к концу своей жизни, Эйнштейн резюмировал значение локальности в коротком эссе: «Физические понятия относятся к реальному внешнему миру… к вещам, которые претендуют на “реальное существование”, независимое от наблюдателя… Эти объекты претендуют на существование, независимое друг от друга, поскольку они “находятся в разных частях пространства”. Без такого предположения о взаимно независимом существовании… пространственно удаленных предметов, предположения, которое берет начало в обыденном мышлении, физическое мышление в известном нам смысле было бы невозможным. Также невозможно представить, как можно сформулировать и проверить физические законы без такого четкого разделения».

Локальность имеет такое повсеместное значение потому, что она является самой сутью пространства. Под «пространством» я подразумеваю не только «космос», вотчину космонавтов и астероидов, но и пространство между нами и всем тем, что находится вокруг нас, пространство, которое занимает наше тело и все остальное, пространство, в котором мы замахиваемся бейсбольной битой или делаем замеры с помощью рулетки. Направляете ли вы телескоп на планеты или на окна соседей, вы смотрите через пространство. Для меня красота пейзажа заключается в головокружительном ощущении, будто охватываешь пространство, это что-то вроде чувства, возникающего, когда смотришь с большой высоты вниз, только в этом случае смотришь в горизонтальном направлении и понимаешь, что те маленькие точки на другой стороне долины действительно там находятся и что можно их потрогать, были бы руки достаточной длины.

Как давно поняли художники, пространство – это не отсутствие чего-то, а некая сущность сама по себе. То, что находится между предметами на холсте, так же важно для композиции, как и сами предметы. Для физика пространство – это холст для физической реальности. Практически все свойства наших физических сущностей являются пространственными. Мы занимаем место. У нас есть форма. Мы двигаемся. Наши тела – это замысловатый танец клеток и жидкостей в пространстве. Наши мысли – это импульсы, быстро двигающиеся вдоль траекторий в пространстве. Любое взаимодействие, которое происходит между нами и остальным миром, проходит через пространство. Живые существа – это сущности, а что такое сущность, если не часть Вселенной, которая получает свою неповторимую индивидуальность в силу того, что занимает определенную область пространства?

Физика берет начало из исследования того, как предметы движутся в пространстве, и пространство определяет практически все величины, с которыми физика имеет дело: расстояние, размер, форма, положение, скорость, направление. Другие свойства мира могут не казаться пространственными, но это не так: цвет, например, соответствует длине световой волны. Всего несколько свойств материи, таких как электрический заряд, не имеют известного пространственного объяснения, и даже они выдают себя, изменяя направление движения в пространстве. При взгляде на предмет все, что мы видим, в конечном счете связано с пространством, поскольку определяется взаимным расположением частиц; частицы сами по себе – всего лишь мельчайшие крупицы. Функция следует из формы. Даже непространственные понятия превращаются в пространственные в умах физиков: время становится осью на графике, и законы природы действуют в абстрактных пространствах возможностей. Даже такой авторитет, как Иммануил Кант, идеи которого оказали значительное влияние на Эйнштейна, считал, что невозможно представить мир без пространства.

Какая ирония судьбы в том, что главный поборник локальности стал и ее ниспровергателем. Хотя больше всего он известен миру как создатель теории относительности, Нобелевскую премию Эйнштейн получил за вклад в разработку квантовой механики, теории, описывающей поведение атомов и субатомных частиц. На самом деле физики считают, что квантовая механика описывает поведение всего, хотя характерные для нее эффекты сильнее всего проявляются на очень малых масштабах. Теория выросла из догадки Эйнштейна и его современников о том, что атомы и частицы не могут быть просто уменьшенными версиями тех вещей, которые мы видим вокруг себя. Если бы они были таковыми – то есть вели себя в соответствии с классическими законами физики, сформулированными Исааком Ньютоном и другими физиками, – мир бы самоуничтожился. Атомы сколлапсировали бы, частицы взорвались, а лампочки сожгли бы нас смертельным излучением. Тот факт, что мы еще живы, означает, что материя должна подчиняться какому-то новому набору законов. Эйнштейн с энтузиазмом принимал необычное: на самом деле, несмотря на (несправедливо) заработанную в дальнейшем репутацию ретрограда и защитника классической физики, он неизменно оказывался впереди всех в понимании непривычных свойств квантового мира.

Среди этих свойств была нелокальность. Квантовая механика предсказывает, что две частицы могут стать побратимами. Из-за отсутствия связывающего механизма частицы вроде бы полностью автономны, и все же воздействие на одну из них означает воздействие и на вторую, как будто бы расстояние для них ничего не значит. Научный метод «разделяй и властвуй» в их случае не работает. Частицы имеют совместные свойства, которые нельзя обнаружить, если смотреть на каждую из них по очереди, – нужно наблюдать за ними одновременно. Наш мир опутан сетью таких, казалось бы, мистических взаимосвязей. Атомы вашего тела сохраняют связь с каждым человеком, которого вы любили, – что звучит романтично, пока вы не осознаете, что связь есть и с тем странным типом, который коснулся вас мимоходом на улице.

Частицы в противоположных концах Вселенной не могут быть действительно связанными, не так ли? Эта идея показалась Эйнштейну глупостью, возвратом к донаучным представлениям о магии. Любая теория, подразумевающая возможность такого «призрачного действия на расстоянии», рассуждал он, должно быть, что-то упускает из виду. Он полагал, что мир на самом деле локален и просто кажется нелокальным, и искал более глубокую теорию, которая бы обнажила скрытый механизм, позволяющий двум частицам действовать в унисон. Эйнштейн так и не нашел такую теорию и признал, что, возможно, это он сам что-то упускает. Возможно, нет никакого скрытого механизма. Принцип локальности – а вместе с ним и наше понимание пространства – может быть ошибочным. За несколько месяцев до кончины Эйнштейн размышлял о том, что могло значить для нашего понимания мира исчезновение пространства: «Тогда ничего не останется от моего воздушного замка, включая теорию тяготения, как, впрочем, и от всей современной физики».

Что было действительно пугающим, так это оптимизм его современников. Для них нелокальность была пустяком. Причины их пренебрежительного отношения были трудны для понимания, они и до сих пор являются предметом спора для историков, но, пожалуй, самое мягкое объяснение этому – прагматизм. Вопросы, беспокоившие Эйнштейна, просто не казались существенными для практического применения квантовой теории. Только в 1960-х гг. до нового поколения физиков и философов наконец дошли опасения Эйнштейна. Проведенные ими эксперименты показали, что нелокальность – это не теоретический курьез, а правда жизни. Но даже тогда большинство их коллег уделяли нелокальности мало внимания – именно поэтому я практически случайно наткнулся на эту тему, будучи аспирантом.

Однако в последние 20 лет позиция физического сообщества значительно изменилась. Нелокальность захлестнула господствующие течения физики и вышла далеко за пределы феномена, открытого Эйнштейном. Как популяризатор науки и редактор я не раз разговаривал с учеными из разных сообществ, с теми, кто изучает всё – от субатомных частиц до черных дыр и крупномасштабной структуры Вселенной. И раз за разом я слышал примерно следующее: «Ну, это странно, и я бы не поверил в такое, если бы не видел этого сам, но, похоже, мир просто обязан быть нелокальным». Исследователи вели себя подобно тем самым согласованным частицам в разных концах Вселенной: зачастую не зная друг друга, они тем не менее приходили к одним и тем же выводам.

Если Эйнштейн считал, что нелокальность имеет привкус волшебства, то, может быть, новые исследования дают основания верить в паранормальные явления? Некоторые так и решили. В последние десятилетия ряд ученых предполагал, что нелокальные связи между частицами могли бы наделить вас сверхъестественными способностями. Например, если бы частицы вашего мозга находились в запутанном состоянии с частицами мозга вашего друга, то, возможно, вы могли бы общаться друг с другом с помощью телепатии. Другой крайностью было то, что связанные с нелокальностью намеки на паранормальное заставили многих ученых отвергнуть всю эту область исследований как чепуху. На самом деле никакой связи здесь нет. Ни одно из свидетельств экстрасенсорных способностей не выдержало проверки, а обсуждаемые виды нелокальных явлений имеют слишком слабо выраженные эффекты, чтобы соединять умы или дистанционно влиять на исход бейсбольных матчей.

Некоторые расстраиваются из-за этого. Напрасно. Настоящее волшебство мира состоит в том, что он не волшебный. По причинам, которые были изложены ранее, локальность – необходимое условие нашего существования. Любая нелокальность должна оставаться надежно спрятанной и возникать только при определенных условиях, иначе наша Вселенная была бы непригодна для жизни. Нелокальность дает нам нечто гораздо более впечатляющее, чем паранормальные явления: возможность взглянуть на истинную природу физической реальности. Если воздействия могут пересекать пространство так, словно его на самом деле нет, то из этого следует естественный вывод: пространства на самом деле нет. Теоретик из Колумбийского университета Брайан Грин, который занимается теорией струн, написал в своей книге 2003 г. «Ткань космоса» (The Fabric of the Cosmos), что нелокальные связи «показывают нам, что пространство совсем не такое, как мы думали раньше». Какое же оно тогда? Исследование нелокальности может нам подсказать. Многие физики теперь считают, что пространство и время обречены: они являются не фундаментальными элементами физического мира, но следствием первозданного состояния отсутствия пространства. Пространство похоже на ковер с обтрепанными краями и залысинами. Подобно тому как разглядывание залысин позволяет нам увидеть основу ковра, изучение проявлений нелокальности может пролить свет на то, как пространство строится из беспространственных составляющих.

«Я всегда думал и продолжаю думать, что открытие и подтверждение нелокальности является самым поразительным открытием в физике ХХ в.», – говорит Тим Модлин, профессор Нью-Йоркского университета и один из ведущих философов физики в мире. В статье конца 1990-х гг. он резюмировал ее следствия: «Мир – это не просто набор отдельно существующих локализованных объектов, связанных внешне только пространством и временем. Что-то более глубокое, более таинственное связывает воедино ткань мироздания. Мы только-только достигли того момента в развитии физики, когда можно начать размышлять о том, что бы это могло быть».

В то же время именно потому, что так много стоит на кону, другие ученые говорят мне, что нелокальность не может быть правдой, что те или иные нелокальные явления наверняка окажутся ошибкой толкования и что сваливать их все в одну кучу – это неправильно. Физики достигли больших успехов, используя пространственное мышление, и не откажутся от него так просто. Один скептик, Билл Унру, преподаватель физики в Университете Британской Колумбии, думает примерно так же, как думал Эйнштейн: «Если мне нужно знать все о Вселенной, чтобы знать хоть что-нибудь, если мы воспринимаем нелокальность серьезно, если то, что происходит здесь, зависит от того, что происходит со звездами, то физика становится практически невозможной. Что делает физику возможной, так это то, что мир допускает разделение на части. Если нам действительно нужно смотреть на звезды, чтобы увидеть будущее, то я не понимаю, как можно продолжать заниматься физикой».

Помимо того что ей присуще очарование, нелокальность также является идеальным объектом для научных споров. Разногласия между такими людьми, как Модлин и Унру, исключительно интеллектуальны. Отсутствие экономических интересов не позволяет заподозрить скрытые мотивы. Здесь нет лоббистов из Exxon Mobil[3], бродящих по коридорам. Оппоненты не имеют явной личной неприязни, многие из них являются друзьями. Математика довольно проста, экспериментально полученные данные неоспоримы. И все же споры тянутся поколениями. В наши дни ученые повторяют аргументы, которые звучали еще в спорах Эйнштейна и его противников в 1920–1930-х гг. Почему так происходит? И что делать всем остальным, когда эксперты не могут прийти к согласию?

Рассмотрим наиболее известный научный спор недавнего времени: изменение климата. Большинство климатологов считают, что человеческая деятельность приводит к потеплению на планете, противники этой позиции до сих пор оспаривают это, и их доводы могут вызывать замешательство у тех, кто читает газету или бродит по сети. У большинства людей нет времени на то, чтобы стать экспертами по моделям общей циркуляции или измерениям длинноволнового излучения. Но одно мы можем понять точно: в практическом смысле спор можно разрешить независимо от того, продолжают ли эксперты спорить. В случае с изменением климата общественность уже знает все, что ей нужно. Существует немалый риск климатической катастрофы, и его снижение иначе как благоразумием не назовешь: чтобы понимать необходимость страхования от пожара, не нужно быть кандидатом наук по теории горения. Так же и с нелокальностью. Даже самые несгибаемые скептики теперь признают, что происходит что-то очень странное, что-то, заставляющее нас выходить за рамки самых глубоко укоренившихся представлений о пространстве и времени, что-то, требующее постижения, если мы хотим узнать, как возникла Вселенная и как физический мир образует одно совершенное целое.

Восприятие обществом – это не просто побочный вопрос для науки. Оно напрямую имеет отношение к делу, поскольку в изменчивой исследовательской среде, где идеи борются друг с другом и нет ничего абсолютно ясного, традиционные, с точки зрения сторонних наблюдателей, способы функционирования науки, т. е. использование фактов, логики, уравнений, экспериментов, недостаточны для прекращения прений. Ученым приходится полагаться на чутье, образные связи и суждения об адекватности их фундаментальных принципов, основанные на субъективной оценке. Решив исследовать нелокальность, я рассчитывал неспешно прогуляться на природе, но оказался в причудливом тропическом лесу, полном блестящих листьев, извилистых тропок и соблазнительных пристанищ, кишащих огненными муравьями. Одни ученые испытывают трепет перед бунтарской идеей поставить под вопрос одно из старейших и глубочайших понятий в науке. Другие содрогаются от подобного безумства. Если локальность нарушается, значит ли это, что наш мир в конечном счете непостижим, как опасался Эйнштейн, или смогут ли физики найти какой-то другой способ его постижения?

1. Многообразие видов нелокальности

Лаборатория Энрике Гальвеза в Университете Колгейта размером примерно с гараж на пару машин и, как и большинство гаражей, забита всякой всячиной. Вдоль стен расположены столы, заставленные ящиками с инструментами, неисправными в той или иной мере электронными устройствами, а слева от входа находится самый часто используемый аппарат – кофеварка. В середине комнаты стоит пара оптических скамей: очень прочные стальные платформы размером с обеденный стол, покрытые сетью отверстий для закрепления зеркал, призм, линз и фильтров. «Как будто снова играешь в конструктор», – говорит Гальвез, веселый перуанец, который сильно напоминает Эла Франкена[4].

Если кто и взял на себя задачу показать миру, как выглядит квантовая запутанность, так это Гальвез. Запутанность – это наиболее известный тип нелокальности из тех, что наблюдались современными физиками, и именно он пугал Эйнштейна. Слово entanglement («запутанность») в английском языке имеет коннотации романтической связи: особые и, возможно, мучительные взаимоотношения. Две запутанные друг с другом частицы не в прямом смысле сплетаются, как клубки пряжи, скорее между ними существует особая связь, для которой пространство не имеет значения. Вы можете наблюдать это явление, создавая, отклоняя и измеряя лучи света – не обычные лучи от фонарика, а пучки запутанных фотонов. В первых версиях этого эксперимента, проведенных в 1970-х гг. в Беркли и в Гарварде, были задействованы хитроумные изобретения «безумных ученых» вроде раскаленных печей, штабелей оконных стекол и грохочущих телетайпов. Гальвез воспользовался Blue-ray лазерами и оптоволокном для того, чтобы уменьшить размеры установки, так что теперь она умещается на школьной парте.

Большинство знакомых мне физиков-экспериментаторов в глубине души изобретатели, которых хитроумные устройства приводят в восторг не меньше, чем тайны Вселенной. Один экспериментатор из Центра квантовых технологий в Сингапуре сказал мне, что в его лаборатории студенты-новички должны пройти особый тест. В нем нет ни одного вопроса по физике. Студентам предлагают рассказать, случалось ли им разобрать какой-нибудь бытовой прибор и собрать его обратно до того, как домашние узнавали об этом. Похоже, что стиральные машины пользуются в этом смысле успехом. Что касается Гальвеза, то его детской страстью была химия: ее взрывоопасная разновидность. Он провел детство в Лиме, в районе, где жили люди среднего достатка, и однажды с друзьями попытался сделать порох. У них получилась только дымовуха, что, возможно, и к лучшему. «Получилось намного веселее, чем какие-то взрывы, – вспоминает Гальвез. – Наверное, это было не очень безопасно».

По словам Гальвеза, он стал поборником нелокальности практически случайно. Как и большинство физиков, он не слишком задумывался об этом явлении до конца 1990-х гг., когда один коллега заглянул к нему в кабинет с весьма волнующими новостями: австрийский физик Антон Цайлингер и его товарищи по лаборатории использовали запутанность для телепортации частиц из одного места в другое. Телепортация?! Ни один поклонник «Звездного пути»[5] не мог остаться равнодушным. Хотя группа Цайлингера телепортировала всего лишь отдельные фотоны, а не десантный отряд космических кораблей, восторг от этого события затмил все, что было связано с дымовухами. Причем методика была простой. Предположим, вы хотите телепортировать фотон из левой половины лаборатории в правую. Сначала вы подготавливаете телепорты, создавая пару запутанных фотонов и помещая один в одной половине лаборатории, а другой во второй половине. После этого вы берете фотон, который хотите перенести, и организуете его взаимодействие с левой частицей. Поскольку запутанные частицы находятся в особой связи друг с другом, это взаимодействие сразу же проявляется справа, что позволяет фотону там воссоздаться. (Некоторые придираются к словам и спорят, действительно ли можно называть этот процесс телепортацией. Они считают, что по смыслу это больше похоже на «кражу личности». Экспериментаторы лишают левую частицу ее свойств и навязывают их правой частице. Но частица – это всего лишь сумма ее свойств, так что эти два описания эквивалентны.)

У Гальвеза с коллегой уже имелось все необходимое оборудование, и вскоре они тоже перемещали частицы по своей лаборатории. «Мы пытались понять телепортацию просто ради интереса», – говорит Гальвез. Другой коллега предложил им придумать такой эксперимент с запутанностью, который могли бы повторить даже слушатели курса физики для лириков. В нем не происходит телепортации, но выполняется первый и самый важный этап этого процесса, а именно: создаются и распределяются запутанные фотоны. Хотя установка кажется теперь очень простой, группа ученых билась над ней два года. Гальвез организовал летние семинары для ALPhA, ассоциации физического образования, чтобы показать преподавателям, как проводить этот эксперимент, а также опубликовал свои инструкции онлайн, чтобы любители делать все своими руками могли создавать запутанные частицы у себя в подвалах. Бывший президент ALPhA Дэвид ван Баак восклицает: «Мы давно прошли ту стадию, когда [изучение] запутанности было исключительно делом университетов. Оно становится массовым».

В тот день, когда я посетил лабораторию Гальвеза, одна из оптических скамей была отдана под эксперимент по изучению запутанности, цель которого заключалась не только в демонстрации запутанности, но и в исследовании возможной причины этого явления. Мне кажется, что установка по существу является высокотехнологичной машиной Руба Голдберга[6] для подбрасывания монет. Они падают орлом или решкой в зависимости от того, проходят через фильтр или нет. Система настроена таким образом, что вероятность пройти его – 50 на 50, как в случае подбрасывания правильной монеты. В сущности, план такой: создать пару таких монет, подбросить их одновременно, посмотреть, какой стороной они упадут, создать еще одну пару, подбросить ее и т. д. Повторить опыт несколько тысяч раз и собрать статистику. Кажется, что мы тратим много усилий ради предсказуемого результата, пока не вспомнишь о том, что разговор идет о квантовых монетах. Ясно, что представление частиц в виде монет – это метафора, но если не воспринимать ее слишком буквально, то она вполне законна. Физики сами понимают явления при помощи метафор.

Чтобы привести установку в действие, Гальвез пропускает луч ультрафиолетового лазера через ряд оптических элементов, обеспечивающих должную юстировку. Этот луч попадает на небольшой кристалл бората бария, вещества, открытого китайскими учеными в начале 1980-х гг., который расщепляет ультрафиолетовый луч на два красных луча. Расщепление происходит на уровне отдельных частиц: если бы вы могли видеть луч как поток фотонов, то заметили бы, как некоторые ультрафиолетовые фотоны ударяются о кристалл и делятся на два идентичных красных фотона. Вот вам и монеты. Непосредственно перед кристаллом находится оптический элемент, известный как волновая пластинка, который Гальвез использует для того, чтобы контролировать выходной поток от кристалла. В зависимости от того, как он устанавливает волновую пластинку, красные фотоны получаются запутанными или нет.



Как только красные лучи расходятся, они перестают взаимодействовать. Гальвез направляет каждый луч в поляризационный фильтр, очень похожий на тот, что фотографы накручивают на объектив для подавления бликов. Фильтр пропускает или задерживает фотоны в зависимости от их ориентации, т. е. от их поляризации. Гальвез может с помощью лимба на боку фильтра контролировать, какие фотоны он будет пропускать. Для этого эксперимента оба фильтра настраиваются одинаково, так, чтобы они пропускали случайным образом половину фотонов, имитируя таким образом подбрасывание монет.

Фотоны, которые проходят через фильтры, направляются на детекторы, преобразующие их в электрические импульсы. Эти детекторы – самая дорогая и самая хрупкая часть установки. Из-за сверхвысокой чувствительности, позволяющей регистрировать одиночные фотоны, они стоят $4000 за штуку и легко повреждаются ярким светом. Даже в комнате с выключенным освещением детекторы регистрируют фотоны в бешеном темпе, потому что даже малейший проблеск света заставляет их срабатывать. Наблюдая за ними, я начинаю понимать, насколько светлой может быть якобы темная комната. Необходимо убедиться, что телефоны и ноутбуки полностью выключены – один-единственный включенный светодиод может испортить весь эксперимент. «Нам пришлось заклеить черной лентой все, что светилось в лаборатории, – говорит Гальвез. – Вы не представляете, сколько здесь всяких лампочек». Он накрывает приборы черной тканью и закрывает плотным пологом всю скамью.

Наконец, детекторы подключаются к счетчику с тремя цифровыми дисплеями, расположенными вне полога. Два из них показывают, какое число фотонов прошло через правый и левый поляризационные фильтры. Когда Гальвез включает лазер, эти числа мелькают как миллисекунды на секундомере. Третий дисплей показывает число «совпадений» – когда оба фотона из пары проходят каждый через свой фильтр. Продолжая метафору монет, совпадение означает, что обе монеты выпали орлом. Для Гальвеза такие совпадения являются возможностью взглянуть на квантовую нелокальность.

После небольшой экскурсии для меня Гальвез готов к проведению эксперимента. Желая убедиться, что все работает правильно, он сначала воспроизводит подбрасывание обычных монет, настраивая пластинку так, чтобы фотоны получались незапутанными. Счетчик показывает около 25 совпадений в секунду. Для сравнения: если бы каждый фотон в каждой паре проходил через фильтр, было бы 100 совпадений в секунду. Таким образом, частота совпадений равна примерно четверти максимально возможного значения. Именно этого можно ожидать, исходя из законов теории вероятностей. Если подбрасывать две монеты, каждая будет выпадать орлом в половине случаев, а обе будут выпадать орлом в четверти случаев.

Теперь Гальвез настраивает волновую пластинку так, чтобы фотоны оказывались запутанными. Частота совпадений подскакивает почти до 50 в секунду. Может показаться, что в изменении показаний счетчика в подвальной лаборатории с 25 до 50 нет ничего особенного. Но такова физика. Нужно немало усилий, чтобы приподнять завесу тайны над окружающим нас миром, и намеки на ее разгадку очень слабые, но от этого они не менее значимы. Годы ожиданий и приготовлений к этому моменту того стоили, поскольку, глядя на эти 50, я понимаю, что именно наблюдаю, и трепещу. Фотоны ведут себя как пара волшебных монет. Гальвез подбрасывает тысячи таких пар, и обе монеты всегда выпадают одной и той же стороной: либо обе орлом, либо обе решкой. Такого не бывает по чистой случайности.



Если бы кто-нибудь из моих друзей показал этот фокус на вечеринке: подбрасывал бы монеты так, чтобы они одновременно выпадали орлами в два раза чаще, чем должны, я бы подумал, что это розыгрыш. Должно быть, мой друг сходил в магазин для фокусников и купил специальные монеты, одинаковые с обеих сторон, результат подбрасывания которых предопределен. Мог ли подобный трюк объяснить ту закономерность, которую я наблюдал в лаборатории Гальвеза? Чтобы исключить возможность жульничества, Гальвез использует тактику, которую предложил в 1960-е гг. ирландский ученый, изучавший физику элементарных частиц, Джон Стюарт Белл. Он поворачивает один из фильтров на 90˚, что, так же как и подбрасывание монеты левой рукой вместо правой, не изменяет вероятность прохождения частицы через него, и если результат действительно предопределен, ничего не должно измениться. Но это, казалось бы, безобидное изменение влияет на фотоны. Частота совпадений падает практически до нуля – если один фотон проходит через фильтр, то второй нет. Другими словами, волшебные монеты вместо того, чтобы выпадать одной стороной, теперь всегда выпадают разными сторонами. Если бы кто-то хотел вас разыграть, ему бы понадобилась особая ловкость рук, чтобы справиться с этим фокусом. Проводя дальнейшие усовершенствования, Гальвез исключает все мыслимые придирки.

Я подхожу и еще раз изучаю оптическую скамью. Между фильтрами расстояние шириной с мою руку. В экспериментах Цайлингера и других ученых оно доходит до сотен миль, а исследователи Центра квантовых технологий работают над проведением этого эксперимента в космосе, где расстояния будут еще больше. Для крошечной частицы это равносильно другому краю Вселенной. Фотоны ведут себя согласованно на таком расстоянии. Они не контактируют друг с другом, никакая известная сила не связывает их, и тем не менее они ведут себя как единое целое. Когда Гальвез поворачивает поляризационный фильтр в левой части скамьи и фотон проходит через него, этот фотон поляризуется в том же направлении, что и фильтр. Его запутанный партнер в точности следует за ним: он приобретает такую же поляризацию и соответствующим образом взаимодействует со своим фильтром. Таким образом, происходящее слева влияет на фотон справа, даже когда на преодоление этого расстояния каким-либо воздействием нет времени. Такое воздействие должно было бы мгновенно распространяться от левой части к правой, т. е. бесконечно быстро, быстрее скорости света, что явно противоречит теории относительности. Это одна из многих загадок, которые нам задает нелокальность. Физики отмечали, что все это ближе к волшебству, чем что-либо, виденное ими ранее. «Студенты обожают это, – говорит Гальвез. – Хорошие студенты говорят: “Я хочу выяснить, в чем тут дело”».

Молчи и считай

Что такое нелокальность – всего лишь диковинка, о которой можно поахать и забыть, или же она занимает одно из центральных мест в физике? Большую часть XX в. физики относились к ней как к диковинке, и я в студенческие годы ничем не отличался от них. Лишь намного позже, когда мне в руки попала книга Тима Модлина «Квантовая нелокальность и относительность» (Quantum Nonlocality and Relativity), я оценил всю глубину этой тайны.

Сидя в своей гостиной, обставленной мебелью работы Джорджа Накашимы, Модлин рассказывает мне, что никогда не забудет тот момент, когда он узнал о квантовой нелокальности. Как-то осенью 1979 г. во время учебы в Йельском университете ему на глаза попался последний номер журнала Scientific American. Его главной темой были навозные жуки, но, полистав журнал, Модлин обнаружил статью о первых экспериментах с запутанностью. То, что частицы ведут себя как заколдованные, потрясло его. «Я помню день, когда прочитал эту статью, – говорит он. – У моих соседей по общежитию этот день тоже остался в памяти. Я ходил по комнате взад и вперед. Мир был не таким, как я думал раньше. Это выводило меня из равновесия».

Его также бесило, что преподаватели физики (как и в моем случае) даже не заикались об этом явлении. Когда он спрашивал об этом, они отмахивались от него. По воспоминаниям Модлина, он однажды поднял руку в аудитории и спросил, не может ли оказаться так, что квантовая теория не дает развиться более глубокой теории, в которой нынешние противоречия найдут объяснение. Преподаватель отмел эту идею и продолжил покрывать доску греческими буквами. «Он не предоставил никакого объяснения, почему нет, – говорит Модлин. – Просто закрыл вопрос, не отвечая на него».

Чтобы оценить то интеллектуальное препятствие, с которым столкнулись я и Модлин, нужно вернуться к знаменитым спорам между Эйнштейном и другим основателем квантовой механики, датским физиком Нильсом Бором. В 1920-х и 1930-х гг. Эйнштейна беспокоило то, что нелокальность противоречила его теории относительности. Он утверждал, что она должна быть своего рода иллюзией, свидетельствующей о нашем незнании какого-то важнейшего аспекта природы. Бор, со своей стороны… впрочем, никто не знает точно, на чем настаивал Бор. Его рассуждения дали слову «запутанный» совершенно новое значение, и его послания трактовались либо как отстаивающие нелокальность, либо как опровергающие ее. Если что-то и было вынесено из его слов, так это мысль о том, что неважно, какие странности происходят за кулисами, до тех пор пока теория может предсказывать то, что наблюдается в эксперименте.

Как известно любому, кто наблюдал президентские дебаты в США, суждения о «победе» или «поражении» часто имеют мало общего с тем, что на самом деле говорят участники. Большинство физиков просто хотели завершения спора Бора – Эйнштейна, чтобы можно было и дальше применять квантовую механику к практическим задачам. Поскольку Бор обещал прекращение прений, они сплотились вокруг него и списали Эйнштейна со счетов как вышедшего из моды. Позже кто-то писал про Эйнштейна, что его «репутация не пострадала бы, а то и укрепилась, займись он вместо этого рыбалкой».

В последующие десятилетия физики использовали квантовую теорию для самых разнообразных полезных вычислений. Они придумали транзисторы, лазеры и другие технологии, лежащие в основе современного мира. Таким образом, коллективное решение закрыть глаза на вопросы о более глубоком смысле этой теории казалось справедливым. Когда такие концептуальные вопросы все-таки возникали, физики считали их «философскими», и подразумевалось, что это не комплимент, а способ отрицания того, что эти вопросы вообще стоило задавать. Английский физик Поль Дирак писал: «Об этом беспокоится только философ, желающий обладать удовлетворительным описанием природы».

Поскольку вопрос и в самом деле зацепил Модлина, он решил получить диплом философа, а не физика. «Я хочу добраться до сути всего, – говорит он. – Это то, чем занимается философ». Философия характеризуется не только своими интересами, но и своими методами: философы специализируются на логике, а не на математике и экспериментировании. Модлин заработал среди философов репутацию «Доктора Опровергателя», способного найти ошибку в любом доказательстве. На протяжении всей работы над дипломом и в первые годы его профессорства, по словам Модлина, мысль о нелокальности вертелась у него на подсознательном уровне. Но никто из его знакомых, казалось, не интересовался ею, и в некотором смысле философы выглядели такими же заложниками принципа локальности, как и физики. Обстоятельства не давали Модлину больше думать об этом вплоть до осени 1990 г., когда умер Джон Стюарт Белл.

Белл сделал больше, чем кто-либо другой, для возобновления дела «Эйнштейн против Бора». Он начал сомневаться в победе Бора еще студентом университета в 1950-е гг., но понял, что высказывание сомнений не принесет пользы карьере. К середине 1960-х гг., сделав имя на исследовании частиц и проектировании ускорителей частиц, включая предшественников Большого адронного коллайдера, Белл почувствовал себя в достаточной безопасности, чтобы вернуться к юношеским интересам. Он показал, что нелокальность уже не исключительно повод для спора – ее можно запросто наблюдать в лаборатории. Как и Эйнштейн, Белл изо всех сил старался убедить своих коллег. Его первая статья на эту тему не цитировалась нигде в течение четырех лет и не упоминалась в учебниках до 1985 г. Даже когда работа Белла все-таки привлекла к себе внимание, ее нередко неверно истолковывали. Один из его некрологов был озаглавлен: «Человек, доказавший, что Эйнштейн был неправ». Это показывает полное непонимание мысли Белла о том, что нелокальность выходит за рамки того старого спора. Эйнштейн, возможно, был неправ, полагая, что нелокальность окажется только мнимой, но и Бор заблуждался, игнорируя ее полностью.

Как и Эйнштейна, Белла беспокоило то, что нелокальность бросает вызов теории относительности. Физики не могут отказаться от квантовой теории: она выдерживает все экспериментальные проверки. Точно так же невозможно вообразить, что теория относительности неверна. В лекции 1984 г. Белл заключил: «Мы имеем явную несовместимость, на самом глубинном уровне, между двумя столпами современной теории». Даже те, кто в остальном благожелательно к нему относился, не видели этой несовместимости. Создавая теорию относительности, Эйнштейн думал о том, как мы получаем информацию. Такие сигналы, как свет или звук, должны передаваться от объектов в окружающем мире к нашим органам чувств. Если эти сигналы распространяются мгновенно, они могут конфликтовать. В результате получаются парадоксы. Что-то одновременно происходит и не происходит. Внутренние механизмы Вселенной ломаются. Однако квантовые волшебные монеты не несут такой опасности. Они по своей сути не способны передавать сигналы. Они падают орлом или решкой, им нельзя приказать, как именно упасть. Нет способа контролировать их, чтобы передать сообщение или вообще сделать что-либо. Поэтому вы никогда не сможете использовать их для создания парадоксальной ситуации. Опасность предотвращена.

Другими словами, если запутанность – это волшебство, то оно не похоже на волшебную палочку, взмахом которой можно заставить что-то произойти. Скорее волшебство происходит спонтанно, и вы замечаете его, только если внимательно смотрите. Это очень разбавленная форма волшебства, которая не принесет никаких кубков в турнирах волшебников. Почти все убедили себя в том, что квантовая механика и теория относительности «мирно сосуществуют».

Ряд философов из Университета Ратджерса организовали в честь Белла симпозиум по квантовой физике и попросили выступить на нем Модлина. Возобновив свои исследования с того места, на котором он остановился еще студентом, Модлин продолжил разгребать гору информации, выросшую вокруг полученных Эйнштейном и Беллом результатов. Общепринятое видение теоретического согласия показалось Модлину слишком согласованным. «Простое указание на то, что вы не можете посылать сигналы, совсем не казалось мне достаточным для демонстрации того, что фундаментального конфликта с теорией относительности не существует», – говорит он. Даже если пара запутанных частиц не может передавать сигналы, квантовая теория все равно утверждает, что происходящее с одной из них мгновенно влияет на вторую. Таким образом, эта теория требует, чтобы у Вселенной было что-то вроде главных часов, гарантирующих, что 19:30 для одной частицы – это 19:30 для второй частицы. А теория относительности подобное отрицает. Теорию относительности называют так именно потому, что ход времени относителен. Два события, происходящие одновременно для одного человека, могут происходить поочередно для другого.

Доклад Модлина положил начало его книге, публикация которой совпала со всплеском интереса к запутанности. Экспериментаторы, осознавшие, что это явление не так бесполезно, как они думали раньше, начали применять его в криптографии и компьютерах. Так, Артур Экерт, физик из Оксфордского университета и нынешний директор Центра квантовых технологий, в 1991 г. доказал, что запутанные частицы могут создать настолько безопасный канал связи, что даже самая коварная правительственная программа наблюдения не сможет его перехватить. Как только физикам показали, какова значимость запутанности, они начали видеть ее практически везде, куда бросали взгляд. Она наблюдается даже в живых организмах. В фотосинтезе запутанностью объясняется неожиданно высокая эффективность, с которой молекулы преобразуют энергию света в химическую энергию, таким образом, запутанность вносит вклад в существование жизни на нашей планете.

К началу нового тысячелетия статья Эйнштейна, с которой все началось, стала одной из самых цитируемых в истории физики. Тем временем древняя стена между физиками и философами начала рушиться. Цайлингер, первопроходец среди экспериментаторов, часто расходится во взглядах с Модлином, но обменивается с ним идеями так, как 20 лет назад нельзя было и помыслить. «Эта связь между философией и физикой является решающей для достижения реальных успехов», – говорит мне Цайлингер.

Ясно, что квантовая нелокальность – это не просто представление за ужином в Лас-Вегасе, а неотъемлемая часть мира, и физики с философами до сих пор не знают, что стоит за этим волшебством. Могут ли ключи к разгадке находиться в других областях науки? Что можно узнать благодаря другим типам нелокальности, существующим в мире?

Звездочет и ледолаз

Подавляющую часть ХХ в. необычная синхронность запутанных частиц была единственным видом нелокальности, который заслуживал хоть какого-то внимания. Однако физики постепенно осознали, что и другие явления подозрительно таинственны. Те, кто изучает черные дыры, считают, что вещество в этих космических пылесосах может перепрыгивать из одного места в другое, не преодолевая расстояние между ними, – вот тип нелокальности, вероятно еще более непостижимый, чем та ситуация, которая беспокоила Эйнштейна.

Черные дыры долгое время были для физиков самыми странными явлениями во Вселенной. Рамеш Нараян видел их в действии. Как и Гальвез, Нараян говорит, что пришел к своей научной страсти поздно и практически случайно. Ребенком он не проявлял никакого интереса к астрономии. Нараян один из немногих знакомых мне астрофизиков, кто не припоминает страстной увлеченности черными дырами в детстве. Он обожал кристаллы. Но на своей первой работе, в престижном Исследовательском институте имени Рамана в Бангалоре, в южной Индии, он вдруг оказался в кругу людей, исследующих тайны Вселенной, и вскоре его это увлекло. Нараян стал экспертом по космическим потокам газа. Основной принцип этих потоков прост: то, что падает, должно проявляться. Когда газ обрушивается на поверхность звезды, она разогревается; звезда, в свою очередь, испускает энергию обратно в космос, обычно в виде инфракрасного излучения или видимого света. «Вся энергия, попадающая внутрь, должна выходить наружу», – объясняет Нараян, который теперь преподает в Гарварде. Однако в начале 1990-х гг. астрономы заметили странное исключение из этого правила в центре нашей галактики.

Увидеть центр галактики довольно легко. В следующий раз, когда выйдете из дома посмотреть на ночное небо, найдите созвездие Стрельца. В моем городе его проще всего наблюдать летом и ранней осенью, когда оно висит невысоко над южным горизонтом. Оно должно быть похоже на лучника, но большинство астрономов считают его похожим на гигантский чайник. Его носик указывает на центр Млечного Пути. Для человеческого глаза это всего лишь туманный кусочек неба, но в 1940-е гг. благодаря телескопам там обнаружили завихрение газа. В самом центре газ устремляется в одну точку в области, известной под названием Стрелец А*. Эта область таинственно неярка: менее 1 % энергии, приносимой туда поступающим газом, возвращается обратно. «Прямо на наших глазах энергия направляется к центру и исчезает – пшик», – говорит Нараян.

Это определение черной дыры. Ее тяготение настолько велико, что все попавшее в нее никогда не возвращается обратно. Художники иногда изображают черные дыры в виде гигантской воронки в пространстве, однако снаружи они больше похожи на планету: большую, подозрительно темную планету. Вещество может вращаться вокруг нее, и обычно так и происходит. Но если бы вы попробовали потрогать то, что кажется ее поверхностью, ваша рука просто прошла бы насквозь: этот объект представляет собой пустое пространство. Предполагаемая поверхность, или «горизонт событий», на самом деле является просто гипотетической точкой невозврата, в которой попадающий туда газ или другое вещество могут поменять курс на противоположный, только двигаясь со скоростью больше скорости света. В случае Стрельца А* горизонт событий представляет собой сферу диаметром около 25 млн км. Вещество, пересекающее его, просто продолжает двигаться, как машина, заехавшая на тупиковую улицу с односторонним движением, и несется навстречу какой-то неопределенной и, предположительно, печальной кончине. «Это единственная уникальная особенность черной дыры, – говорит Нараян. – У черной дыры нет поверхности, и это меняет все. Газ и вся энергия, которую он несет, просто проглатываются».

Что же происходит со всем этим веществом? Это загадка. К сожалению, две главные теории в распоряжении физиков – теория тяготения и квантовая теория – приходят к диаметрально противоположным выводам о судьбе поглощенного вещества. Если говорить упрощенно, теория тяготения гласит, что падение в черную дыру необратимо, в то время как квантовая теория утверждает, что нет ничего необратимого. Первая говорит, что вещество не может выбраться оттуда, что оно поглощается черной дырой навсегда. Вторая говорит, что вещество должно выбраться оттуда и снова принять участие в жизни космоса. В чем дело? Это противоречие – красная лампочка, предупреждающая о том, что некоторые принципы современной физики, кажущиеся неотъемлемыми, возможно, неверны.

Наблюдения Нараяна не могут решить этот вопрос. Разрешение противоречий, связанных с черными дырами, требует создания объединенной физической теории, в которой квантовая теория и теория тяготения сливаются в квантовую теорию гравитации. И многие из тех, кто работает над такой теорией, сомневаются в справедливости принципа локальности. Если бы вещество могло перемещаться быстрее скорости света или перепрыгивать изнутри наружу, не проходя через лежащее между этими позициями пространство, у него была бы возможность ускользнуть из неприветливой тюрьмы черной дыры.

Главный поборник этой идеи – Стив Гиддингс. Он преподает в Калифорнийском университете в Санта-Барбаре, хотя, глядя на шорты с накладными карманами, флисовую куртку и незаправленную клетчатую рубашку, его можно принять за инструктора по горному туризму. И это не так уж далеко от правды: он мелькает как в научно-популярном журнале Scientific American, так и в журнале для туристов Climbing. Гиддингс достиг совершенства в скалолазании и ледолазании, в горных и равнинных лыжах, в альпинизме и каякинге. Он считает, что его страсть к науке и увлечение видами спорта на открытом воздухе дополняют друг друга. «Мне кажется, это две грани единения с природой», – говорит он. В детстве он увлекался книгами по физике, в колледже получил грант от Национального научного фонда на исследование гравитации, но при этом не упускал случая покататься на лыжах на природе. Летом после выпуска из колледжа он сам смастерил каяк и спустился на нем по реке Колорадо через Большой каньон. Затем Гиддингс доехал автостопом до Национального парка «Денали», это была первая из его поездок в те края. Он помнит, как северный олень с детенышем перебежал дорогу, не обращая на него никакого внимания. «Оглянувшись, я понял, почему им было не до меня, – говорит Гиддингс. – Они убегали от большого гризли. Медведь же направился ко мне». Вспомнив инструктаж смотрителя парка, Гиддингс не растерялся и кричал на медведя до тех пор, пока тот не отступил в поисках более легкой добычи.

Потом он переехал в Нью-Джерси. Там есть много чудесных мест, за исключением гор и каньонов. Но у Гиддингса не было на них времени. Дни, ночи, будни и выходные он проводил за подготовкой к экзаменам. Казалось, что принстонский курс физики для аспирантов был создан специально, чтобы опрокинуть его каяк. «Поддержка практически отсутствовала, – говорит Гиддингс. – В этой атмосфере студенты чувствовали себя совершенно затюканными». Гиддингс подумывал сбежать, но у него хватило твердости, чтобы сдать экзамены в 1984 г. Это было время большого воодушевления в области теоретической физики. Ученые по всему миру бросали все остальное и переключались на теорию струн, претендовавшую на звание единой теории всего.

Теория струн получила свое название от идеи о том, что субатомные частицы похожи на крошечные резиновые ленты или гитарные струны. То, что мы воспринимаем как разные виды частиц, – это на самом деле просто разные способы колебаний этих струн, что делает мир симфонией немыслимой сложности. Теория томилась в безвестности с конца 1960-х гг., и переломный момент наступил, когда немногочисленным энтузиастам удалось убедить большинство в ее внутренней непротиворечивости. «Это было настоящее дело, и оно захлестнуло меня с головой», – вспоминает Гиддингс. Эдвард Виттен, корифей этой области, попросил его решить ключевое уравнение, и через несколько месяцев упорного труда, пробуя один математический метод за другим, он сделал это. Тем временем Гиддингс познакомился с несколькими любителями каяка и обнаружил, что Штат садов[7] получил свое прозвище не совсем незаслуженно. «Я начал понимать, что это, может быть, и сработает», – говорит он.

Разрешение противоречий с черными дырами было одной из главных причин для поиска единой теории, и в 1990 г. Гиддингс решил заново пройти шаги, приведшие к парадоксу, которые были изложены знаменитым кембриджским теоретиком Стивеном Хокингом в середине 1970-х гг. Хокинг исходил из того, что распад – это закон природы. Практически все в этом мире в конце концов умирает. И черные дыры – не исключение, и не могут им быть, раз они образуются. Разрушение – это создание наоборот. «Если можно сделать черную дыру из случайного мусора, значит, черная дыра может распасться на случайный мусор», – говорит Гиддингс.

Согласно исследованиям Хокинга, распад не означает, что внутреннее содержимое черной дыры просачивается наружу. Да разве такое возможно? Чтобы вырваться за пределы горизонта событий, внутреннее содержимое должно вытекать со сверхсветовой скоростью. Вместо этого дыра разрушается от краев к середине. Горизонт событий выводит из равновесия электрическое, магнитное и другие поля, заставляя их излучать частицы как чешуйки ржавчины. Черная дыра, равная по массе нашему Солнцу, испускает примерно одну частицу в секунду, что слишком мало для того, чтобы такие астрофизики, как Нараян, могли обнаружить это с помощью приборов, но достаточно для того, чтобы за триллионы лет превратить черную дыру в беспорядочное, бесформенное облако частиц. Структура попавшей туда материи, информация, содержавшаяся в ней, все следы того, чем она была раньше, – все утрачивается. Другими словами, попадание в черную дыру необратимо не только в том смысле, что из нее нельзя выбраться обратно. Это было бы не так страшно, поскольку, если вообразить себя богом, можно заглянуть в черную дыру и восстановить, как там оказалось все, что в ней есть. Но попадание в черную дыру необратимо еще и в том смысле, что материя в ней уничтожается с такой тщательностью, что даже богу не удалось бы восстановить оригинал.

Как заметил сам Хокинг, его вычисления были непростыми. Он смог понять, как черная дыра влияет на вылетающие частицы, но не то, как вылетающие частицы влияют на черную дыру: а это взаимное влияние могло бы открыть потайную дверь между пространством снаружи и внутри дыры, позволяющую захваченной материи возвращаться наружу. Если так, то попадание в черную дыру было бы все же обратимо и парадокс исчез. Поэтому Гиддингс и несколько его коллег провели новое исследование, основанное на теории струн, в поисках потайных дверей и лазеек, не учтенных в вычислениях Хокинга. Они ничего не нашли. Хокинг был прав. «С помощью этих простых моделей в самом деле подтверждается первоначальное видение Хокинга», – говорит Гиддингс.

Таким образом, нет простого способа избежать парадокса (не говоря уже о черной дыре). Одно из допущений, используемых при доказательстве, должно быть ошибочно, а таких допущений в действительности всего два: обратимость и локальность. Сначала Хокинг посчитал неверным первое из них. Он предположил, что квантовая теория неверна и падение в черную дыру необратимо. Однако похоже, что в квантовой теории работает правило «все или ничего»: если она не работает в одном месте, то не работает нигде. Если она дает осечку там, где предположил Хокинг, мы должны видеть подобные проколы и в обычных условиях, а мы их не видим. В итоге Хокинг согласился с тем, что черные дыры должны быть обратимы. Тогда, по умолчанию, ошибочным должен быть принцип локальности. «Я продолжаю биться над вопросом о том, как попадает наружу информация: похоже, что этот процесс просто обязан быть нелокальным», – говорит Гиддингс.

Примерно к тому же выводу пришли еще несколько исследователей, но общее настроение было неоднозначным. Нелокальность в черных дырах еще труднее переварить, чем нелокальность в экспериментах с частицами. Если квантовая запутанность – трудноуловимое явление, не противоречащее открыто никаким другим законам физики, то движение со сверхсветовой скоростью через горизонт событий настолько грубое противоречие, что грубее придумать сложно. Это нарушение так же нахально, как езда со скоростью 150 км/ч на виду у патрульного. Гиддингс не мог шага ступить по коридору или выйти за чашечкой кофе, чтобы какой-нибудь коллега не высказался против его готовности серьезно рассматривать нелокальность, и в итоге он забросил эту тему почти на десятилетие. «Это выглядело довольно безумно, – говорит он. – Я не пошел дальше. Я слишком быстро уступил скептикам». На деле Гиддингс просто немного опередил свое время.

Бетономешалка и дочь скульптора

Даже простая возможность существования второго типа нелокальности чрезвычайно существенна. Она указывает на то, что явление, обнаруженное Эйнштейном, лишь один из фрагментов большой мозаики. Это не доказывает, что нелокальность действительно работает или что эти два типа нелокальности как-то связаны, но психологически очень важно. В науке, как и в жизни вообще, именно второй, а не первый случай привлекает внимание людей. Третий случай означает наличие тенденции.

Этот следующий тип нелокальности, о котором я расскажу, не настолько признан, как квантовая запутанность или черные дыры, но если он действительно существует, то все еще серьезнее. Он проявляется в наблюдениях, которые кажутся настолько очевидными, что вы можете даже не воспринимать их как наблюдения. Если вы взглянете на ночное небо, то увидите, что оно темное. Наверное, это вряд ли будет откровением. И все же темнота ночи – одна из основ теории Большого взрыва, поскольку темнота означает, что Вселенная конечна по возрасту, или по размеру, или по тому и другому сразу. Если бы Вселенная была бесконечно большой и древней, то мы бы видели бесконечно далеко во всех направлениях и в поле зрения всегда попадала бы какая-нибудь звезда. Звезды создавали бы непрерывную стену света. Это было бы похоже на жизнь в таком глухом и старом лесу, что, куда бы вы ни посмотрели, вы бы увидели дерево. Так что в следующий раз, когда будете смотреть на ночное небо, представьте, что звезды – это деревья, а чернота между ними – просветы, показывающие, что лес либо настолько маленький, что вы видите сквозь него, либо настолько молодой, что еще не стал густым.

Мало того что ночное небо темное, оно еще и выглядит практически одинаково, куда бы вы ни посмотрели. На конференции, которую я посетил в 1996 г., астрономы показали плакат с самой поразительной демонстрацией однородности, которую я когда-либо видел. Они направили космический телескоп Hubble на темный участок неба рядом с ковшом Большой Медведицы и оставили его в таком положении на 10 дней, чтобы собрать свет для самого чувствительного изображения из когда-либо сделанных: Hubble Deep Field. Три года спустя они сделали то же самое с почти диаметрально противоположной частью неба, в Южном полушарии. Эти изображения не так эффектны, как некоторые другие снимки, сделанные телескопом, – их красота недооценена. На них видны объекты, находящиеся почти на самом пределе нашего зрения, они настолько тусклые, что телескоп получал от них всего один фотон света в минуту. Тысячи небольших красноватых пятен на изображении – это целые галактики, включая такие, которые сформировались самыми первыми. Северные и южные изображения с точки зрения статистики выглядят одинаково, из чего следует парадокс, который профессор Мэрилендского университета Чарльз Мизнер впервые заметил в 1969 г.

Мизнер, современник Хокинга, — это еще один из тех физиков, которые произвели революцию в исследованиях черных дыр и Вселенной в целом в 1960–1970-х гг. Как и большинство студентов, изучавших физику, я сначала узнал его имя как М в MTW[8], общеизвестном сокращении фамилий авторов учебника по теории гравитации «Гравитация» (Gravitation): с его виньетками и размышлениями, это один из немногих учебников, которые действительно весело читать. Детским увлечением Мизнера, как и Гальвеза, была не физика, а химия. Он помнит, как мать ругала его за дырки, прожженные в одежде реактивами из набора юного химика. В ответ он поставил эксперимент — капал кислоту на различные виды ткани, чтобы посмотреть, как они себя поведут. Вряд ли его матери это пришлось по вкусу, но друг семьи, услышав об интересах мальчика, нанял его, чтобы тот нашел способ более эффективной выдержки бетона. В результате была разработана добавка, замедляющая испарение воды.

Мизнер поступил в колледж со специализацией по химии, но неожиданно удовольствие от предмета улетучилось. «Лабораторные работы были ужасны, — вспоминает он. — Нужно было просто следовать инструкциям, как в поваренной книге». Поэтому он переключился на физику и продолжил учебу в аспирантуре Принстонского университета как раз в то время, когда легендарный профессор Джон Уилер (W в прозвище того же учебника) возвращал к жизни исследования гравитации. Хотя физики не уставали восхищаться теорией гравитации Эйнштейна, немногие на самом деле брались за ее изучение, полагая, что все по-настоящему интересное происходило в квантовой физике. Уилер осознал, что гравитация — самая созидательная из сил природы. Геоны, пространственно-временная пена, кротовые норы, черные дыры — не нужно даже знать смысл этих терминов, чтобы понять, что Уилер говорил о чем-то большем, чем яблоки, падающие на головы людей. «У него была геометрическая и физическая интуиция, и у него был азарт, ему казалось, что за уравнениями может стоять больше, чем думали другие, — говорит Мизнер. — И он был прав».

Однородность ночного неба не была внесена в список загадок до того, как в 1960-х гг. случилось два прорыва в наблюдениях. Сначала астрономы обнаружили квазары: точки света, которые на первый взгляд похожи на звезды, но таких цветов, какие ни у одной звезды никогда не наблюдались. Их осенило — квазары выглядят настолько яркими потому, что Вселенная расширяется, растягивая световые волны как логотип на футболке из спандекса, превращая синий в красный. Свет квазаров настолько красный, что должен был путешествовать миллиарды лет, прежде чем достичь нас, а это делало квазары на тот момент самыми древними объектами, которые когда-либо видели люди. В 1966 г. Мизнер получил годовую стипендию в Кембридже, где астрономы, как он вспоминает, отмечали мелом положение квазаров на доске сферической формы. Мизнер заметил, что на одной стороне меток больше, чем на другой, как будто древняя Вселенная была неравномерной. Асимметрия оказалась случайностью, но это заставило его задуматься о том, почему небо должно или не должно выглядеть одинаково во всех направлениях. Второе открытие обострило этот вопрос: это было космическое микроволновое фоновое излучение.

Радиоастрономы сначала заметили это излучение как слабое, но постоянное шипение в своих приемниках. Они очистили антенну от голубиного помета, однако шипение не исчезло — везде, куда бы они ни направили антенну, было это шипение, заполняющее небо, не оставляющее пустых мест. Ученые быстро осознали, что подобное шипение является формой света, длина волны которого увеличилась, и свет из синей части спектра перешел в красную, затем в инфракрасную и в микроволновую — это еще более существенное преобразование, чем то, которому подвергся свет от квазаров, что делает его источник еще более древним: по текущим оценкам, ему 13,8 млрд лет. Космическое микроволновое фоновое излучение дает нам возможность взглянуть на Вселенную в те времена, и она похожа на ванильное мороженое с молоком во время метели: первичный бульон почти без особенностей и состоящий почти из чистого водорода. Газ был распределен еще более однородно, чем галактики и квазары, которые появились позже.

Одинаковый вид требует наличия общей причины. Если двое ваших друзей появятся однажды в совершенно одинаковой одежде, вы можете относиться к этому как к чистой случайности, но если много других людей одеты похожим образом, значит, есть какая-то связь: дресс-код, массовая рассылка по электронной почте, распродажа в местном магазине Gap. Люди склонны одеваться разнообразно, поэтому случайные совпадения маловероятны. Аналогичным образом вещество в ранней Вселенной могло распределяться такими разными путями, что обретение им одинаковой плотности и одинаковой температуры во всех точках было маловероятным — поразительно маловероятным. Тем не менее это произошло.

Чем можно объяснить такую однородность? Если на то пошло, тяготение должно было заставить вещество сгущаться, делая его менее однородным. Космологи размышляли о других процессах, но столкнулись с фундаментальной проблемой. Две галактики или два крупных скопления газа в противоположных концах нашего неба, на самом краю наблюдаемой части Вселенной, находятся слишком далеко друг от друга, чтобы какой-либо процесс, происходящий в пространстве, мог уравнять их свойства. В конце концов именно это и означает находиться на самом краю доступной для наблюдения части Вселенной: свет от каждой галактики только теперь достигает нас после одиссеи длительностью в миллиарды лет. У него еще не было времени, чтобы добраться до второй галактики.

Космологи проводят аналогию с горизонтом на Земле. Если вы стоите на спасательном плоту посреди океана, то из-за кривизны нашей планеты можете видеть вдаль примерно на пять километров. Если к вам приближаются два корабля — один с севера, другой с юга, — сначала вы видите верхушки их мачт, и по мере того, как они становятся ближе, их корпуса медленно поднимаются над вашим горизонтом. Что касается моряков на кораблях, то сначала они видят вашу макушку, а затем постепенно и остальные части фигуры. Но в момент, когда они впервые вас замечают, моряки на одном корабле не могут видеть другой корабль: когда вы находитесь прямо на их горизонте, другой корабль все еще находится за ним. Мы похожи на этого потерпевшего кораблекрушение человека, а две диаметрально противоположные галактики похожи на тех моряков. Мы видим галактики, которые даже не видят друг друга, не говоря уже об обмене энергией или веществом, который мог бы сделать их внешний вид одинаковым. Фоновое излучение должно быть скорее пестрым лоскутным одеялом, а не равномерным свечением. «Чрезвычайно трудно объяснить, почему небо не испещрено пятнами… — говорит Мизнер. — Наблюдения показали согласованность у объектов, у которых никогда не было физической возможности взаимодействовать друг с другом».

В этой ситуации опять чувствуется определенное дежавю. Отдаленные части Вселенной согласовали свои свойства, явно нарушив предел скорости, установленный светом. Это выглядит так же жутко, как то, что Гальвез видит в своей лаборатории, за исключением того, что теперь мы говорим о целых галактиках, а не о маленьких частицах. В 1970 г. российский теоретик Яков Зельдовичосмелился предположить, что некий тип квантовой нелокальности мог бы объяснить однородность космоса. Однако в целом космологи отказывались заходить так далеко. Большинство восприняло эту загадку как провал теории гравитации Эйнштейна и полагало, что разгадка появится не раньше, чем произойдет объединение физики. Другими словами, Мизнер говорит: «Никто не думал, что уравнениям Эйнштейна можно было доверять в таких экстремальных случаях».

В конце 1970-х гг. русские и американские физики додумались, как решить проблему горизонта, не отказываясь ни от локальности, ни от теории Эйнштейна. Идея состоит в том, что эти две галактики на противоположных сторонах нашего неба (или на самом деле их предшественники) фактически когда-то находились рядом, но их оттащило друг от друга, когда Вселенная переживала свой ранний скачок роста. Таким образом, некий процесс мог бы сделать их похожими. Как близнецы, разлученные при рождении и выросшие, даже не зная о существовании друг друга, галактики когда-то ютились рядом, но развивались независимо друг от друга и только теперь снова воссоединяются.



Чтобы это объяснение имело смысл, скачок роста должен был растаскивать галактики со скоростью, превышающей скорость света, так, чтобы они потеряли контакт друг с другом до настоящего момента. Обычно слова «со скоростью, превышающей скорость света» звучат для физиков как скрип ногтей по меловой доске. Но рост космоса обходит обычные ограничения на скорость перемещения, потому что ни о каком перемещении речи не идет. Скорее это новое пространство образуется в промежутках между галактиками, почти как животное или растение развивается, создавая новые клетки. Поскольку галактики фактически не перемещаются в пространстве, ограничение скорости к ним не относится. «Если вы смотрите на две галактики, они остаются на месте, но расстояние между ними меняется, — объясняет Мизнер. — Если считать это относительной скоростью, то в ранний период относительная скорость двух скоплений вещества сильно превышала скорость света. Таким образом, они не могли видеть друг друга». Это не единственная ситуация, в которой можно превысить максимальную скорость за счет роста вместо перемещения. Предположим, вы находитесь на большой танцевальной вечеринке, и все начинают выстраиваться в линию для танца конга. Если несколько десятков человек будут присоединяться к ней каждую секунду, то концы линии могут удаляться друг от друга со скоростью больше 90 км/ч, хотя ни один человек не способен перемещаться так быстро.

Расстояние между галактиками может увеличиваться со скоростью больше, чем скорость света, даже тогда, когда Вселенная расширяется в обычном темпе. Однако в таком случае скорость расширения со временем снижается, и галактики в конце концов снова могут контактировать. Скачок роста необходим, чтобы галактики могли родиться вместе, а затем потерять контакт.

Большинство космологов считают эту концепцию, известную под названием «инфляция», столь изящной и убедительной, что обычно преподносят ее так, будто это установленный факт. В 2014 г. команда наблюдателей объявила, что они обнаружили верные признаки следов инфляции в микроволновом излучении[9]: возмущения, связанные с механизмом скачка роста. Комментаторы были осторожны и использовали стандартные оговорки («если это правда»), но явно сочли этот результат реальным — они так долго ожидали его. Тем не менее открытие обернулось пшиком несколько месяцев спустя, вновь разжигая сомнения, которые высказывали даже некоторые из авторов теории инфляции. Основное беспокойство вызывает то, что инфляционная теория предполагает наличие того самого условия, которое она должна порождать: чтобы Вселенная начала расширяться, она уже должна была быть неестественно однородной. Поэтому некоторые физики искали альтернативы инфляции, среди которых была не только видимость нелокальности, но и настоящая нелокальность.

Один из скептиков инфляции — это Фотини Маркопоулоу. Я познакомился с ней на конференции в честь Уилера, где она поделила первое место в конкурсе подающих надежды физиков. Меня поразило ее мнение о том, что физические теории должны исходить из того, что мы — часть Вселенной, а не сторонние наблюдатели. «Меня реально интересует одно — это идея о том, что вы находитесь внутри Вселенной, которую пытаетесь понять, и можете понять ее, — говорит она мне. — Есть любопытная взаимосвязь между тем, что вы находитесь внутри системы, которую пытаетесь изучить, и тем, что вы способны делать вид, что это не так. В каком-то смысле к этому и сводится наука». Все области науки чувствуют это противоречие между взглядом изнутри и извне, но хуже всего оно в космологии, единственной сфере науки, изучающей систему, у которой вообще нет внешней стороны.

Маркопоулоу говорит, что глобальная картина мира увлекала ее с ранних лет. «Ребенком я любила заходить в церковь, когда там было пусто, садиться и просто смотреть в потолок, — вспоминает она. — В греческих православных церквях он, в сущности, похож на планетарий. Там на потолке картины на тему космологии. Именно это всегда казалось мне захватывающим. Есть что-то поразительное в том, что человек пытается представить целостную картину того, чему он сам принадлежит». Было бы легко напрямую связать ее детское изумление с карьерой физика, но Маркопоулоу против такого удобного изложения событий. Кроме этого она любила искусство — ее родители были скульпторами, — а также археологию и архитектуру. Она не знала, какую специализацию указать в заявлении о приеме в колледж. Когда директор ее средней школы предложил теоретическую физику, Маркопоулоу указала теоретическую физику. В колледже один из друзей восторженно отзывался о курсе лекций по квантовой механике, и оказалось, что это как раз по пути домой, так что она зашла послушать. «Я не читала книг об Эйнштейне и решила продолжить с того места, на котором Эйнштейн остановился, — говорит она. — В итоге на разных этапах, когда приходилось определяться, куда пойти, я выбирала теоретическую физику».

Похожим образом она не сразу выбрала свой предмет: объединение квантовой теории и теории гравитации с целью создания квантовой теории гравитации. Вместо этого, будучи студенткой и в первый год аспирантуры, Маркопоулоу изучала физику элементарных частиц. Однако курсовая работа оставила у нее чувство неудовлетворенности. «Странно, когда в программе подготовки физиков изучению квантовой теории уделяется недостаточно внимания», — вспоминает она. Ее однокурсники и преподаватели отвергали объединение как несбыточную мечту, да и ей самой поначалу тоже так казалось. Через некоторое время, впрочем, она стала думать, что мечтать — это нормально. Хотя ответы на загадки космоса могли быть недосягаемыми для физиков, по крайней мере исследователи квантовой гравитации стремились найти их. «Когда вы задаете интересные вопросы вроде “Почемуэто так?”… всегда кажется, что на самом деле не следовало их задавать, — говорит Маркопоулоу. — Люди, которые работали над этими интересными вопросами, занимались квантовой гравитацией». В конце концов соблазн стал слишком велик, чтобы сопротивляться. Если Гиддингс стремился объединить физику через теорию струн, то Маркопоулоу примкнула к сообществу физиков, которые применяют альтернативные подходы, чтобы примирить гравитацию с квантовой теорией. В отличие от струнных теоретиков, эта группа не стремится объединить строго всю физику, с ее огромным разнообразием частиц и взаимодействий, а концентрируется на гравитации.

Маркопоулоу сделала имя на том, что изучила, подчиняются ли различные предлагаемые квантовые теории гравитации принципу локальности, и показала, что большинство из них ему не подчиняется. Принято считать, что такие аномалии должны быть заметны только на очень малых масштабах, даже меньших, чем атом, но Маркопоулоу сомневается, что нечто столь глубокое может быть ограничено такими узкими рамками. «С самого начала, когда я занялась квантовой гравитацией, интуиция подсказывала мне, что, возможно, квантовая гравитация на самом деле проявляет себя на больших масштабах, поскольку меняется нечто фундаментальное», — говорит она. Маркопоулоу подозревает, что согласованность развития удаленных галактик может быть таким проявлением. Единообразие космоса может быть третьим типом нелокальности, очень явным. Несколько струнных теоретиков думают примерно так же. «Проблема горизонта — это нелокальность, находящаяся прямо у нас под носом», — говорит Маркопоулоу.

Частицы в подвале

В случаях нелокальности, о которых я говорил до сих пор, пространство не справлялось со своей самой базовой функцией — отделять предметы друг от друга, оставлять место между ними. Запутанные частицы координируют свое поведение, не обмениваясь сигналами в пространстве. Вещество попадает в черную дыру и умудряется выбраться обратно из пропасти в пространстве. Галактики, разделенные непреодолимой бездной пространства, выглядят сходным образом. Эти явления создают по меньшей мере впечатление нелокальности. Но в качестве четвертого, и заключительного, примера я хотел бы поменять вещи местами и рассмотреть явление, которое создает впечатление локальности, но может в конечном счете оказаться нелокальным.

Физики обычно считают, что мир состоит из частиц: электронов, протонов и всех остальных субатомных физических созданий. Частицы — само воплощение локальности. Эти небольшие песчинки материи существуют в определенных местах. Они взаимодействуют друг с другом, только соударяясь или испуская частицу-посредника, которая перемещается между ними. Квантовая запутанность может заставить частицы быть нелокально согласованными, но она не меняет основную картину. И все же понятие локализованных частиц оказывается неуклюжим и даже противоречит само себе.

Если вы думаете, что частицы являются далеким и абстрактным понятием, то их поразительно легко можно увидеть своими глазами. Однажды вечером я спустился к себе в подвал с пластиковым стаканом, формочкой для кекса из фольги, бутылкой медицинского спирта и одним из тех аэрозольных баллончиков, которыми пользуются, чтобы удалить крошки с клавиатуры компьютера. Вдохновленный простотой экспериментов, которые я наблюдал у Гальвеза, и слишком большим количеством просмотренных серий «Секретного агента Макгайвера»[10], я решил создать из этих предметов домашнего обихода детектор частиц. Если распылять аэрозоль из баллончика больше одной-двух секунд, он может стать очень холодным — достаточно холодным, чтобы заставить пары алкоголя, находящиеся под перевернутой формочкой для кекса, конденсироваться вдоль траектории заряженных частиц, создавая что-то вроде крошечного инверсионного следа самолета.

Я работал над этой неуклюжей конструкцией в течение нескольких недель, безуспешно пробуя различные схемы, и в конечном счете объединив несколько идей, создал устройство проще некуда. Именно это и есть наука: часы, проведенные в расстройстве, перемежающиеся мгновениями восторга. Когда мой небольшой прибор наконец заработал, я увидел, как короткие белые полоски выдавали присутствие заблудших субатомных частиц, проносящихся через мой дом. Иногда их следы резко изгибались, что, возможно, указывало на столкновение двух частиц. Моя жена была счастлива, что я не разобрал стиральную машину.

Пластиковый стакан для коктейлей был миниатюрной версией гигантских детекторов частиц на Большом адронном коллайдере (БАК). Я побывал там летом 2007 г., когда строительство установки было близко к завершению. Я проехал на лифте 40 этажей вниз и вошел в подземный зал, достаточно большой, чтобы вместить целый собор. Он был напичкан оборудованием. Что внушало благоговейный страх больше всего, так это не размер аппарата, а огромное число кабелей для передачи данных. Приблизительно 2900 км этих проводков текли через зал, как миллионы притоков могучей реки. Прямо в центре проходит металлическая трубка, которая по ширине едва вмещает пару пальцев. Когда коллайдер работает, потоки протонов проносятся через нее, как велосипедисты в пелотоне. Некоторые из них сталкиваются, разбрасывая обломки по всему подземному залу.

C конца 1940-х гг. физики изображали столкновения частиц в виде контурных рисунков, называемых диаграммами Фейнмана в честь их изобретателя, лауреата Нобелевской премии Ричарда Фейнмана. Его метод чрезвычайно действенен и точен. Но еще и безжалостно труден. Диаграммы выглядят просто, но они всего лишь маскируют математическую позиционную войну. Цви Берн, преподаватель физики Калифорнийского университета в Лос-Анджелесе, который специализируется на этих вычислениях, говорит, что он поступил в аспирантуру, очарованный элегантностью метода Фейнмана, но вскоре опробовал его на собственной шкуре. «Я хорошо помню тот раз, когда впервые получил домашнее задание по курсу физики элементарных частиц, — говорит он. — Меня поразило, что кто-то действительно мог делать вычисления по диаграммам Фейнмана, не совершая ошибок. Это задание было не таким уж сложным по сравнению с тем, что вычисляют профессионалы, но после 20 страниц алгебраических выкладок я совершенно не понимал, как профессионалы делают это, не ошибаясь».

Эти вычисления вызывают тоску по двум причинам. Во-первых, при столкновении частиц огромно разнообразие потенциальных исходов. Например, столкновение двух глюонов — составных частей протонов, циркулирующих в БАК, — может привести к рождению какого угодно числа глюонов, от двух до бесконечности. Во-вторых, каждое из этих потенциальных конечных состояний может быть получено путем огромного разнообразия возможных промежуточных стадий. Например, два сталкивающихся глюона могут породить четыре глюона 220 различными способами, даже если не считать те обходные пути, которые они могли бы выбрать в процессе. Уравнения, которые получаются в итоге, содержат десятки тысяч алгебраических членов. И это еще простой случай. Пожалейте тех, кто рассматривает случай с восемью глюонами в конечном состоянии, поскольку они должны учесть 10 млн возможных промежуточных шагов. Даже компьютеры быстро доходят до предела своих возможностей.

Никто не идет в физику элементарных частиц, надеясь, что это будет легко. Наоборот, многих студентов этот предмет привлекает именно своей сложностью. Но если вы проходите через все это, то рассчитываете обнаружить нечто, окупающее ваши усилия. Но оно не обнаруживается. Эти десятки тысяч слагаемых в конечном счете сокращаются всего до четырех. Остальные взаимно уничтожаются. Слагаемое номер 2718 может, при ближайшем рассмотрении, оказаться таким же, как слагаемое номер 3142, но со знаком «минус» перед ним, поэтому они оба сокращаются. К сожалению, нельзя сказать заранее, какие слагаемые сократятся, так что нужно выписывать их все. Процедура кажется извращенно бессмысленной, немногим лучше исписывания доски в качестве наказания после уроков в школе. Несоответствие между трудностью вычислений и простотой ответа свидетельствует о том, что физики что-то упускают, как капитан полиции, который задерживает простых подозреваемых и не замечает парня с пистолетом в руке.

Одногруппники Берна выбросили из головы это адское домашнее задание, но он так и не смирился с ним. Он полагал, что должен существовать более удобный способ выполнения этих вычислений, и с головой погрузился в его поиски. Это было не самое умное решение в карьерном плане. Большинство физиков считали подобные вычисления работой подмастерья: полезной, но не требующей воображения. Потенциальные работодатели не посещали доклады Берна; один журнал отклонил его первую статью на эту тему как «не очень интересную». Прорыв произошел, когда Берн сделал доклад в Принстоне, и Виттен, известный струнный теоретик, благодаря которому Гиддингс передумал уходить из физики, подошел к нему после доклада, чтобы похвалить. После такого знака внимания Берн наконец получил работу. По его словам, такой опыт освобождает от юношеских романтических представлений о науке. «Наука делается не так, как я думал, — говорит он. — Я открыл, что в науке удача должна быть на вашей стороне».

Благодаря усилиям Берна и его коллег физикам больше не нужно выписывать те десять с лишним тысяч алгебраических членов, а можно сразу перейти к конечным четырем. Но почему старые методы были настолько неудачны и почему эти новые методы работают так хорошо? Другой теоретик, Нима Аркани-Хамед в Институте перспективных исследований в Принстоне, видит причину в нелокальности. Физики-теоретики известны силой характера, но Аркани-Хамед — это стихия. Он родился в Хьюстоне в 1972 г. Несколько лет спустя его отец, видный иранский геофизик, перевез семейство обратно в Тегеран, чтобы помочь в строительстве новой страны после падения шаха. Идеализм семейства быстро рассеялся. Они слишком часто критиковали аятолл, начали скрываться, чтобы избежать ареста и вероятной расправы, и спаслись бегством через турецкую границу верхом на лошадях.

Многие физики говорят, что они «взволнованы» тем или иным открытием. Но говорят это так безэмоционально, что нельзя не удивляться: если они ведут себя так, когда взволнованны, насколько ужасно должно быть, когда им скучно. Аркани-Хамед, напротив, говорит о самых простых вещах с таким воодушевлением, что кажется, он только что открыл потерянный ковчег Завета. Однажды он заставил меня восхищаться тем, что строка «1, 2, 3» может быть переписана как «3, 1, 2» или «2, 3, 1», демонстрируя, как много в физике сводится к тщательному подсчету возможных перестановок. Я помню, как стоял рядом с ним в перерыве конференции с чашкой кофе (похоже, всегда в его присутствии пьют много кофе), когда разговор превратился в стремительный внутренний диалог, в котором Аркани-Хамед давал сам себе ответы, в то время как остальные все еще пытались понять вопросы: «Я сделал это, я попробовал то, но это не сработало, но — о, погодите, возможно дело в том, — значит, мм, интересно, следует ли мне…»

«Физика никогда в жизни не внушала мне большего энтузиазма, — выпалил он, когда я впервые поинтересовался новыми методами вычисления. — Происходит что-то действительно захватывающее, я думаю, это могло бы в конечном счете изменить наши представления как о пространстве-времени, так и о квантовой механике… Все это стремительно развивается прямо сейчас благодаря группе порядка 15 человек во всем мире, работающих над этим день и ночь». В 2013 г. их усилия увенчались созданием полноценной альтернативы диаграммам Фейнмана.

Аркани-Хамед считает, что проблема диаграмм Фейнмана в их нарочитой локальности. Они изображают частицы взаимодействующими друг с другом в определенных положениях в пространстве и времени. Диаграммы выглядят обнадеживающе похожими на следы частиц, которые они оставляют в детекторе вроде пластикового стакана у меня в подвале. Именно поэтому физиков и привлек подход Фейнмана. И все же трясина вычислений создает этому свойству диаграмм дурную славу. Локальность напрямую ответственна за появление огромного количества алгебраических членов в расчетах. «Раз вы настаиваете на том, что теория локальна, — говорит Аркани-Хамед, — то в наказание получаете десяток тысяч слагаемых». Считая каждую точку пространства строго независимой от всех остальных, метод Фейнмана преувеличивает сложность мира. Большая часть того, что появляется на диаграммах, не существует в реальном мире, например «виртуальные» частицы и «духовые» поля. Теоретикам приходится вводить специальные правила, чтобы убедиться, что эти незваные гости не останутся на десерт.

Вместо того чтобы считать локальность отправной точкой, Аркани-Хамед, Берн и их коллеги предполагают, что частицы удовлетворяют определенным законам симметрии, и в результате уравнения получаются намного более простыми. Частицы все равно подчиняются принципу локальности, единственная разница в том, что эта теория получает локальность из более глубоких соображений, вместо того чтобы требовать ее в качестве предварительного условия. Такой подход сочетает скромность с великим замыслом. Эти теоретики не намеревались создавать новую теорию частиц, а просто хотели оптимизировать уже существующую. Их уравнения не предсказывают ничего экзотического, а только облегчают описание того, что мы уже знали.

Исторически такие переформулировки были чрезвычайно существенными. Это обнажает один замечательный факт о теориях в физике. Они не являются фиксированными структурами, а обладают своего рода неизъяснимым бытием за рамками любого конкретного набора уравнений, которыми физики пользуются для их описания, подобно истории, допускающей пересказы с весьма различными обстоятельствами и персонажами, но все равно безошибочно узнаваемой, или музыкальному произведению, которое можно аранжировать по-новому, подчеркнув незамеченные прежде особенности или, наоборот, лишив несущественной мишуры. Пожалуй, самый знаменательный случай такой переформулировки произошел, когда Николай Коперник поместил Солнце, а не Землю в центр Вселенной. В то время его модель была не более чем математической переформулировкой старой геоцентрической системы, и астрономы приняли ее в качестве упрощенного способа составления календарей и схем движения планет. Однако новое представление о космосе вызвало вопросы, которые были бессмысленны при старом. Что заставляет брошенные предметы падать? Орбиты планет должны быть круговыми или они могут быть продолговатыми? Может ли космос быть бесконечным? Работа Коперника, возможно, не была революционной, но она побуждала к революции.

Как видите, лень приносит свою пользу. Люди, которые пытаются уменьшить объем работы, являются движущей силой нововведений. Аркани-Хамед надеется, что заново сформулированная теория частиц вернет к жизни поиск объединенной теории физики. Как только вы перестаете предполагать, что мир вращается вокруг локальности, все начинает вставать на свои места.

Какой принцип должен заменить локальность? Если мир в действительности не состоит из локализованных частиц, то из чего он все-таки состоит? Пока никто не знает. Но теперь у физиков есть направление дальнейшей работы. Если Эйнштейн опасался, что нелокальность приведет к коллапсу современной физики, то Аркани-Хамед считает, что она знаменует ее возрождение. «В детстве именно это и представляешь, когда думаешь о том, что значит заниматься теоретической физикой», — говорит человек, который на самом деле так и остался ребенком.

Как мы видим, нелокальность вылезает повсюду: в экспериментах в квантовой области, в парадоксах черных дыр, в крупномасштабной структуре Вселенной, в водовороте столкновений частиц. Во всех этих примерах физика заходит в сумеречную зону. Объекты могут обгонять свет; причина и следствие могут меняться местами; расстояние может терять свой смысл; два объекта могут на самом деле быть одним. Вселенная становится пугающей.

Хотя эти виды нелокальности появляются в разных контекстах, они обладают удивительной схожестью, которая подсказывает, что физики ощупывают разные части одного и того же слона. Аркани-Хамед, например, считает, что тот тип нелокальности, который появляется в его теории, может включать в себя квантовую запутанность. «Нельзя исключать того, что должное понимание этих вещей приведет к новому толкованию квантовой механики, а не только пространства-времени, — говорит он мне. — Не исключено, что в этом новом видении может быть какое-то новое представление о смысле запутанности». Это работает и в обратную сторону. Гиддингс и другие ученые думают, что квантовая запутанность может быть тем клеем, который скрепляет пространство. Связи между запутанными частицами даже могут создавать что-то вроде тайных туннелей между пространством внутри черной дыры и пространством вне ее. В следующих главах мы рассмотрим эти завораживающие идеи.

«Сорванная крыша» — профессиональное заболевание в физике. Это профессия, где цель — смотреть за декорации и видеть мир, который проще, чем кажется, и очень далек от нашего повседневного опыта. Впрочем, физики и философы сталкиваются с такими загадками не впервые. Во многом история локальности — это история физики в целом.

2. Истоки нелокальности

Что же такого особенного в нелокальности? Почему ученые не могут отправить нелокальность на ту же свалку, где лежат флогистон, вихревая модель атома и другие красивые гипотезы, убитые прозой жизни? Почему нелокальность побуждает к таким мелодраматическим выпадам, как «конец рациональности физики», «несовместимо с самой возможностью научной деятельности», «чепуха»? Понятно, что нарушение локальности — это не то, что постоянно встречается в водовороте идей, не то, от чего можно отшутиться за пивом после работы. Чтобы понять, почему это так, нужно погрузиться в историю физики, поскольку нелокальность угрожает самой сути того, что мы понимаем под физикой.

Физика не похожа на другие науки. Если вы попросите геологов, биологов или астрономов дать определение своему предмету, они могут показать на скалы, ползучих тварей или мерцание в ночном небе. Физики же начинают показывать на все вокруг; они неразборчивы. С равным успехом их можно увидеть за изучением способов укладки белков в биологии, колебаний финансовых рынков и столкновений крошечных частиц. Их дисциплина больше определяется целями, чем предметом изучения. На чем бы они ни сосредотачивались, физики ищут простоту в сложности и единство в многообразии. Как и философами, их интеллектуальными собратьями, ими движет убежденность в том, что Вселенная подвластна человеческому пониманию и что, если смотреть дальше ее разнообразия и запутанности, можно обнаружить понятные правила.

Опять же, как и философы, физики обращаются к истории за подсказками, каковы должны быть эти правила и, как следствие, их дисциплина. Физики обладают репутацией самых дальновидных ученых, настолько опережающих технологическую кривую, что это они создают эту кривую. Физики могут законно считать своей заслугой почти каждый имеющийся у нас гаджет. И все же, мне кажется, они смотрят в прошлое не меньше, чем в будущее. Для них обычное дело — сослаться на разработки, сделанные столетия назад, или углубиться в чтение биографии какой-нибудь знаменитости в предположении, что нельзя продвинуться вперед, пока не узнаешь, как ты попал туда, где находишься сейчас.

И действительно, общие стандарты простоты и понятности оставались для физиков удивительно постоянными на протяжении веков. Их интеллектуальные предшественники в Древней Греции стремились описать Вселенную как гигантскую игру в бильярд. Шары — базовые элементы мира — летают повсюду, соударяются друг с другом и отскакивают в бесконечной цепной реакции. Эти взаимодействия строго локальны: до касания шары не воздействуют друг на друга. Хотя по отдельности они просты, шары и их соударения настолько многочисленны, что порождают богатое разнообразие и сложность мира. В какой-то мере авторы такого описания не имели права ожидать, что оно отразит хоть какую-то часть реальности. В течение последующих тысячелетий описание полностью поменялось в деталях, но его основные принципы сохранились. В особенности принцип локальности.

Несомненно, даже древние греки были хорошо знакомы с исключениями из этого принципа. Они еще не знали ни квантовых частиц, ни черных дыр, но им было известно о других эффектах, которые казались нелокальными, в частности те явления, которые мы теперь связываем с гравитацией. Но древние не придавали исключениям большого значения. Большинство из них полагали, что примеры видимой нелокальности были просто ложным впечатлением, и ждали, пока какой-нибудь умный человек объяснит их локально происходящими процессами. Отказ от локальности был бы эквивалентен отказу от физики.

Озадачивает, однако, то, что Исаак Ньютон поступил именно так. Чтобы объяснить гравитационные явления, он отказался от физики, по крайней мере от того, что было физикой в то время. Благодаря этому его помнят как самую великую фигуру Революции в науке, интеллектуальной закваски XVII в., из которой появилась наука в том виде, в каком мы знаем ее сегодня. И реакция, которую первоначально вызвала теория гравитации Ньютона, поразительным образом похожа на то беспокойство, которое выказывают в связи с нелокальностью.

Франс ван Люнтерен, историк науки из Лейденской обсерватории в Голландии, которая является одним из самых легендарных научных учреждений в Европе, вспоминает, насколько он был встревожен, когда узнал о законе тяготения Ньютона. Школьный учитель объяснил, что яблоки падают и планеты держатся около Солнца, потому что все во Вселенной притягивает все остальное. По представлению Ньютона, эта сила действует на расстоянии мгновенно. Поднимите палец на Земле, и все далекие планеты во Вселенной немедленно вздрогнут (слегка). Сила притяжения перескакивает от Земли к яблоку и от пальца к планетам, минуя пространство между ними.

Именно это показалось ван Люнтерену очень странным, когда он был подростком. «Мне было трудно понять, как глыба грубой материи — скажем, скала — могла влиять на какую-то другую материю в глубине космоса, особенно когда пространство в промежутке между ними пустое», — говорит он. Но ван Люнтерен решил, что если он не понял этого, то по причине собственного недомыслия. «Для меня было вполне привычно упускать суть чего-нибудь», — признается он. Только повзрослев, он узнал, что эта странная особенность силы гравитации известна под названием «нелокальность».

В то время ван Люнтерен не интересовался историей. Он бросил ее, чтобы сосредоточиться на математике и физике. Но в колледже уроки физики его разочаровали. Они состояли из сплошных уравнений, на них не было места рассказу о том, что именно означали все эти x и y на самом деле. «Большинство преподавателей начинали с дифференциального уравнения в верхней левой части доски и затем выводили из него поперечное сечение или какую-нибудь другую измеримую величину в правой нижней части доски, не желая рассказывать о физике ничего интересного», — вспоминает он. Ван Люнтерен стал прогуливать занятия, вместо них он читал французские и русские романы, подрабатывал, путешествовал автостопом в Стамбул. В своих интеллектуальных исканиях он узнал о странных квантовых явлениях, которые так беспокоили Эйнштейна. Когда ван Люнтерен вновь почувствовал тягу к студенческой жизни, оказалось, что его привлекает история. Он увидел в ней способ изучения глубоких интеллектуальных вопросов, которые игнорировались его преподавателями физики. Как и философ Тим Модлин, ван Люнтерен понял: чтобы любить физику, ему нужно ее оставить.

В поисках темы для докторской диссертации он вернулся к нелокальности ньютоновской силы тяготения, которая привела его в замешательство в подростковом возрасте. Ван Люнтерен обнаружил, что не случайно был озадачен — те, кто слепо принял теорию, упустили суть. Нелокальность не давала покоя самому Ньютону, как, впрочем, и его коллегам. Она казалась псевдонаучной, вроде астрологии или чудодейственных лекарств. Один французский математик жаловался: «Мы снова ввергнуты в древнюю тьму». Ван Люнтерен говорит: «Мне бы помогло, если бы наш школьный учитель добавил, что многие великие современники Ньютона сочли эту идею трудно перевариваемой и даже непостижимой». Так что свою диссертацию он посвятил тому, как ученые пытались оправдать ньютоновское дальнодействие.

В конечном итоге ученые не были ввергнуты во тьму. Они переключились. Поколение, выросшее с ньютоновской гравитацией, считало эту теорию абсолютно естественной. В течение многих тысячелетий естествоиспытатели отмахивались от нелокальности, а в XVIII в. они приняли ее. Проще говоря, они были за локальность до того момента, когда стали против нее. И как только ученые привыкли к ньютоновской нелокальности, произошел еще один поворот на 180 градусов — новое поколение вернулось к мысли о том, что мир должен быть (просто обязан быть) локальным, тем самым поставив нас в затруднительное положение.

Механистическая Вселенная

Эти исторические перипетии начались с одной из самых известных встреч в истории западной мысли, с события, которое было бы здорово увидеть своими глазами, вернувшись в прошлое, имей мы машину времени. Согласно рассказу Платона, в 451 или 450 г. до н.э. Парменид, ведущий философ того времени, и его самый известный ученик Зенон отправились в Афины из своего родного города Элея в южной Италии. Они остановились в доме выдающегося политического деятеля сразу за городскими стенами. Однажды к ним заглянул не кто иной, как подающий надежды молодой афинский философ Сократ.

Само понятие философии (как в Греции, так и во втором месте ее зарождения, Китае) существовало тогда всего лишь на протяжении жизни нескольких поколений. Это был принципиально новый способ понимания того, что происходит в мире. В повседневной жизни, когда мы спрашиваем «почему?», цель обычно заключается в том, чтобы узнать побудительные причины, заставившие человека сделать то, что он сделал. Традиционная мифология распространяла этот образ мышления и на мир природы. Почему произошло землетрясение? Потому что Посейдон рассердился на осквернение его храма. Такие объяснения не проводят различия между локальностью и нелокальностью. Иногда боги действуют нелокально (они могут щелкнуть пальцами и добиться своего), а иногда они действуют локально (отправляют посланника, чтобы вершить свою волю). Для мифологии это незначительная деталь.

Философы были теми, кто считал эти рассказы, завязанные на персонажах, неудовлетворительными. Даже если допустить существование Посейдона, как он мог вызвать землетрясение? Какие правила определяли его возможности? Философов не волновал повод — они хотели знать механизм. Категории локальности и нелокальности приобрели новое значение. Естественно-исторические объяснения, как правило, локальны. По опыту вы знаете, что передвинуть что-то силой воли невозможно — для этого нужно подойти и приложить усилие или отправить кого-то, чтобы он сделал это за вас. Первый философ, которого мы знаем по имени Фалес, предположил, что землетрясения происходят потому, что суша плавает в подземном океане как неустойчивая лодка, иногда покачиваясь туда-сюда. Причина напрямую связана со следствием.

Но локальность вызывала у Парменида тошноту. Он был не так уж уверен в том, что мы можем доверять повседневному опыту, и в том, что можно разделить мир на части и постигать его кусочек за кусочком. Защищая этот тезис перед Сократом в Афинах, Зенон утверждал, что локальные понятия, такие как движение, изменение и индивидуальность, приводят к логическим парадоксам. В истории сохранилось девять таких парадоксов; десятки других, возможно, затерялись в веках. Самым глубоким и оказавшим самое большое влияние был парадокс абсолютной делимости. Если некоторый объект можно разделить на две части, затем на четыре, на восемь и так до бесконечности, то в конечном итоге он будет состоять из геометрических точек, каждая из которых не имеет размера. Когда вы захотите собрать этот предмет обратно, вы столкнетесь с проблемой, поскольку никакое число точек, не имеющих размера, не составит в целом что-то, имеющее размер. Из этого Зенон делал вывод, что действительность на самом деле нельзя разделить на части.

Сократ жаловался, что все это было выше его понимания. Доводы Зенона «отрицают самоочевидную вещь», как писал один греческий философ более позднего периода. Но именно поэтому они вызывали такое сильное беспокойство. Утверждать, что ничто не состоит из более мелких кусочков, казалось безумием, однако рассуждения выглядели основательно. В том доме в Афинах Парменид и Зенон положили начало интеллектуальному кризису. В течение многих десятилетий после этого люди проезжали пол-Греции, чтобы своими ушами услышать споры, которые за этим последовали.

Современные математики считают, что Зенон был в целом прав: что-то теряется, когда вы делите непрерывный объект на бесконечно малые части. Число геометрических точек в континууме неисчислимо — в буквальном смысле неисчислимо. И если вы не можете посчитать их, то не можете и сложить вместе. Наша обычная интуиция, подсказывающая, что целое является суммой своих частей, здесь не работает. У континуума нет никакого присущего ему масштаба; размер набора точек не получается из размера каждой точки, он должен определяться отдельно. «Одно из толкований парадоксов Зенона состоит в том, что в принципе невозможно получить физический масштаб из континуума», — говорит физик-теоретик Фэй Даукер из Имперского колледжа Лондона.

Хотя физики примирились с континуумом, многие все еще считают эту идею нарушающей порядок. Великий физик Ричард Фейнман писал: «Меня беспокоит, что, согласно физическим законам, как мы понимаем их сегодня, компьютеру требуется бесконечное число логических операций для расчета того, что происходит в любой сколь угодно крошечной области пространства за любой сколь угодно крошечный период времени. Как все это может происходить в такой крошечной области пространства? Почему должно требоваться бесконечное количество логических операций для выяснения того, что будет происходить с одним крошечным кусочком пространства/времени?»

Затруднения такого рода заставили многих греческих философов предположить, что материя не бесконечно делима, но состоит из дискретных строительных блоков. Атомисты как в воду глядели. Когда читаешь их записи, которые сохранились до наших дней, кажется, что это учебник физики для первокурсников в стихотворной форме. Педанты могут фыркнуть и сказать, что античные атомы были совсем не похожи на современные, но общая концепция устройства мира, разработанная Демокритоми другими философами в V в. до н.э., была удивительно близка к той, которая сложилась в современной физике. Все, что происходит в природе, утверждали атомисты, получается из формы, движения и пространственного расположения крошечных строительных блоков. Они верили, что все чувства, которыми мы наслаждаемся, — вкус, цвет, запах — порождаются потоками атомов, которые извергаются объектами и сталкиваются с нашими телами. Вид предметов буквально лезет в глаза, горечь пронзает язык.

Понятие пространства придумали атомисты. Они были первыми философами, которые утверждали, что материи необходимо место, чтобы в нем существовать и перемещаться. Один из преемников Демокрита, Лукреций, писал: «Вот почему несомненна наличность пустого пространства:/Без пустоты никуда вещам невозможно бы вовсе/Двигаться было»[11]. Пространство определяет положение, скорость, размер и форму атомов. Оно бесконечно во всех направлениях и заполнено неисчислимым разнообразием миров. Эта космологическая картина, радикальная для своего времени, оказалась решающей в конечном триумфе атомизма.

Если бы атомы были атлетами, а пространство — игровой площадкой, локальность играла бы роль свода правил. Как и современные физики, атомисты различали два аспекта локальности. Во-первых, пространство отделяет атомы друг от друга и обеспечивает каждому из них индивидуальность. Это принцип отделимости, который Эйнштейн считал важнейшим для физики и который квантовая физика, похоже, нарушает. Во-вторых, пространство диктует, как атомы влияют друг на друга. Атомисты полагали, что атомы взаимодействуют только при прямом контакте. Пока атомы не столкнутся, они движутся в пространстве по прямым траекториям, независимо от присутствия друг друга. Это ранняя версия принципа локального действия, который Эйнштейн формализовал в своей теории относительности. Он позволяет объяснять любое событие как результат более ранних событий.

Атомисты не приводили никаких реальных доводов в пользу локальности. Они даже не выдвинули ее как предварительную гипотезу, которую нужно подтверждать в экспериментах, — у них еще не было понятия эмпирической науки. Вместо этого они сочли локальность очевидной истиной, поскольку воздействие тел друг на друга на расстоянии разорвало бы причинно-следственную связь событий. Это сделало бы Вселенную непостижимой.

Атомизм был первой «теорией всего». Несмотря на ряд пробелов, едва ли существовало жизненное, погодное или небесное явление, которому атомисты не придумали бы объяснения. Они были основоположниками механистической картины мира, представления о Вселенной как о часовом механизме. Современные термины, такие как «квантовая механика», отражают это наследие. Безусловно, сам Демокрит не думал о машинах, эта аналогия появилась столетия спустя, когда машины стали более привычным явлением. Когда философы и ученые говорят о механизме, они всего лишь имеют в виду систему взаимосвязанных элементов, а не хитрую конструкцию, собранную с некоторой целью. То, что атомы делают, дает им предназначение, не наоборот. Отдельные атомы безжизненны, безвольны и неодушевленны. Если один из них перемещается, то только потому, что другой атом был этому причиной. Такое отсутствие цели и смысла оттолкнуло большинство современников Демокрита. Платон хотел сжечь его книги. По сей день физика создает у многих людей — даже у физиков — впечатление холодной, абстрактной, бесчеловечной науки.

Возможно, так и есть. Но она также раскрепощает нас. Атомизм вышел за рамки человеческого опыта. Старые мифологические толкования объясняли землетрясения эмоциями: одно сложное явление — другим сложным явлением (да и можно ли считать это объяснением?). Это не более чем перекладывание ответственности. Настоящее объяснение должно разбивать что-то на более простые части и показывать, как они взаимодействуют, чтобы получилось это что-то. Кому захочется вернуться к мыльной опере греческой мифологии, в которой города разрушались и голод обрушивался на земли из-за любовных похождений Зевса? Как отмечал литературный критик Стивен Гринблатт в своей книге «Ренессанс»[12], получившей Пулитцеровскую премию, последователи Демокрита создали полностью атеистическую философию в духе «живи сегодняшним днем», в которой люди сами создают смысл своей жизни. Лукреций писал: «Природа свободной/Сразу тебе предстает, лишенной хозяев надменных,/Собственной волею всё без участья богов создающей».

Самый известный философ античности нашел компромисс между атомистами и их хулителями. Насколько мог видеть Аристотель, мир кишит жизнью, и жизнь имеет смысл, следовательно, логично предположить, что неодушевленные предметы также служат какой-то цели. Яблоко падает в направлении центра Земли, потому именно там оно и должно быть, согласно великому замыслу. Его движение самопроизвольно и не требует внешней причины. Аристотель также вернулся к идее о том, что звездами и планетами управляют одни законы, а яблоками и стрелами — другие. А еще он отверг утверждение атомистов о том, что объекты состоят из неделимых частей. Несмотря на парадоксы Зенона, Аристотель думал, что материя непрерывна, и разработал сложную теорию континуума, которая предвосхитила современную математику. Свойства объектов не могут сводиться к расположению атомов.

Аристотель питал отвращение к пустоте. Объекты, по его замыслу, соединяются друг с другом как кусочки пазла без каких-либо пустот между ними, и положение данного объекта определяется относительно соседних объектов, а не какой-то абстрактной структуры, существующей независимо от материи. Поскольку даже «пустое» пространство уже набито всякой всячиной, свет не может быть потоком атомов, перемещающихся в пространстве от яркого объекта к нашим глазам. Вместо этого Аристотель считал, что свет — это импульс, передающийся через среду. Яркий свет передает энергию среде непосредственно рядом с собой, и волна преобразования распространяется через пространство непрерывным движением, как легкая волна на поверхности пруда. Ни одна частица не перемещается; вместо этого каждый маленький кусочек среды передает импульс следующему — как дети, играющие в игру «испорченный телефон». Современники Аристотеля в Китае также представляли мир в виде непрерывной среды, ци.

Если уж на то пошло, образ мыслей Аристотеля в большей степени соответствовал наблюдениям, чем атомизм. Тем не менее Аристотель не пытался давать определенных предсказаний, которые могли бы подтвердить или опровергнуть его теорию. Как и Демокрит, прежде всего он стремился сделать Вселенную постижимой.

Несмотря на все отличия, теория Аристотеля позаимствовала многие существенные черты атомизма, включая локальность. Мир рассматривался в ней как система объектов, взаимодействующих исключительно при соприкосновении. Чтобы объект отклонился от своего естественного направления движения, что-то должно толкнуть его. Аристотель писал: «Непосредственный фактор изменения положения тела должен либо соприкасаться, либо образовывать непрерывное целое с перемещаемым объектом, согласно нашим наблюдениям, дело всегда обстоит именно так». Так же, как и атомисты, Аристотель пытался разработать теорию пространства. С его точки зрения, наличие положения было определением существования; отсутствие такового — определением небытия. Он писал: «То, что не существует, нигде не находится. Где, например, находится полукоза-полуолень или сфинкс?»

Хотя Аристотель писал, что локальность верна всегда, он приводил несколько исключений. Эти аномалии известны со времен Фалеса, который отметил один из многих странных камней на нашей планете, естественный магнит, и его способность притягивать кусочки железа. В одной из областей в северной Греции, известной как Магнисия, были крупные месторождения этого минерала, благодаря чему появилось название, под которым мы знаем такие материалы сегодня: магниты. Фалес также восхищался янтарем, кусочек которого, если энергично потереть его о ткань, заставляет волосы вставать дыбом. По-гречески янтарь — elektron, отсюда произошло слово «электрический». Китайские ученые обнаружили эти явления примерно в то же самое время, однако они быстрее своих западных коллег нашли магнетизму практическое применение.

Греки не могли объяснить, как магнетит и янтарь влияли на объекты, которых они не касались. Хуже того, это влияние заключалось в притяжении. В мире, где воздействие происходит только при прямом контакте, объекты взаимодействуют только одним способом: они сталкиваются друг с другом и отскакивают, как бильярдные шары. Они отталкивают, не притягивают. Попытка объяснить, как отталкивание переходит в притяжение, поставила философов в тупик. Атомисты думали, что эти вещества испускают пары, которые вытесняют воздух вокруг них, создавая область низкой плотности, в которую устремляется окружающий воздух, увлекая железо или волосы за собой. Аристотель решил эту проблему проверенным временем способом: проигнорировал ее.

Магнетизм и статическое электричество были не единственной головоломкой. Наблюдались также явления, причиной которых в наши дни считается гравитационное притяжение, такие как падение тел, океанские приливы и движение планет по орбитам. Аристотель не видел между ними связи. С его точки зрения, падение — это просто привычка тел, приливы происходят из-за ветров, порождаемых солнечным теплом, а планеты катятся по гигантским вращающимся прозрачным сферам. Атомисты связывали эти явления воедино и объясняли их структурой Солнечной системы. По их мнению, потоки частиц кружатся в космосе, создавая вихри, в которых скапливаются планеты, как груда листьев, попавших в речной водоворот. Если тело не поспевает за круговым потоком, окружающие частицы подталкивают его внутрь. «Упасть» — значит быть увлеченным в сторону центра вихря. Говоря кратко, тяготение — это не сила притяжения, как потом стали думать ученые; это прямое физическое воздействие, толчок сверху.

Теория Аристотеля имела вес в буквальном смысле: в переводе на английский сохранившиеся до наших дней труды занимают 6000 страниц. Греко-римские ученые и ученые исламского мира основывались на его работах, но бо́льшая их часть была потеряна или забыта на фоне общего угасания европейской интеллектуальной жизни в начале Средних веков. Никаких крупных достижений в понимании локальности не было на протяжении еще двух тысячелетий. Европейские писцы начали заново открывать Аристотеля в XII в., причем окольными путями, через латинские переводы с арабского, и это знание настолько затмевало все известное им, что, должно быть, походило на энциклопедию, забытую на Земле пришельцами из более развитой цивилизации. Они расшифровали и перевели эти 6000 страниц, а потом на протяжении веков анализировали их, критиковали и увязывали с христианскими верованиями — эта деятельность получила название «схоластика». Все, что интересовало Аристотеля, интересовало и их. Аристотель считал, что пространство играет важную роль, поэтому и они думали, что пространство играет важную роль. Аристотель придерживался принципа локальности, поэтому и они придерживались принципа локальности. Они полагали, что даже Бог не мог избежать локальности, хотя этот принцип в его случае был чисто теоретическим: Бог существовал всюду, следовательно, он автоматически был в прямом контакте со всем. «Никакое воздействие, каким бы могущественным оно ни было, не совершается на расстоянии, кроме воздействий через среду, — писал выдающийся философ-схоласт Фома Аквинский. — Но это свойственно великой силе Бога, Он напрямую воздействует на все вещи. Следовательно, ничто не находится далеко от Него».

Однако чем больше ученые вдумывались в теорию Аристотеля, тем больше разочаровывались, поэтому они расширили масштабы своей деятельности от восстановления идей Аристотеля до их усовершенствования. То, что Аристотель не объяснял магнетизм и статическое электричество, было заметным слабым местом. В конце 1500-х гг. английский врач Уильям Гильберт (который позже служил личным врачом королевы Елизаветы I) показал, что магнит притягивает железный брусок, даже если поместить между ними что-то, создающее препятствие любым предполагаемым парам или посредникам. Казалось неоспоримым, что магниты воздействуют на расстоянии. Гильберт никак не мог найти естественного объяснения и склонялся к сверхъестественному: магнит «похож на живое существо», и он притягивает железо в процессе «соития».

Аристотелева космология также казалась многим сомнительной. Разве Вселенная могла быть конечной по размеру и ограничиваться гигантской вращающейся прозрачной сферой? У такой сферы не было бы внешней точки отсчета, чтобы определять ее вращение. В начале 1500-х гг. именно эта несогласованность вдохновила Николая Коперника поместить Солнце, а не Землю в центр Солнечной системы. С его космической заменой вся Аристотелева система начала рушиться. Аристотель говорил, что тела падают вниз, потому что таково направление к центру Вселенной. В гелиоцентрической системе мира это уже неверно. Таким образом, Коперник создал стимул для альтернативного объяснения тяготения. Поскольку центр Вселенной больше не задавал направление движения тел, Вселенная могла не иметь центра вообще. Она могла быть бесконечной в полном соответствии с основополагающим принципом атомизма. Заново открыв также работы Лукреция, многие ученые сообразили: устройство космоса было доказательством существования атомов. Это был не последний раз, когда философы и физики узнавали о малом, изучая большое.

Атомизм достиг расцвета во времена Рене Декарта в середине XVII в. Сегодня Декарта помнят как автора утверждения «Я мыслю, следовательно, существую» и Декартовых координат, используемых на миллиметровке. Но это всего лишь два элемента грандиозного проекта — попытки превзойти самого Аристотеля. Декарт писал другу: «Я решил объяснить все явления природы, т.е. всю физику». И он преуспел: его теория была первой за 2000 лет новой теорией всего, которая могла претендовать на такую же всесторонность, как и Аристотелева. Декарт полностью объединил систему мира Коперника с механистической философией, и его идеи послужили манифестом Революции в науке.

Декарт подчеркивал различия между собственной теорией и классическим атомизмом, возможно, чтобы обосновать свою претензию на новизну, но преемственность очевидна. Мир состоит из частиц, взаимодействующих в пространстве. Тело не имеет непостижимых врожденных свойств или склонности искать свое законное место во Вселенной, как полагал Аристотель. Это просто геометрическая фигура. У нее есть размер и форма, но нет цвета, текстуры или массы. Зная всего несколько чисел (Декартовы координаты), чтобы указать положение тела, вы знаете о нем все, что только можно знать. Едва ли все могло быть проще.

Целью Декарта была постижимость: сделать тайны природы абсолютно прозрачными. Локальность была необходима для достижения этой цели. Тела взаимодействовали строго локально: они двигались свободно и прямолинейно, пока не столкнутся одно с другим; только тогда они изменяли направление движения. Как Демокрит и Аристотель, Декарт не предложил серьезных доказательств этого принципа. «Такие вещи не требуют доказательств, потому что они очевидны сами по себе», — писал он. В повседневной жизни нам приходится дотрагиваться до предметов, чтобы заставить их совершить что-то, и Декарт предположил, что контактное воздействие определяет и все остальное во Вселенной. Проблема заключалась в том, что это не так. Декарт проделал такую тщательную работу по применению принципа локальности, что ненамеренно показал степень его несостоятельности.

Например, Декарт поддерживал старое атомистическое представление о тяготении как о толчке сверху. В его теории планеты находятся в центре космических воронок, вихревые движения которых направляют частицы в сторону их центра. Что касается объяснения того, почему движения планет согласованы между собой, то в представлениях Декарта было много правды. Он почти правильно описывал форму Солнечной системы и предвосхитил современные теории формирования планет. Но его теория была ошибочна в деталях. Помимо многих других недостатков она подразумевала, что тела должны падать в направлении оси вращения Земли, где вихревые движения исчезают, а не к ее геометрическому центру. Если бы это было правдой, то яблоко, брошенное недалеко от Северного полюса, «падало» бы вбок, а не прямо вниз. Что касается магнетизма и статического электричества, то Декарт объяснял их частицами в форме крошечных винтов или рычагов. Об этой идее можно сказать лишь то, что она достойна приза за изобретательность.

Был ли механистический взгляд на Вселенную в целом правильным и требующим лишь кое-каких уточнений? Или его надо было отбросить? Это дилемма, с которой ученые борются всякий раз, когда натыкаются на исключения из какой-нибудь теории. Рассудительные люди не соглашаются с ним, но ответ очевиден только в ретроспективе, да и то далеко не всегда. В данном случае на кону было куда больше, чем одна теория. Бросить вызов механистической теории и ее центральному допущению о локальности означало бросить вызов науке вообще. Если допустить ее несостоятельность, значит ли это признать, что мир неподвластен разумному осмыслению? В некотором смысле удивительно, но ответ — «да». Чтобы «починить» механистическую теорию, участники Революции в науке должны были выйти за пределы самой науки: в область волшебства.

Волшебство в механицизме

Если в школе вы что-то и узнаёте о науке, то это знание ограничивается тем, что наука — противоположность волшебства. Начиная с Древней Греции философы и ученые пытаются открыть людям глаза на безумства, в которые они верят: гомеопатия, гороскопы и гадания — это если взять только слова на букву «г». Но как тогда объяснить тот факт, что многие из величайших ученых в истории потратили кучу времени на занятие магией? Ньютон устроил алхимическую лабораторию в сарае в саду и собрал одну из лучших библиотек в мире по этой теме.

Я не проводил серьезного исследования, но большая часть знакомых мне ученых увлекались сверхъестественным в какой-то момент своей жизни. Я сам прошел через это в колледже, где читал все подряд о внетелесном опыте, что только мог найти, а позже узнал, что даже Ричард Фейнман увлекался этим. В одном известном учреждении, называть которое не буду, я вошел в исследовательскую группу по похищениям пришельцами, организованную аспирантами и докторами наук. Много «похищенных» пришло в университетский городок, чтобы рассказать свои истории. Если уж на то пошло, мы хотели, чтобы нас убедили, но в итоге большинству так и не хватило доказательств.

Ну, никто из нас не идеален — так обычно ученые интерпретируют этот интерес. Но в середине XX в. историки науки поняли, что магические идеи были слишком распространенными, чтобы списать их на порывы юности или слабоумие конца карьеры. Некоторые дошли даже до утверждения, что современная наука в равной мере продукт магии и механицизма. Именно эти два эмоциональных импульса движут исследователями: восхищение невероятным и стремление пробиться через бакалавриат.

Большинство из нас ассоциируют магию с волшебными палочками и преподавателями зельеварения, издевающимися над своими учениками, но на самом деле это целая мистическая система взглядов. В западной культуре самые влиятельные системы — неоплатонизм, герметизм и гностицизм — возникли во II и III вв. н.э. как ответная реакция на ортодоксальную греко-римскую религию, в которой, как казалось некоторым, слишком много разума и мало сердца. Эти системы, которые смешивались с ранним христианством и еврейской мистической традицией каббалы, вернулись к более древним идеям, таким как представление Парменида о единстве природы и отвращение Платона к механистическим объяснениям. Они сохраняют влияние по сей день.

Приверженцы этих учений отошли от центрального принципа механистической философии, который гласит, что Вселенная в конечном счете проста и постижима. Они рассматривают космос не как часовой механизм, сделанный из неодушевленных деталей, но как органическое единство за пределами нашего понимания. За той действительностью, которую мы наблюдаем, находится скрытый, или «оккультный», уровень, который не является ни простым, ни постижимым. Объекты обладают необъяснимыми свойствами и возможностями, которые проникают на этот более глубокий уровень и которые можно использовать, изобретая заклинания и зелья. В одном из основных европейских руководств по магии времен Ренессанса Корнелиус Агриппа объяснял: «Их называют скрытыми свойствами, потому что их причины покрыты тайной и человеческий интеллект не может каким-либо образом постичь и узнать их». (Имя Агриппы должно показаться знакомым поклонникам Гарри Поттера: он появлялся там в качестве знаменитости на карточке из шоколадной лягушки.)

Нелокальность была важной частью этих верований. Запутанная сеть связей объединяет вещи, которые могут казаться несвязанными. Мелочи могут влиять на что-то большое; находящееся в одном месте может влиять на то, что находится в другом месте. Эти нелокальные влияния действуют в определенной мере как человеческие эмоции: части Вселенной буквально нравятся или не нравятся друг другу, создавая всепроникающую сеть симпатий и антипатий. Один из первых антропологов, изучавших магические верования, Джеймс Фрезер, в 1911 г. описал два основных принципа: «Во-первых, подобное создает подобное, или результат напоминает свою причину; и, во-вторых, вещи, которые когда-то находились в контакте, продолжают действовать друг на друга на расстоянии после того, как физический контакт прекратился». Такие влияния кажутся самим определением сверхъестественного, но Агриппа думал, что они абсолютно естественны, и считал их нашей мимолетной возможностью узреть лежащее в основе всего единство физического мира. В качестве доказательства он и другие приверженцы таких взглядов эпохи Возрождения приводили те явления, которые вызвали трудности у философов-механицистов, в том числе магнетизм и океанские приливы, наряду с другими идеями, в которые в те времена верили почти все (включая ведущих философов), в частности с алхимией, астрологией и нумерологией.

Магические идеи звучат фантастически для современных ученых, но, откровенно говоря, многие из моделей, выдвинутых механицистами, такими как Демокрит и Декарт, звучат так же. В обоих случаях, что важно в долгосрочной перспективе, так это образ мыслей в целом. Механистические модели придают особое значение понятности мира, магические — ее таинственности. Механистические модели являются редукционистскими, магические — холистическими. Исторически западная культура колебалась между этими дополняющими друг друга точками зрения. Магический взгляд на мир очаровывает сладостью запретного плода, затем теряет свою привлекательность, когда люди начинают задаваться вопросом, чем они занимаются, и снова заинтересовывает, когда рационалисты становятся самонадеянными и утверждают, что они могут очистить мир от тайн, и это продолжается по сей день. Этот цикл был движущей силой научных революций, и некоторые историки видят его следы в споре Бора — Эйнштейна, полагая, что Эйнштейн свидетельствует в пользу, того, что Вселенную можно постичь умом, а Бор — в пользу того, что в конечном счете она непостижима.

Одно из периодических возрождений магического мышления произошло в XV в. После того как ученые переписали и перевели древние философские труды Аристотеля, Лукреция и других, они обратились к древним текстам неоплатонистов и герметистов. Такие толкователи, как Агриппа, ухватились за них, как за возможность отдохнуть от старых педантичных схоластических методов.

Две особенности магии заполняли пробелы механистической философии. Во-первых, она была эмпирической. В те времена эксперименты не занимали важного места в господствующей философии. И старомодные схоласты, и такие реформаторы, как Декарт, думали, что они могли разрешить загадки Вселенной просто путем размышлений. Сторонники магии считали, что природа не поддается здравому смыслу. Чтобы исследовать ее тайны, нужно купить пробирки и заняться делом. Те, кто практиковал магию, стремились не только изучать, но и управлять природой, чтобы сделать мир лучше. Именно они в значительной мере определили идеализм Ренессанса. В «Речи о достоинстве человека» (Oration on the Dignity of Man) Джованни Пико делла Мирандола, философ 20 с небольшим лет от роду, герметик и каббалист, утверждал, что статус человека происходит не из нашего положения в глобальной схеме вещей, но из того, что мы сами решаем думать о себе. За такое замечательное мнение папа римский арестовал его. Среди тех, кого вдохновил Пико, был Шекспир. В монологе Гамлета «Какое чудо природы человек!» используется поразительно похожий язык, а волшебник-утопист является главным героем шекспировской «Бури».

Потенциальные волшебники сильно ошиблись в целях, которые они себе ставили. Алхимики не могли превратить свинец в золото, астрологи не могли предсказать судьбу королей, зельевары не могли излечить хандру мочой зеленой ящерицы. Но, как пел Джон Леннон, жизнь — это то, что происходит, пока вы строите другие планы. Алхимики и астрологи разработали передовые экспериментальные методы (например, герметичные затворы) и собрали множество экспериментальных данных, заложив основы современной химии, медицины и астрономии. Склонность магии к эмпиризму и идеализму служила примером для пионеров современной экспериментальной науки, которые, как ученые всех эпох, считали себя мятежниками. Англичанин Фрэнсис Бэкон писал: «Цель магии состоит в том, чтобы вернуть естественную философию из тщеты предположений к важности экспериментов».

Второе полезное влияние магии состояло в том, что она заставила философов перестать ограничивать себя рамками механицизма. Она предполагала, что объекты могут взаимодействовать иными способами помимо столкновений друг с другом, а именно нелокальными способами. Понятие гравитации происходит от магического понятия симпатий: тела падают, потому что они ищут другие подобные себе тела. Земля не разлетается на куски, потому что камни притягиваются друг к другу. Это магическое прошлое явно проступает в работах астронома Иоганна Кеплера в начале 1600-х гг. Его книги похожи на посты в блоге. В них он признается в том, что пошел по ложному следу, сделал смелый шаг или впал в кризис неуверенности в себе. Он не был сторонником академической строгости: «Горе мне, здесь я оплошал» — больше похоже на него. И он был откровенен относительно влияния мистики на свой образ мыслей. Кеплер зарабатывал на жизнь составлением гороскопов, и, хотя сомневался в том, что ему или любому другому астрологу под силу предсказать конкретные события, он считал очевидным, что движения небесных тел управляют земными событиями. Он утверждал, что, если бы Луна состояла из воды, как в основном считали люди в то время, она естественным образом притягивала бы земные океаны и вызывала бы приливы. Магнетизм, который также считался магической силой, мог бы оказывать корректирующее влияние на орбиты планет.

Пуристы механицизма восприняли его без сочувствия. Галилео Галилей думал, что Кеплер перешел на темную сторону, «соглашаясь с владычеством Луны над водами, с тайными свойствами и прочим ребячеством». Идеи Кеплера отошли на периферию господствующей философии на полвека, пока Ньютон не понял, как тот был прав.

Один историк назвал Ньютона «великой амфибией». Он был и механицистом, и сторонником магии. Как и многие его современники, особенно в Англии, Ньютон был в целом согласен с механистической теорией Декарта, но его отрезвляли ее недостатки. Помимо трудностей с объяснением движения небесных тел, представление Декарта о Вселенной как о часовом механизме было на волоске от атеизма. Зачем нужен Бог, если чудеса природы сводятся к бездумному скрежету шестеренок и пружин? Хотя Декарт оставил роль для Бога в своей модели, убедительностью она не отличалась — это был просто фиговый листок, придуманный, чтобы агенты папы не постучались в дверь. Другие видные атомисты, прежде всего Томас Гоббс, отбросили притворство и объявили себя ярыми атеистами. Для их соотечественников в Англии это переходило все границы. Они были приверженцами религии как интеллектуально, так и из чувства самосохранения.

Чтобы привести атомизм в согласие с религией, Ньютон и другие английские философы в середине 1600-х гг. соединили его с идеями, позаимствованными у алхимии, неоплатонизма и каббалы. Они думали, что частицы могут побуждаться «активными принципами» или «тонкими духами», как выразился Ньютон. На практике частицы могли воздействовать нелокально и реагировать на такие воздействия. Силы дали Вселенной некую божественную искру; хотя они и не являются духами в буквальном смысле, но свидетельствуют о Божественном замысле.

Так что если гравитация кажется волшебной, то это потому, что она действительно волшебна. Теория, которую Ньютон изложил в 1687 г. в своем основном труде «Начала», была все же по большей части механистической: мир состоит из движущихся частиц, подчиняющихся строгим законам. Но она впитала магическую идею о том, что эти частицы связаны сетью нелокальных сил. Концепция тяготения Ньютона отличалась от своих магических предшественников тем, что, согласно ей, тяготение было глобальным: оно не ограничивалось телами, у которых есть явное сродство друг к другу (у камня к камню, у воды к воде), а заставляло притягиваться друг к другу все, у чего есть масса. Она также отличалась от ортодоксальных механистических моделей в том, что, согласно ей, масса — это не геометрическое свойство, но что-то вне компетенции редукционистского объяснения.

Для историков эта сага — великолепный пример для исследования того, как опасно проводить черту между наукой и ненаукой. Гильберт, Коперник, Бэкон, Кеплер и Ньютон, как и ученые всех времен, были интеллектуальными сороками, которые вили свои теории из любых попадавшихся клочков. Чем ярче клочок, тем оригинальнее гнездо. Вы можете отличить творческих ученых по эклектичным взглядам. Или, как выразился один теоретик: «Все хорошие физики предаются интеллектуальному разврату». Не то чтобы это можно было узнать из большей части научных книг и статей. Подобно подросткам, которые клянутся, что их родители никогда ничего не делали для них, ученые склонны перенимать идеи из других источников, а затем отрицать, что они совершили нечто подобное. Магия? Какая магия? Кто говорил что-либо о магии? Но современники Ньютона точно знали, откуда пришли его идеи, и последователи Декарта не собирались принять это без боя.

Гравитационные войны

7 марта 1693 г. известный немецкий философ Готтфрид Лейбниц написал Ньютону письмо, поздравляя его с новой теорией гравитации, которая ловко объяснила все те явления, которые атомисты безуспешно пытались объяснить: падение тел, приливы, движение планет. С ее эмпирическим успехом невозможно было поспорить. Но Лейбниц хотел знать, чем объясняется тяготение. Следуя за Демокритом и Декартом, он думал, что нелокальность гравитации должна быть иллюзией. Если посмотреть достаточно близко, наверняка можно было увидеть какой-то локальный механизм, который заставляет брошенные тела падать, а планеты обращаться вокруг Солнца. Каким еще образом мир мог иметь смысл?

Лейбниц писал письма так же, как мы пишем имейлы. За свою жизнь он отправил 15 000 писем 1100 адресатам. И по сей день их еще не полностью занесли в каталоги. Это были не какие-нибудь записки в одну строчку, многие представляли собой обширные эссе, которые открывали целые новые области науки и математики. Как сегодняшние измотанные электронной почтой работники, Лейбниц жаловался на перегруженность информацией. «Я не могу даже выразить, насколько это меня отвлекает и не дает сосредоточиться», — писал он другу.

Лейбниц никогда не встречался с Ньютоном, но в течение нескольких десятилетий он и его соотечественники вели с Ньютоном и его соотечественниками дебаты в письмах. Они достигли наивысшей точки в пяти раундах переписки между Лейбницем и английским философом Сэмюелом Кларком, переписки, которая оборвалась только с кончиной Лейбница в 1716 г. К тому времени первоначальная любезность переросла в войну. Их письма богаты идеями, но, когда я читал их, меня поражало то, что Лейбниц и Кларк почти не пытались найти общий язык; каждый из них вновь и вновь отстаивал свою позицию, не давая своему противнику права на презумпцию невиновности. Справедливости ради заметим, что разногласия относительно такого фундаментального вопроса, как природа пространства, невозможно было разрешить улыбкой и рукопожатием, поскольку люди не соглашались даже в том, что могло бы считаться их удовлетворительным разрешением.

Для Лейбница и других критиков теории Ньютона такое разрешение не могло появиться без механистического объяснения. Оставляя вопрос без объяснения, Ньютон показывал, что гравитация была не просто не объяснена, но и необъяснима — это волшебный фокус, который мы никогда не сможем понять. Лейбниц писал Кларку: «Этот способ взаимодействия (говорит он) является невидимым, неосязаемым, не механическим. С таким же успехом можно добавить, что он необъясним, непонятен, сомнителен, не обоснован и беспрецедентен… Это химера, схоластическая оккультная величина».

Ньютон открыто признавал, что не знает, как действует тяготение: «Я не смог обнаружить причину таких свойств тяготения, наблюдая за его проявлениями, и у меня нет никаких гипотез». Он в общем соглашался с насмешкой Лейбница над тем, что гравитация «оккультна» — вызвана скрытыми причинами, — но не думал, что это имело какое-то значение. Вы можете не знать, какова причина тяготения, но, если просто принять ее существование, почти все известные о Вселенной факты становятся понятными, и этого вполне достаточно.

Следуя за Ньютоном, современные физики считают, что у любой теории есть две отдельные функции. Во-первых, теория должна обеспечивать математическое описание: это формулы, которые позволяют вычислять, как быстро падает яблоко, когда произойдет солнечное затмение и т.п. Во-вторых, теория должна обеспечивать «интерпретацию» формул, т.е. давать убедительную картину того, что происходит с яблоком или Луной. Для Лейбница и большинства других философов до Ньютона вторая функция была первостепенной. Их основная цель состояла в том, чтобы сделать Вселенную постижимой. Но когда пришел Ньютон, преимущество получила первая функция. Если вам приходится выбирать между описанием и объяснением, физики считают, что лучше иметь описание. Смирившись со своим невежеством, вы вольны двигаться вперед небольшими шажками. Вы можете придумать объяснение позже, а пока вам достаточно удобных формул, которые убеждают вашу маму в том, что вы тратите свою жизнь на что-то полезное.

Современные физики называют интерпретацию «философской» задачей, подразумевая, что она предполагает другой умственный настрой или вообще другую академическую дисциплину. Они проводят рабочее время за вычислениями и, бывает, не могут подобрать слова, когда их спрашивают, что на самом деле происходит там, в реальном мире. Если уж на то пошло, интерпретация, с их точки зрения, сомнительна. Настойчивый поиск объяснения вынудил атомистов предложить хоть какую-то идею, только чтобы иметь простое, постижимое представление о мире. Так, может, лучше сосредоточиться на том, что мы действительно знаем: на наблюдаемых фактах? «Нет ничего более необходимого для истинного философа, чем усмирить неуемное желание поиска причин», — писал видный сторонник таких взглядов, шотландский философ XVIII в. Дэвид Юм.

В своем крайнем выражении такая позиция известна как инструментализм, который рассматривает теории всего лишь как математический аппарат или инструментарий для того, чтобы каталогизировать факты. «Молчи и считай» — лозунг инструменталистов.

Это сугубо деловое, основанное только на фактах видение науки то входит в моду, то выходит из нее. Широко распространенное в десятилетия после Ньютона оно стало популярным снова в середине XIX в. и снова в начале-середине XX в. И не случайно — это были периоды революций в науке. Когда физики внедряют какую-нибудь спорную теорию, они часто, как это делал Ньютон, уверяют своих коллег (и самих себя) в том, что это действительно только инструмент для вычислений. Не можете уразуметь, почему теория истинна? Ну и ладно — в нее не обязательно верить, чтобы ею пользоваться. Немного инструментализма помогает радикальной идее стать принятой.

Хотя в конечном счете инструментализм — это всего лишь тактическое отступление. В конце концов большинство людей все же жаждет получить представление о том, на что действительно похожа Вселенная, что находится под поверхностью нашего восприятия. В самом деле, разве физические теории могут работать так хорошо, если в них нет хоть какой-то доли истины? Молодые люди в особенности расстраиваются, когда преподаватели советуют им не загружать свои симпатичные маленькие головки тем, что происходит на самом деле. Немало самых передовых ученых в истории говорят, что они изучили выбранный ими предмет самостоятельно, потому что никто не хотел преподавать его во время учебы.

Более того, интерпретация — это не только наведение лоска на уже существующие уравнения, но и творческая искра науки. В конце концов, как физики изначально придумывают уравнения? Почти всегда у них есть определенное представление о физическом мире: в случае Ньютона — магические симпатии. Как только физики разработают уравнения на основе этих представлений, они могут отбросить интерпретацию и позволить уравнениям жить самостоятельно, точно так же как Ньютон дистанцировался (по крайней мере публично) от магии. У любого конкретного набора уравнений есть многочисленные интерпретации, так что физики не обязаны посвящать себя той, что привела их к созданию уравнений. Они вольны предлагать новые интерпретации, какие-то из них приведут к появлению новых теорий и новых уравнений, и, таким образом, цикл продолжится. Но они никогда не смогут обходиться без интерпретаций вообще. Нет четкой границы между философскими и физическими задачами, есть только проницаемая граница с перетоком идей в обе стороны.

Действительно, несмотря на клятвенные заверения Ньютона в том, что он не строит гипотез относительно работы тяготения, на самом деле они у него были: три широкие гипотезы, каждая из которых приобрела своих сторонников. Во-первых, возможно, гравитация все-таки задействовала какие-то локальные, механические процессы. На первый взгляд этот вариант кажется обреченным на неудачу. Закон Ньютона, в соответствии с которым сила тяжести зависит от массы объекта, конечно, отправляет его в нокаут. Если единственный способ, которым частицы оказывают силовое воздействие, — это столкновение, то влияние должно зависеть от площади внешней поверхности (от того, насколько большую мишень представляет собой объект), а не от массы. И все же Ньютон продолжал перебирать механистические идеи, и один из его лучших друзей, швейцарский математик Никола Фатио де Дюильер, придумал оригинальное решение проблемы массы. Если бы наша планета походила на гигантский тренировочный мяч для гольфа, пронизанный крошечными порами, то частицы снаружи могли бы попасть внутрь и столкнуться с веществом глубоко внутри, и тогда сила действительно зависит от общего количества вещества, т.е. от массы. Эта теория не смогла завоевать популярность не столько из-за своих недостатков, сколько из-за ошибок Фатио: в конечном счете он умудрился восстановить против себя и Ньютона, и Лейбница и связался с группой яростных религиозных фанатиков.

Во-вторых, возможно, существовал какой-то другой способ локального взаимодействия тел помимо столкновений, который приводил к возникновению силы тяготения. Ньютон и Кларк писали о «нематериальном», «бестелесном» или «неосязаемом» посреднике, который мог выступать в качестве проводника, передавая тяготение от одного объекта другому. У этих слов есть разные коннотации, например связанные с Богом или духами, но по самой своей сути они всего лишь означают нечто, не состоящее из частиц и не подчиняющееся обычным атомистским правилам заполнения пространства. Материальные частицы непроницаемы; если одна из них занимает некоторый объем пространства, ничто другое не может занять тот же самый объем. Но нематериальный посредник не занимает объем пространства эксклюзивно; он может делить его с другими объектами. Таким образом он может проникать внутрь планет, что объясняет, почему сила притяжения зависит от массы, а не от площади поверхности. Лейбниц, со своей стороны, разработал теорию нематериальных сущностей, называемых «монадами» и лежащих в основе нашей наблюдаемой действительности. Хотя он так и не смог связать свои монады с чем-либо, что можно наблюдать непосредственно, философы более позднего периода, такие как Иммануил Кант, подхватили это понятие, и через них идеи Лейбница способствовали появлению концепции электрического и магнитного поля.

Ньютон был очень близок к пониманию того, что нематериальный посредник, способный к передаче тяготения, — это само пространство. Для него пространство было проявлением вездесущности Бога. У него был такой же взгляд и на тяготение: сила перескакивает от одного места к другому потому, что Бог уже существует в обоих местах. Если гравитация и пространство связаны с вездесущностью Бога, то гравитация и пространство связаны друг с другом. Лейбниц также неявно связывал тяготение со свойствами пространства. Он думал, что его монады дают начало нашему восприятию как пространства, так и дальнодействия. Безусловно, ни Ньютон, ни Лейбниц не говорили, что пространство было причиной тяготения. Никто из них не думал, что пространство было способно к действию. Этот скачок совершил Эйнштейн.

В двух вышеупомянутых интерпретациях говорится, что гравитация действует так, как будто она нелокальна. В третьей интерпретации слово «как будто» отбрасывается и предполагается, что тела действительно притягиваются друг к другу, минуя пространство. Одним из первых сторонников такого варианта был Роджер Котс, английский математик, который помог Ньютону переработать «Начала» для второго издания в 1713 г. Некоторые историки полагают, что и сам Ньютон склонялся к идее нелокальности. Трудно сказать, так ли это. В одном очень часто цитируемом письме Ньютон вроде бы назвал нелокальность «невообразимой… нелепостью», но, если прочитать цитату в контексте, она, возможно, относилась к атеизму. В других трудах он беззаботно упоминал нелокальные силы в связи с большим количеством явлений помимо тяготения, включая отражение и преломление света, диффузию пара, давление газа, когезию материалов и тепло. Ньютон так и не признался, что считает гравитацию нелокальной, но, возможно, потому, что не хотел отвращать от себя механицистов-пуристов еще больше, чем раньше.

Те, кто вырос в десятилетия после издания «Начал», считали силы, действующие на расстоянии, абсолютно приемлемыми. С известными исключениями ученые XVIII в. не чувствовали потребности призывать на помощь какие-либо локальные объяснения или придумывать инструменталистские оправдания. Они распространили принципы тяготения на другие примеры нелокальности, которые омрачали физику. Бенджамин Франклин, например, дал Америке место на научной карте, объяснив электричество как жидкость из притягивающихся и отталкивающихся частиц, которые неявным образом обладали свойствами нелокальности. Другие предполагали, что такие жидкости существуют в случаях магнетизма, химических реакций и многого другого.

Фактически общепринятая система взглядов повернулась на 180 градусов. Теперь локальностьначала казаться неприемлемой. Оставим на время гравитацию, электричество и магнетизм — даже казалось бы простое соударение двух бильярдных шаров заставляло людей в смятении расшибать лбы. Почему шары отскакивают друг от друга? Главные сторонники локальности, такие как Демокрит, Декарт и Лейбниц, сами задавались этим вопросом. Когда шары соприкасаются, это все еще два шара или они становятся единым целым? Как воздействие распространяется от места удара до противоположной стороны каждого шара? Действительно ли шары делают мгновенный разворот, который означал бы бесконечно быстрое изменение скорости?

Кант кое-что понимал в бильярде. Главный немецкий философ XVIII в. играл настолько хорошо, что выигрыши помогали ему оплачивать учебу в колледже. Кант был ключевой фигурой, способствовавшей тому, чтобы доньютоновские представления о локальности были преданы забвению. Его занимал в основном анализ того, каким образом мы знаем то, что знаем, или думаем, что знаем. Локальность была примером знакомой идеи, которая при более внимательном рассмотрении оказывается сомнительной. В повседневной жизни мы замечаем, что нам нужно коснуться объекта, чтобы заставить его двигаться. Но на самом деле мы никогда ничего не касаемся. Скорее мы прилагаем к нему силу, а он прилагает силу к нам. Эти силы объясняют то сопротивление, которое мы чувствуем, когда сжимаем мяч или пытаемся просунуть руку сквозь твердую стену. Знакомые нам объекты на самом деле представляют собой по большей части пустое пространство. Когда мы говорим «о материи», речь идет о континууме сил, а не о составляющих ее частицах, которые всегда остаются для нас недоступными.

Изначальная привлекательность локальности была в том, что единственный способ взаимодействия — непосредственный контакт — мог объяснить все. Когда Ньютон добавил второй способ — нелокальные силы, — сначала казалось, что он все усложняет, но Кант и другие объяснили непосредственный контакт и восстановили прежнюю простоту. Если посмотреть на соударение двух бильярдных шаров в замедленном воспроизведении, то вы увидите не резкий отскок, а постепенное изменение направления движения. Когда шары сближаются, они прилагают друг к другу силу отталкивания, которая замедляет их, останавливает и отправляет обратно в том направлении, откуда они прибыли. Фактически шары никогда не вступают в непосредственный контакт. Если раньше философы-механицисты стремились объяснить нелокальные силы локальными взаимодействиями, то теперь они сводили локальные силы к нелокальным взаимодействиям.

Ньютоновское тяготение с трудом получило признание в этом мире, но потом стало новым общепринятым понятием. В 1872 г. австрийский физик и философ Эрнст Мах описал этот поворот событий. Он утверждал, что ученые объясняют явления, связывая незнакомое со знакомым, необычное с общепринятым. «Общепринятое» может в действительности быть не более понятным, чем необычное. Это видно, когда пятилетний ребенок спрашивает, как работает обычный бытовой прибор, а мы мешкаем с ответом. Нам проще принять это. В конце концов, мы должны принять что-тов качестве нижнего уровня действительности, и оно должно быть тем, с чем мы можем жить. Мах писал: «Самые простые факты, к которым мы сводим более сложные, всегда непостижимы сами по себе, т.е. их нельзя понять еще лучше… Люди обычно сводят незаурядные непостижимости к общепринятым».

Но то, что мы считаем «общепринятым», может меняться. До Ньютона это был непосредственный контакт. После него общепринятыми стали считаться нелокальные силы. «Ньютоновская теория тяготения, когда она только появилась, смущала почти всех исследователей физического мира, потому что была основана на незаурядной непостижимости, — писал Мах. — Люди пытались свести тяготение к давлению и столкновениям. В наши дни тяготение больше никого не беспокоит; оно стало общепринятой непостижимостью». Какая ирония: еще до того как Мах написал эти слова, маятник уже качнулся в обратную сторону, и физики снова приходили к идее о том, что Вселенная все-таки должна быть локальной.

Сомнения в сэре Исааке

Возрождение локальности началось в 1786 г. с мертвых лягушек, свисающих с железных перил. Итальянский врач Луиджи Гальвани проводил эксперименты на мышцах животных, чтобы выяснить, как разряды статического электричества заставляют их сокращаться. Однажды он увидел, что лапки лягушек дергались самостоятельно, даже когда он ничего с ними не делал, и его осенило, что животные ткани не просто реагировали на электричество, но также могли генерировать его. Металл и амфибия образовали то, что мы теперь называем батарейкой, а в 1800 г. другой итальянец, Алессандро Вольта, создал ее работоспособный вариант, заменив лягушку влажным куском картона. Батареи не только дали экспериментаторам новую замечательную игрушку — само их существование потрясло тех, кто придерживался ньютоновского представлений о том, что химические реакции и электричество вызывались различными типами нелокальных флюидов и не должны были превращаться друг в друга.

Это произошло очень вовремя. Размышления Канта о том, что могли постичь наши рациональные умы, привели к восстанию против механистических взглядов в философии, а именно к возникновению движения, известного под названием немецкого романтизм

Скачать книгу

Введение: воздушный замок Эйнштейна

Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод.

В обыденном английском языке locality[1] – это немного вычурное слово для обозначения района, города или другого места. Но его первоначальное значение, появившееся в XVII в., относится к самому понятию «место». Оно означает, что у всего есть место. Вы всегда можете указать на предмет и сказать: «Вот он». Если этого сделать нельзя, должно быть, предмет, на самом деле не существует. Если преподаватель спросит, где ваше домашнее задание и вы ответите, что нигде, то вам придется представить оправдания.

Мир, в котором мы живем, наделен всеми признаками локальности. У нас сильно развито чувство места и чувство связи между местами. Мы ощущаем боль разлуки с теми, кого любим, и беспомощность от того, что находимся слишком далеко от чего-то, на что хотим повлиять. Вместе с тем квантовая механика и другие разделы физики наводят на мысль о том, что на более глубоком уровне может не быть места и расстояния. Физические эксперименты позволяют связывать судьбы двух частиц таким образом, что они ведут себя, как пара волшебных монет: сколько бы вы их ни подбрасывали, на них всегда выпадает что-то одинаковое – орел или решка. Их поведение согласовано несмотря на то, что в пространстве они не связаны никакими силами. Эти частицы могут разлететься по разным концам Вселенной и все же вести себя в унисон. Такие частицы нарушают принцип локальности. Пространство им не помеха.

Очевидно, природа нашла особое и тонкое равновесие: в большинстве случаев она подчиняется локальности, как это и должно быть, раз мы существуем, но все же намекает на то, что она нелокальна в своих глубинных основах. Именно данное противоречие я буду исследовать в этой книге. Для тех, кто ее изучает, нелокальность – мать всех физических загадок, причастная к широкому спектру головоломок, с которыми сталкиваются физики в наши дни: это не только странное поведение квантовых частиц, но и судьба черных дыр, происхождение космоса и присущее природе единство.

Для Альберта Эйнштейна локальность была одним из аспектов более широкого философского вопроса: почему мы, люди, вообще можем заниматься наукой? Почему мир таков, что мы можем понять его устройство? В знаменитом эссе 1936 г. Эйнштейн написал, что самое непостижимое в этом мире – это его постижимость. На первый взгляд такое утверждение само по себе кажется непостижимым. Вселенная не то что бы очень логична. Она сумасбродна и капризна, полна путаницы и произвола, несправедливости и несчастий. Многое из происходящего не поддается логике (особенно если дело касается романтических отношений или вождения). И все же на фоне этих необъяснимых событий с обнадеживающей регулярностью проступают законы этого мира. Солнце встает на востоке. Предметы падают, если их уронить. После дождя появляется радуга. Люди идут в физику в уверенности, что это не просто приятные исключения из анархии жизни, а проблески лежащего в основе порядка.

Эйнштейн полагал, что физики на самом деле не имеют права ожидать этого. Мир не обязан быть упорядоченным. Он не должен подчиняться законам; при других обстоятельствах он бы мог быть совершенно беспорядочным. Когда друг Эйнштейна спросил в письме, что он имеет в виду, говоря о постижимости, тот ответил: «A priori следует ожидать, что мир хаотичен и не может быть понят умом каким-либо образом».

Хотя Эйнштейн и говорил, что постижимость – чудо, которое мы никогда не поймем, это не помешало ему попытаться его понять. Всю свою профессиональную жизнь он посвятил формулированию того, что же именно во Вселенной делает ее постижимой, и его размышления задали курс современной физике. Например, он понял, что внутренние механизмы природы обладают высокой степенью симметрии, т. е. выглядят одинаково, если посмотреть на мир с другой точки зрения. Симметрия привносит порядок в сбивающее с толку разнообразие частиц, открытых физиками; целые группы частиц одного вида являются, в каком-то смысле, зеркальными отражениями друг друга. Но среди свойств мира, дающих нам надежду понять его, Эйнштейн не раз возвращался к локальности как к самому важному из них.

Локальность – это тонкое понятие, которое может означать разное для разных людей. Для Эйнштейна она имела два аспекта. Первый аспект он называл «отделимостью», подразумевая, что можно отделить любые два предмета или части одного предмета друг от друга и рассматривать их по отдельности, по крайней мере в принципе. Можно взять стулья из столового гарнитура и поставить их в разных углах комнаты. Они не прекратят свое существование и не потеряют никаких качеств, таких как размер, стиль, удобство. Свойства набора в целом определяются свойствами составляющих его стульев; если на каждом стуле умещается один человек, то четыре стула позволят сесть четверым. Целое является суммой его составляющих. Второй аспект, который отметил Эйнштейн, известен как «локальное действие»: он гласит, что объекты взаимодействуют только при столкновении друг с другом или через чье-то посредство, позволяющее преодолеть пространство между ними. На расстоянии мы не можем повлиять на другого человека, для этого нужно приблизиться к нему, дотронуться, заговорить, похлопать по плечу, т. е. войти в прямой контакт или отправить кого-то или что-то для выполнения этой задачи. Современные технологии не нарушают этого принципа – они просто задействуют новых посредников. Телефон преобразует звуковые волны в электрические сигналы или радиоволны, которые распространяются по проводам или в эфире и преобразуются обратно в звуковые волны на другом конце. На каждом этапе этого пути что-то должно напрямую контактировать с чем-то еще. Если в проводе есть хотя бы крошечный разрыв, сообщение распространится так же далеко, как крик на Луне, лишенной атмосферы. Проще говоря, отделимость определяет сущность объектов, а локальное воздействие – их поведение.

Эйнштейн обозначил эти принципы в своей теории относительности. Так, теория относительности гласит, что ни один материальный объект не может двигаться быстрее света. Без такого ограничения скорости объекты могли бы двигаться бесконечно быстро и расстояние потеряло бы свой смысл. Все силы природы должны преодолевать пространство, а не перепрыгивать его, как раньше считали физики. Таким образом, теория относительности дает нам меру отдаленности отдельных объектов и обеспечивает их отличимость друг от друга.

В зависимости от образа мышления теория относительности и другие законы физики воспринимаются либо как убедительный внутренний порядок Вселенной, либо как занудный набор правил вроде тех, что насаждают авторитарные родители, пытающиеся лишить вас всех радостей в жизни. Как замечательно было бы взмахнуть руками и полететь, но, извините, это невозможно. Мы могли бы решить мировые проблемы, создавая энергию, увы, физика не позволяет и этого – нам дозволено лишь преобразовывать энергию из одного вида в другой. И вот теперь появляется локальность, еще один драконовский закон, разрушающий наши мечты о сверхсветовых космических кораблях и экстрасенсорных способностях. Локальность убивает свойственную болельщикам надежду на то, что, скрестив пальцы или проревев какой-нибудь мудрый комментарий из своего кресла, они могут поддержать свою любимую команду на поле. К сожалению, если ваша любимая команда проигрывает, а вы серьезно хотите поддержать ее, вам придется встать и добраться до стадиона.

И все же локальность нужна для нашего собственного блага. На ней держится наше самоощущение, уверенность в том, что наши мысли и чувства принадлежат нам самим. При всем уважении к Джону Донну[2] каждый человек – действительно остров, сам по себе. Мы изолированы друг от друга морями пространства, и мы должны быть благодарны за это. Если бы не локальность, мир обладал бы магическими свойствами, причем не в хорошем, диснеевском смысле. Болельщикам, желающим иметь возможность влиять на игру, не выходя из дома, пришлось бы осмотрительно относиться к своим желаниям, поскольку болельщики соперников, надо думать, тоже имели бы такую возможность. Миллионы домоседов по всей стране пытались бы обеспечить своим кумирам преимущество, лишая игру смысла: она превратилась бы в противоборство воли болельщиков, а не талантов на поле. Не только спортивные состязания, но и весь мир стал бы враждебным для нас. В мире без локальности внешние для нас объекты могли бы проникать внутрь тела (для этого им не нужно было бы даже преодолевать кожу), и мы потеряли бы способность контролировать свое внутреннее состояние. Мы бы слились с окружающей средой. А это, по определению, и есть смерть.

Сосредоточившись на локальности как на ключевом необходимом условии для понимания природы, Эйнштейн придал единую форму философским и научным идеям, накопленным за 2000 лет. Для древнегреческих мыслителей, таких как Аристотель и Демокрит, локальность сделала возможным рациональное объяснение. Когда объекты влияют друг на друга только при прямом контакте, можно объяснить любое событие, дав последовательное описание того, как «то ударило это, которое, в свою очередь, столкнулось с тем, а оно, в свою очередь, отскочило от чего-то еще». Каждое следствие имеет причину, связанную с ним цепью событий, которая неразрывна во времени и пространстве. Нет такого, когда остается лишь всплеснуть руками и пробормотать: «А затем происходит чудо». Греческие философы возражали не столько против чуда – они не были атеистами, – сколько против бормотания. Они считали, что даже боги должны оказывать свое влияние по ясным и объяснимым правилам. Локальность необходима не только для тех типов объяснений, которые ищут философы и ученые, но также и для методов, которыми они пользуются. Они могут отделять объекты друг от друга, постигать их по одному и шаг за шагом строить картину мира. Перед ними не стоит невыполнимая задача восприятия всего сразу.

В 1948 г., к концу своей жизни, Эйнштейн резюмировал значение локальности в коротком эссе: «Физические понятия относятся к реальному внешнему миру… к вещам, которые претендуют на “реальное существование”, независимое от наблюдателя… Эти объекты претендуют на существование, независимое друг от друга, поскольку они “находятся в разных частях пространства”. Без такого предположения о взаимно независимом существовании… пространственно удаленных предметов, предположения, которое берет начало в обыденном мышлении, физическое мышление в известном нам смысле было бы невозможным. Также невозможно представить, как можно сформулировать и проверить физические законы без такого четкого разделения».

Локальность имеет такое повсеместное значение потому, что она является самой сутью пространства. Под «пространством» я подразумеваю не только «космос», вотчину космонавтов и астероидов, но и пространство между нами и всем тем, что находится вокруг нас, пространство, которое занимает наше тело и все остальное, пространство, в котором мы замахиваемся бейсбольной битой или делаем замеры с помощью рулетки. Направляете ли вы телескоп на планеты или на окна соседей, вы смотрите через пространство. Для меня красота пейзажа заключается в головокружительном ощущении, будто охватываешь пространство, это что-то вроде чувства, возникающего, когда смотришь с большой высоты вниз, только в этом случае смотришь в горизонтальном направлении и понимаешь, что те маленькие точки на другой стороне долины действительно там находятся и что можно их потрогать, были бы руки достаточной длины.

Как давно поняли художники, пространство – это не отсутствие чего-то, а некая сущность сама по себе. То, что находится между предметами на холсте, так же важно для композиции, как и сами предметы. Для физика пространство – это холст для физической реальности. Практически все свойства наших физических сущностей являются пространственными. Мы занимаем место. У нас есть форма. Мы двигаемся. Наши тела – это замысловатый танец клеток и жидкостей в пространстве. Наши мысли – это импульсы, быстро двигающиеся вдоль траекторий в пространстве. Любое взаимодействие, которое происходит между нами и остальным миром, проходит через пространство. Живые существа – это сущности, а что такое сущность, если не часть Вселенной, которая получает свою неповторимую индивидуальность в силу того, что занимает определенную область пространства?

Физика берет начало из исследования того, как предметы движутся в пространстве, и пространство определяет практически все величины, с которыми физика имеет дело: расстояние, размер, форма, положение, скорость, направление. Другие свойства мира могут не казаться пространственными, но это не так: цвет, например, соответствует длине световой волны. Всего несколько свойств материи, таких как электрический заряд, не имеют известного пространственного объяснения, и даже они выдают себя, изменяя направление движения в пространстве. При взгляде на предмет все, что мы видим, в конечном счете связано с пространством, поскольку определяется взаимным расположением частиц; частицы сами по себе – всего лишь мельчайшие крупицы. Функция следует из формы. Даже непространственные понятия превращаются в пространственные в умах физиков: время становится осью на графике, и законы природы действуют в абстрактных пространствах возможностей. Даже такой авторитет, как Иммануил Кант, идеи которого оказали значительное влияние на Эйнштейна, считал, что невозможно представить мир без пространства.

Какая ирония судьбы в том, что главный поборник локальности стал и ее ниспровергателем. Хотя больше всего он известен миру как создатель теории относительности, Нобелевскую премию Эйнштейн получил за вклад в разработку квантовой механики, теории, описывающей поведение атомов и субатомных частиц. На самом деле физики считают, что квантовая механика описывает поведение всего, хотя характерные для нее эффекты сильнее всего проявляются на очень малых масштабах. Теория выросла из догадки Эйнштейна и его современников о том, что атомы и частицы не могут быть просто уменьшенными версиями тех вещей, которые мы видим вокруг себя. Если бы они были таковыми – то есть вели себя в соответствии с классическими законами физики, сформулированными Исааком Ньютоном и другими физиками, – мир бы самоуничтожился. Атомы сколлапсировали бы, частицы взорвались, а лампочки сожгли бы нас смертельным излучением. Тот факт, что мы еще живы, означает, что материя должна подчиняться какому-то новому набору законов. Эйнштейн с энтузиазмом принимал необычное: на самом деле, несмотря на (несправедливо) заработанную в дальнейшем репутацию ретрограда и защитника классической физики, он неизменно оказывался впереди всех в понимании непривычных свойств квантового мира.

Среди этих свойств была нелокальность. Квантовая механика предсказывает, что две частицы могут стать побратимами. Из-за отсутствия связывающего механизма частицы вроде бы полностью автономны, и все же воздействие на одну из них означает воздействие и на вторую, как будто бы расстояние для них ничего не значит. Научный метод «разделяй и властвуй» в их случае не работает. Частицы имеют совместные свойства, которые нельзя обнаружить, если смотреть на каждую из них по очереди, – нужно наблюдать за ними одновременно. Наш мир опутан сетью таких, казалось бы, мистических взаимосвязей. Атомы вашего тела сохраняют связь с каждым человеком, которого вы любили, – что звучит романтично, пока вы не осознаете, что связь есть и с тем странным типом, который коснулся вас мимоходом на улице.

Частицы в противоположных концах Вселенной не могут быть действительно связанными, не так ли? Эта идея показалась Эйнштейну глупостью, возвратом к донаучным представлениям о магии. Любая теория, подразумевающая возможность такого «призрачного действия на расстоянии», рассуждал он, должно быть, что-то упускает из виду. Он полагал, что мир на самом деле локален и просто кажется нелокальным, и искал более глубокую теорию, которая бы обнажила скрытый механизм, позволяющий двум частицам действовать в унисон. Эйнштейн так и не нашел такую теорию и признал, что, возможно, это он сам что-то упускает. Возможно, нет никакого скрытого механизма. Принцип локальности – а вместе с ним и наше понимание пространства – может быть ошибочным. За несколько месяцев до кончины Эйнштейн размышлял о том, что могло значить для нашего понимания мира исчезновение пространства: «Тогда ничего не останется от моего воздушного замка, включая теорию тяготения, как, впрочем, и от всей современной физики».

Что было действительно пугающим, так это оптимизм его современников. Для них нелокальность была пустяком. Причины их пренебрежительного отношения были трудны для понимания, они и до сих пор являются предметом спора для историков, но, пожалуй, самое мягкое объяснение этому – прагматизм. Вопросы, беспокоившие Эйнштейна, просто не казались существенными для практического применения квантовой теории. Только в 1960-х гг. до нового поколения физиков и философов наконец дошли опасения Эйнштейна. Проведенные ими эксперименты показали, что нелокальность – это не теоретический курьез, а правда жизни. Но даже тогда большинство их коллег уделяли нелокальности мало внимания – именно поэтому я практически случайно наткнулся на эту тему, будучи аспирантом.

Однако в последние 20 лет позиция физического сообщества значительно изменилась. Нелокальность захлестнула господствующие течения физики и вышла далеко за пределы феномена, открытого Эйнштейном. Как популяризатор науки и редактор я не раз разговаривал с учеными из разных сообществ, с теми, кто изучает всё – от субатомных частиц до черных дыр и крупномасштабной структуры Вселенной. И раз за разом я слышал примерно следующее: «Ну, это странно, и я бы не поверил в такое, если бы не видел этого сам, но, похоже, мир просто обязан быть нелокальным». Исследователи вели себя подобно тем самым согласованным частицам в разных концах Вселенной: зачастую не зная друг друга, они тем не менее приходили к одним и тем же выводам.

Если Эйнштейн считал, что нелокальность имеет привкус волшебства, то, может быть, новые исследования дают основания верить в паранормальные явления? Некоторые так и решили. В последние десятилетия ряд ученых предполагал, что нелокальные связи между частицами могли бы наделить вас сверхъестественными способностями. Например, если бы частицы вашего мозга находились в запутанном состоянии с частицами мозга вашего друга, то, возможно, вы могли бы общаться друг с другом с помощью телепатии. Другой крайностью было то, что связанные с нелокальностью намеки на паранормальное заставили многих ученых отвергнуть всю эту область исследований как чепуху. На самом деле никакой связи здесь нет. Ни одно из свидетельств экстрасенсорных способностей не выдержало проверки, а обсуждаемые виды нелокальных явлений имеют слишком слабо выраженные эффекты, чтобы соединять умы или дистанционно влиять на исход бейсбольных матчей.

Некоторые расстраиваются из-за этого. Напрасно. Настоящее волшебство мира состоит в том, что он не волшебный. По причинам, которые были изложены ранее, локальность – необходимое условие нашего существования. Любая нелокальность должна оставаться надежно спрятанной и возникать только при определенных условиях, иначе наша Вселенная была бы непригодна для жизни. Нелокальность дает нам нечто гораздо более впечатляющее, чем паранормальные явления: возможность взглянуть на истинную природу физической реальности. Если воздействия могут пересекать пространство так, словно его на самом деле нет, то из этого следует естественный вывод: пространства на самом деле нет. Теоретик из Колумбийского университета Брайан Грин, который занимается теорией струн, написал в своей книге 2003 г. «Ткань космоса» (The Fabric of the Cosmos), что нелокальные связи «показывают нам, что пространство совсем не такое, как мы думали раньше». Какое же оно тогда? Исследование нелокальности может нам подсказать. Многие физики теперь считают, что пространство и время обречены: они являются не фундаментальными элементами физического мира, но следствием первозданного состояния отсутствия пространства. Пространство похоже на ковер с обтрепанными краями и залысинами. Подобно тому как разглядывание залысин позволяет нам увидеть основу ковра, изучение проявлений нелокальности может пролить свет на то, как пространство строится из беспространственных составляющих.

«Я всегда думал и продолжаю думать, что открытие и подтверждение нелокальности является самым поразительным открытием в физике ХХ в.», – говорит Тим Модлин, профессор Нью-Йоркского университета и один из ведущих философов физики в мире. В статье конца 1990-х гг. он резюмировал ее следствия: «Мир – это не просто набор отдельно существующих локализованных объектов, связанных внешне только пространством и временем. Что-то более глубокое, более таинственное связывает воедино ткань мироздания. Мы только-только достигли того момента в развитии физики, когда можно начать размышлять о том, что бы это могло быть».

В то же время именно потому, что так много стоит на кону, другие ученые говорят мне, что нелокальность не может быть правдой, что те или иные нелокальные явления наверняка окажутся ошибкой толкования и что сваливать их все в одну кучу – это неправильно. Физики достигли больших успехов, используя пространственное мышление, и не откажутся от него так просто. Один скептик, Билл Унру, преподаватель физики в Университете Британской Колумбии, думает примерно так же, как думал Эйнштейн: «Если мне нужно знать все о Вселенной, чтобы знать хоть что-нибудь, если мы воспринимаем нелокальность серьезно, если то, что происходит здесь, зависит от того, что происходит со звездами, то физика становится практически невозможной. Что делает физику возможной, так это то, что мир допускает разделение на части. Если нам действительно нужно смотреть на звезды, чтобы увидеть будущее, то я не понимаю, как можно продолжать заниматься физикой».

Помимо того что ей присуще очарование, нелокальность также является идеальным объектом для научных споров. Разногласия между такими людьми, как Модлин и Унру, исключительно интеллектуальны. Отсутствие экономических интересов не позволяет заподозрить скрытые мотивы. Здесь нет лоббистов из Exxon Mobil[3], бродящих по коридорам. Оппоненты не имеют явной личной неприязни, многие из них являются друзьями. Математика довольно проста, экспериментально полученные данные неоспоримы. И все же споры тянутся поколениями. В наши дни ученые повторяют аргументы, которые звучали еще в спорах Эйнштейна и его противников в 1920–1930-х гг. Почему так происходит? И что делать всем остальным, когда эксперты не могут прийти к согласию?

Рассмотрим наиболее известный научный спор недавнего времени: изменение климата. Большинство климатологов считают, что человеческая деятельность приводит к потеплению на планете, противники этой позиции до сих пор оспаривают это, и их доводы могут вызывать замешательство у тех, кто читает газету или бродит по сети. У большинства людей нет времени на то, чтобы стать экспертами по моделям общей циркуляции или измерениям длинноволнового излучения. Но одно мы можем понять точно: в практическом смысле спор можно разрешить независимо от того, продолжают ли эксперты спорить. В случае с изменением климата общественность уже знает все, что ей нужно. Существует немалый риск климатической катастрофы, и его снижение иначе как благоразумием не назовешь: чтобы понимать необходимость страхования от пожара, не нужно быть кандидатом наук по теории горения. Так же и с нелокальностью. Даже самые несгибаемые скептики теперь признают, что происходит что-то очень странное, что-то, заставляющее нас выходить за рамки самых глубоко укоренившихся представлений о пространстве и времени, что-то, требующее постижения, если мы хотим узнать, как возникла Вселенная и как физический мир образует одно совершенное целое.

Восприятие обществом – это не просто побочный вопрос для науки. Оно напрямую имеет отношение к делу, поскольку в изменчивой исследовательской среде, где идеи борются друг с другом и нет ничего абсолютно ясного, традиционные, с точки зрения сторонних наблюдателей, способы функционирования науки, т. е. использование фактов, логики, уравнений, экспериментов, недостаточны для прекращения прений. Ученым приходится полагаться на чутье, образные связи и суждения об адекватности их фундаментальных принципов, основанные на субъективной оценке. Решив исследовать нелокальность, я рассчитывал неспешно прогуляться на природе, но оказался в причудливом тропическом лесу, полном блестящих листьев, извилистых тропок и соблазнительных пристанищ, кишащих огненными муравьями. Одни ученые испытывают трепет перед бунтарской идеей поставить под вопрос одно из старейших и глубочайших понятий в науке. Другие содрогаются от подобного безумства. Если локальность нарушается, значит ли это, что наш мир в конечном счете непостижим, как опасался Эйнштейн, или смогут ли физики найти какой-то другой способ его постижения?

1. Многообразие видов нелокальности

Лаборатория Энрике Гальвеза в Университете Колгейта размером примерно с гараж на пару машин и, как и большинство гаражей, забита всякой всячиной. Вдоль стен расположены столы, заставленные ящиками с инструментами, неисправными в той или иной мере электронными устройствами, а слева от входа находится самый часто используемый аппарат – кофеварка. В середине комнаты стоит пара оптических скамей: очень прочные стальные платформы размером с обеденный стол, покрытые сетью отверстий для закрепления зеркал, призм, линз и фильтров. «Как будто снова играешь в конструктор», – говорит Гальвез, веселый перуанец, который сильно напоминает Эла Франкена[4].

Если кто и взял на себя задачу показать миру, как выглядит квантовая запутанность, так это Гальвез. Запутанность – это наиболее известный тип нелокальности из тех, что наблюдались современными физиками, и именно он пугал Эйнштейна. Слово entanglement («запутанность») в английском языке имеет коннотации романтической связи: особые и, возможно, мучительные взаимоотношения. Две запутанные друг с другом частицы не в прямом смысле сплетаются, как клубки пряжи, скорее между ними существует особая связь, для которой пространство не имеет значения. Вы можете наблюдать это явление, создавая, отклоняя и измеряя лучи света – не обычные лучи от фонарика, а пучки запутанных фотонов. В первых версиях этого эксперимента, проведенных в 1970-х гг. в Беркли и в Гарварде, были задействованы хитроумные изобретения «безумных ученых» вроде раскаленных печей, штабелей оконных стекол и грохочущих телетайпов. Гальвез воспользовался Blue-ray лазерами и оптоволокном для того, чтобы уменьшить размеры установки, так что теперь она умещается на школьной парте.

Большинство знакомых мне физиков-экспериментаторов в глубине души изобретатели, которых хитроумные устройства приводят в восторг не меньше, чем тайны Вселенной. Один экспериментатор из Центра квантовых технологий в Сингапуре сказал мне, что в его лаборатории студенты-новички должны пройти особый тест. В нем нет ни одного вопроса по физике. Студентам предлагают рассказать, случалось ли им разобрать какой-нибудь бытовой прибор и собрать его обратно до того, как домашние узнавали об этом. Похоже, что стиральные машины пользуются в этом смысле успехом. Что касается Гальвеза, то его детской страстью была химия: ее взрывоопасная разновидность. Он провел детство в Лиме, в районе, где жили люди среднего достатка, и однажды с друзьями попытался сделать порох. У них получилась только дымовуха, что, возможно, и к лучшему. «Получилось намного веселее, чем какие-то взрывы, – вспоминает Гальвез. – Наверное, это было не очень безопасно».

По словам Гальвеза, он стал поборником нелокальности практически случайно. Как и большинство физиков, он не слишком задумывался об этом явлении до конца 1990-х гг., когда один коллега заглянул к нему в кабинет с весьма волнующими новостями: австрийский физик Антон Цайлингер и его товарищи по лаборатории использовали запутанность для телепортации частиц из одного места в другое. Телепортация?! Ни один поклонник «Звездного пути»[5] не мог остаться равнодушным. Хотя группа Цайлингера телепортировала всего лишь отдельные фотоны, а не десантный отряд космических кораблей, восторг от этого события затмил все, что было связано с дымовухами. Причем методика была простой. Предположим, вы хотите телепортировать фотон из левой половины лаборатории в правую. Сначала вы подготавливаете телепорты, создавая пару запутанных фотонов и помещая один в одной половине лаборатории, а другой во второй половине. После этого вы берете фотон, который хотите перенести, и организуете его взаимодействие с левой частицей. Поскольку запутанные частицы находятся в особой связи друг с другом, это взаимодействие сразу же проявляется справа, что позволяет фотону там воссоздаться. (Некоторые придираются к словам и спорят, действительно ли можно называть этот процесс телепортацией. Они считают, что по смыслу это больше похоже на «кражу личности». Экспериментаторы лишают левую частицу ее свойств и навязывают их правой частице. Но частица – это всего лишь сумма ее свойств, так что эти два описания эквивалентны.)

У Гальвеза с коллегой уже имелось все необходимое оборудование, и вскоре они тоже перемещали частицы по своей лаборатории. «Мы пытались понять телепортацию просто ради интереса», – говорит Гальвез. Другой коллега предложил им придумать такой эксперимент с запутанностью, который могли бы повторить даже слушатели курса физики для лириков. В нем не происходит телепортации, но выполняется первый и самый важный этап этого процесса, а именно: создаются и распределяются запутанные фотоны. Хотя установка кажется теперь очень простой, группа ученых билась над ней два года. Гальвез организовал летние семинары для ALPhA, ассоциации физического образования, чтобы показать преподавателям, как проводить этот эксперимент, а также опубликовал свои инструкции онлайн, чтобы любители делать все своими руками могли создавать запутанные частицы у себя в подвалах. Бывший президент ALPhA Дэвид ван Баак восклицает: «Мы давно прошли ту стадию, когда [изучение] запутанности было исключительно делом университетов. Оно становится массовым».

В тот день, когда я посетил лабораторию Гальвеза, одна из оптических скамей была отдана под эксперимент по изучению запутанности, цель которого заключалась не только в демонстрации запутанности, но и в исследовании возможной причины этого явления. Мне кажется, что установка по существу является высокотехнологичной машиной Руба Голдберга[6] для подбрасывания монет. Они падают орлом или решкой в зависимости от того, проходят через фильтр или нет. Система настроена таким образом, что вероятность пройти его – 50 на 50, как в случае подбрасывания правильной монеты. В сущности, план такой: создать пару таких монет, подбросить их одновременно, посмотреть, какой стороной они упадут, создать еще одну пару, подбросить ее и т. д. Повторить опыт несколько тысяч раз и собрать статистику. Кажется, что мы тратим много усилий ради предсказуемого результата, пока не вспомнишь о том, что разговор идет о квантовых монетах. Ясно, что представление частиц в виде монет – это метафора, но если не воспринимать ее слишком буквально, то она вполне законна. Физики сами понимают явления при помощи метафор.

Чтобы привести установку в действие, Гальвез пропускает луч ультрафиолетового лазера через ряд оптических элементов, обеспечивающих должную юстировку. Этот луч попадает на небольшой кристалл бората бария, вещества, открытого китайскими учеными в начале 1980-х гг., который расщепляет ультрафиолетовый луч на два красных луча. Расщепление происходит на уровне отдельных частиц: если бы вы могли видеть луч как поток фотонов, то заметили бы, как некоторые ультрафиолетовые фотоны ударяются о кристалл и делятся на два идентичных красных фотона. Вот вам и монеты. Непосредственно перед кристаллом находится оптический элемент, известный как волновая пластинка, который Гальвез использует для того, чтобы контролировать выходной поток от кристалла. В зависимости от того, как он устанавливает волновую пластинку, красные фотоны получаются запутанными или нет.

Как только красные лучи расходятся, они перестают взаимодействовать. Гальвез направляет каждый луч в поляризационный фильтр, очень похожий на тот, что фотографы накручивают на объектив для подавления бликов. Фильтр пропускает или задерживает фотоны в зависимости от их ориентации, т. е. от их поляризации. Гальвез может с помощью лимба на боку фильтра контролировать, какие фотоны он будет пропускать. Для этого эксперимента оба фильтра настраиваются одинаково, так, чтобы они пропускали случайным образом половину фотонов, имитируя таким образом подбрасывание монет.

Фотоны, которые проходят через фильтры, направляются на детекторы, преобразующие их в электрические импульсы. Эти детекторы – самая дорогая и самая хрупкая часть установки. Из-за сверхвысокой чувствительности, позволяющей регистрировать одиночные фотоны, они стоят $4000 за штуку и легко повреждаются ярким светом. Даже в комнате с выключенным освещением детекторы регистрируют фотоны в бешеном темпе, потому что даже малейший проблеск света заставляет их срабатывать. Наблюдая за ними, я начинаю понимать, насколько светлой может быть якобы темная комната. Необходимо убедиться, что телефоны и ноутбуки полностью выключены – один-единственный включенный светодиод может испортить весь эксперимент. «Нам пришлось заклеить черной лентой все, что светилось в лаборатории, – говорит Гальвез. – Вы не представляете, сколько здесь всяких лампочек». Он накрывает приборы черной тканью и закрывает плотным пологом всю скамью.

Наконец, детекторы подключаются к счетчику с тремя цифровыми дисплеями, расположенными вне полога. Два из них показывают, какое число фотонов прошло через правый и левый поляризационные фильтры. Когда Гальвез включает лазер, эти числа мелькают как миллисекунды на секундомере. Третий дисплей показывает число «совпадений» – когда оба фотона из пары проходят каждый через свой фильтр. Продолжая метафору монет, совпадение означает, что обе монеты выпали орлом. Для Гальвеза такие совпадения являются возможностью взглянуть на квантовую нелокальность.

После небольшой экскурсии для меня Гальвез готов к проведению эксперимента. Желая убедиться, что все работает правильно, он сначала воспроизводит подбрасывание обычных монет, настраивая пластинку так, чтобы фотоны получались незапутанными. Счетчик показывает около 25 совпадений в секунду. Для сравнения: если бы каждый фотон в каждой паре проходил через фильтр, было бы 100 совпадений в секунду. Таким образом, частота совпадений равна примерно четверти максимально возможного значения. Именно этого можно ожидать, исходя из законов теории вероятностей. Если подбрасывать две монеты, каждая будет выпадать орлом в половине случаев, а обе будут выпадать орлом в четверти случаев.

Теперь Гальвез настраивает волновую пластинку так, чтобы фотоны оказывались запутанными. Частота совпадений подскакивает почти до 50 в секунду. Может показаться, что в изменении показаний счетчика в подвальной лаборатории с 25 до 50 нет ничего особенного. Но такова физика. Нужно немало усилий, чтобы приподнять завесу тайны над окружающим нас миром, и намеки на ее разгадку очень слабые, но от этого они не менее значимы. Годы ожиданий и приготовлений к этому моменту того стоили, поскольку, глядя на эти 50, я понимаю, что именно наблюдаю, и трепещу. Фотоны ведут себя как пара волшебных монет. Гальвез подбрасывает тысячи таких пар, и обе монеты всегда выпадают одной и той же стороной: либо обе орлом, либо обе решкой. Такого не бывает по чистой случайности.

Если бы кто-нибудь из моих друзей показал этот фокус на вечеринке: подбрасывал бы монеты так, чтобы они одновременно выпадали орлами в два раза чаще, чем должны, я бы подумал, что это розыгрыш. Должно быть, мой друг сходил в магазин для фокусников и купил специальные монеты, одинаковые с обеих сторон, результат подбрасывания которых предопределен. Мог ли подобный трюк объяснить ту закономерность, которую я наблюдал в лаборатории Гальвеза? Чтобы исключить возможность жульничества, Гальвез использует тактику, которую предложил в 1960-е гг. ирландский ученый, изучавший физику элементарных частиц, Джон Стюарт Белл. Он поворачивает один из фильтров на 90˚, что, так же как и подбрасывание монеты левой рукой вместо правой, не изменяет вероятность прохождения частицы через него, и если результат действительно предопределен, ничего не должно измениться. Но это, казалось бы, безобидное изменение влияет на фотоны. Частота совпадений падает практически до нуля – если один фотон проходит через фильтр, то второй нет. Другими словами, волшебные монеты вместо того, чтобы выпадать одной стороной, теперь всегда выпадают разными сторонами. Если бы кто-то хотел вас разыграть, ему бы понадобилась особая ловкость рук, чтобы справиться с этим фокусом. Проводя дальнейшие усовершенствования, Гальвез исключает все мыслимые придирки.

Я подхожу и еще раз изучаю оптическую скамью. Между фильтрами расстояние шириной с мою руку. В экспериментах Цайлингера и других ученых оно доходит до сотен миль, а исследователи Центра квантовых технологий работают над проведением этого эксперимента в космосе, где расстояния будут еще больше. Для крошечной частицы это равносильно другому краю Вселенной. Фотоны ведут себя согласованно на таком расстоянии. Они не контактируют друг с другом, никакая известная сила не связывает их, и тем не менее они ведут себя как единое целое. Когда Гальвез поворачивает поляризационный фильтр в левой части скамьи и фотон проходит через него, этот фотон поляризуется в том же направлении, что и фильтр. Его запутанный партнер в точности следует за ним: он приобретает такую же поляризацию и соответствующим образом взаимодействует со своим фильтром. Таким образом, происходящее слева влияет на фотон справа, даже когда на преодоление этого расстояния каким-либо воздействием нет времени. Такое воздействие должно было бы мгновенно распространяться от левой части к правой, т. е. бесконечно быстро, быстрее скорости света, что явно противоречит теории относительности. Это одна из многих загадок, которые нам задает нелокальность. Физики отмечали, что все это ближе к волшебству, чем что-либо, виденное ими ранее. «Студенты обожают это, – говорит Гальвез. – Хорошие студенты говорят: “Я хочу выяснить, в чем тут дело”».

Молчи и считай

Что такое нелокальность – всего лишь диковинка, о которой можно поахать и забыть, или же она занимает одно из центральных мест в физике? Большую часть XX в. физики относились к ней как к диковинке, и я в студенческие годы ничем не отличался от них. Лишь намного позже, когда мне в руки попала книга Тима Модлина «Квантовая нелокальность и относительность» (Quantum Nonlocality and Relativity), я оценил всю глубину этой тайны.

Сидя в своей гостиной, обставленной мебелью работы Джорджа Накашимы, Модлин рассказывает мне, что никогда не забудет тот момент, когда он узнал о квантовой нелокальности. Как-то осенью 1979 г. во время учебы в Йельском университете ему на глаза попался последний номер журнала Scientific American. Его главной темой были навозные жуки, но, полистав журнал, Модлин обнаружил статью о первых экспериментах с запутанностью. То, что частицы ведут себя как заколдованные, потрясло его. «Я помню день, когда прочитал эту статью, – говорит он. – У моих соседей по общежитию этот день тоже остался в памяти. Я ходил по комнате взад и вперед. Мир был не таким, как я думал раньше. Это выводило меня из равновесия».

Его также бесило, что преподаватели физики (как и в моем случае) даже не заикались об этом явлении. Когда он спрашивал об этом, они отмахивались от него. По воспоминаниям Модлина, он однажды поднял руку в аудитории и спросил, не может ли оказаться так, что квантовая теория не дает развиться более глубокой теории, в которой нынешние противоречия найдут объяснение. Преподаватель отмел эту идею и продолжил покрывать доску греческими буквами. «Он не предоставил никакого объяснения, почему нет, – говорит Модлин. – Просто закрыл вопрос, не отвечая на него».

Чтобы оценить то интеллектуальное препятствие, с которым столкнулись я и Модлин, нужно вернуться к знаменитым спорам между Эйнштейном и другим основателем квантовой механики, датским физиком Нильсом Бором. В 1920-х и 1930-х гг. Эйнштейна беспокоило то, что нелокальность противоречила его теории относительности. Он утверждал, что она должна быть своего рода иллюзией, свидетельствующей о нашем незнании какого-то важнейшего аспекта природы. Бор, со своей стороны… впрочем, никто не знает точно, на чем настаивал Бор. Его рассуждения дали слову «запутанный» совершенно новое значение, и его послания трактовались либо как отстаивающие нелокальность, либо как опровергающие ее. Если что-то и было вынесено из его слов, так это мысль о том, что неважно, какие странности происходят за кулисами, до тех пор пока теория может предсказывать то, что наблюдается в эксперименте.

Как известно любому, кто наблюдал президентские дебаты в США, суждения о «победе» или «поражении» часто имеют мало общего с тем, что на самом деле говорят участники. Большинство физиков просто хотели завершения спора Бора – Эйнштейна, чтобы можно было и дальше применять квантовую механику к практическим задачам. Поскольку Бор обещал прекращение прений, они сплотились вокруг него и списали Эйнштейна со счетов как вышедшего из моды. Позже кто-то писал про Эйнштейна, что его «репутация не пострадала бы, а то и укрепилась, займись он вместо этого рыбалкой».

В последующие десятилетия физики использовали квантовую теорию для самых разнообразных полезных вычислений. Они придумали транзисторы, лазеры и другие технологии, лежащие в основе современного мира. Таким образом, коллективное решение закрыть глаза на вопросы о более глубоком смысле этой теории казалось справедливым. Когда такие концептуальные вопросы все-таки возникали, физики считали их «философскими», и подразумевалось, что это не комплимент, а способ отрицания того, что эти вопросы вообще стоило задавать. Английский физик Поль Дирак писал: «Об этом беспокоится только философ, желающий обладать удовлетворительным описанием природы».

Поскольку вопрос и в самом деле зацепил Модлина, он решил получить диплом философа, а не физика. «Я хочу добраться до сути всего, – говорит он. – Это то, чем занимается философ». Философия характеризуется не только своими интересами, но и своими методами: философы специализируются на логике, а не на математике и экспериментировании. Модлин заработал среди философов репутацию «Доктора Опровергателя», способного найти ошибку в любом доказательстве. На протяжении всей работы над дипломом и в первые годы его профессорства, по словам Модлина, мысль о нелокальности вертелась у него на подсознательном уровне. Но никто из его знакомых, казалось, не интересовался ею, и в некотором смысле философы выглядели такими же заложниками принципа локальности, как и физики. Обстоятельства не давали Модлину больше думать об этом вплоть до осени 1990 г., когда умер Джон Стюарт Белл.

Белл сделал больше, чем кто-либо другой, для возобновления дела «Эйнштейн против Бора». Он начал сомневаться в победе Бора еще студентом университета в 1950-е гг., но понял, что высказывание сомнений не принесет пользы карьере. К середине 1960-х гг., сделав имя на исследовании частиц и проектировании ускорителей частиц, включая предшественников Большого адронного коллайдера, Белл почувствовал себя в достаточной безопасности, чтобы вернуться к юношеским интересам. Он показал, что нелокальность уже не исключительно повод для спора – ее можно запросто наблюдать в лаборатории. Как и Эйнштейн, Белл изо всех сил старался убедить своих коллег. Его первая статья на эту тему не цитировалась нигде в течение четырех лет и не упоминалась в учебниках до 1985 г. Даже когда работа Белла все-таки привлекла к себе внимание, ее нередко неверно истолковывали. Один из его некрологов был озаглавлен: «Человек, доказавший, что Эйнштейн был неправ». Это показывает полное непонимание мысли Белла о том, что нелокальность выходит за рамки того старого спора. Эйнштейн, возможно, был неправ, полагая, что нелокальность окажется только мнимой, но и Бор заблуждался, игнорируя ее полностью.

Как и Эйнштейна, Белла беспокоило то, что нелокальность бросает вызов теории относительности. Физики не могут отказаться от квантовой теории: она выдерживает все экспериментальные проверки. Точно так же невозможно вообразить, что теория относительности неверна. В лекции 1984 г. Белл заключил: «Мы имеем явную несовместимость, на самом глубинном уровне, между двумя столпами современной теории». Даже те, кто в остальном благожелательно к нему относился, не видели этой несовместимости. Создавая теорию относительности, Эйнштейн думал о том, как мы получаем информацию. Такие сигналы, как свет или звук, должны передаваться от объектов в окружающем мире к нашим органам чувств. Если эти сигналы распространяются мгновенно, они могут конфликтовать. В результате получаются парадоксы. Что-то одновременно происходит и не происходит. Внутренние механизмы Вселенной ломаются. Однако квантовые волшебные монеты не несут такой опасности. Они по своей сути не способны передавать сигналы. Они падают орлом или решкой, им нельзя приказать, как именно упасть. Нет способа контролировать их, чтобы передать сообщение или вообще сделать что-либо. Поэтому вы никогда не сможете использовать их для создания парадоксальной ситуации. Опасность предотвращена.

Другими словами, если запутанность – это волшебство, то оно не похоже на волшебную палочку, взмахом которой можно заставить что-то произойти. Скорее волшебство происходит спонтанно, и вы замечаете его, только если внимательно смотрите. Это очень разбавленная форма волшебства, которая не принесет никаких кубков в турнирах волшебников. Почти все убедили себя в том, что квантовая механика и теория относительности «мирно сосуществуют».

Ряд философов из Университета Ратджерса организовали в честь Белла симпозиум по квантовой физике и попросили выступить на нем Модлина. Возобновив свои исследования с того места, на котором он остановился еще студентом, Модлин продолжил разгребать гору информации, выросшую вокруг полученных Эйнштейном и Беллом результатов. Общепринятое видение теоретического согласия показалось Модлину слишком согласованным. «Простое указание на то, что вы не можете посылать сигналы, совсем не казалось мне достаточным для демонстрации того, что фундаментального конфликта с теорией относительности не существует», – говорит он. Даже если пара запутанных частиц не может передавать сигналы, квантовая теория все равно утверждает, что происходящее с одной из них мгновенно влияет на вторую. Таким образом, эта теория требует, чтобы у Вселенной было что-то вроде главных часов, гарантирующих, что 19:30 для одной частицы – это 19:30 для второй частицы. А теория относительности подобное отрицает. Теорию относительности называют так именно потому, что ход времени относителен. Два события, происходящие одновременно для одного человека, могут происходить поочередно для другого.

Доклад Модлина положил начало его книге, публикация которой совпала со всплеском интереса к запутанности. Экспериментаторы, осознавшие, что это явление не так бесполезно, как они думали раньше, начали применять его в криптографии и компьютерах. Так, Артур Экерт, физик из Оксфордского университета и нынешний директор Центра квантовых технологий, в 1991 г. доказал, что запутанные частицы могут создать настолько безопасный канал связи, что даже самая коварная правительственная программа наблюдения не сможет его перехватить. Как только физикам показали, какова значимость запутанности, они начали видеть ее практически везде, куда бросали взгляд. Она наблюдается даже в живых организмах. В фотосинтезе запутанностью объясняется неожиданно высокая эффективность, с которой молекулы преобразуют энергию света в химическую энергию, таким образом, запутанность вносит вклад в существование жизни на нашей планете.

К началу нового тысячелетия статья Эйнштейна, с которой все началось, стала одной из самых цитируемых в истории физики. Тем временем древняя стена между физиками и философами начала рушиться. Цайлингер, первопроходец среди экспериментаторов, часто расходится во взглядах с Модлином, но обменивается с ним идеями так, как 20 лет назад нельзя было и помыслить. «Эта связь между философией и физикой является решающей для достижения реальных успехов», – говорит мне Цайлингер.

Ясно, что квантовая нелокальность – это не просто представление за ужином в Лас-Вегасе, а неотъемлемая часть мира, и физики с философами до сих пор не знают, что стоит за этим волшебством. Могут ли ключи к разгадке находиться в других областях науки? Что можно узнать благодаря другим типам нелокальности, существующим в мире?

Звездочет и ледолаз

Подавляющую часть ХХ в. необычная синхронность запутанных частиц была единственным видом нелокальности, который заслуживал хоть какого-то внимания. Однако физики постепенно осознали, что и другие явления подозрительно таинственны. Те, кто изучает черные дыры, считают, что вещество в этих космических пылесосах может перепрыгивать из одного места в другое, не преодолевая расстояние между ними, – вот тип нелокальности, вероятно еще более непостижимый, чем та ситуация, которая беспокоила Эйнштейна.

Черные дыры долгое время были для физиков самыми странными явлениями во Вселенной. Рамеш Нараян видел их в действии. Как и Гальвез, Нараян говорит, что пришел к своей научной страсти поздно и практически случайно. Ребенком он не проявлял никакого интереса к астрономии. Нараян один из немногих знакомых мне астрофизиков, кто не припоминает страстной увлеченности черными дырами в детстве. Он обожал кристаллы. Но на своей первой работе, в престижном Исследовательском институте имени Рамана в Бангалоре, в южной Индии, он вдруг оказался в кругу людей, исследующих тайны Вселенной, и вскоре его это увлекло. Нараян стал экспертом по космическим потокам газа. Основной принцип этих потоков прост: то, что падает, должно проявляться. Когда газ обрушивается на поверхность звезды, она разогревается; звезда, в свою очередь, испускает энергию обратно в космос, обычно в виде инфракрасного излучения или видимого света. «Вся энергия, попадающая внутрь, должна выходить наружу», – объясняет Нараян, который теперь преподает в Гарварде. Однако в начале 1990-х гг. астрономы заметили странное исключение из этого правила в центре нашей галактики.

Увидеть центр галактики довольно легко. В следующий раз, когда выйдете из дома посмотреть на ночное небо, найдите созвездие Стрельца. В моем городе его проще всего наблюдать летом и ранней осенью, когда оно висит невысоко над южным горизонтом. Оно должно быть похоже на лучника, но большинство астрономов считают его похожим на гигантский чайник. Его носик указывает на центр Млечного Пути. Для человеческого глаза это всего лишь туманный кусочек неба, но в 1940-е гг. благодаря телескопам там обнаружили завихрение газа. В самом центре газ устремляется в одну точку в области, известной под названием Стрелец А*. Эта область таинственно неярка: менее 1 % энергии, приносимой туда поступающим газом, возвращается обратно. «Прямо на наших глазах энергия направляется к центру и исчезает – пшик», – говорит Нараян.

Это определение черной дыры. Ее тяготение настолько велико, что все попавшее в нее никогда не возвращается обратно. Художники иногда изображают черные дыры в виде гигантской воронки в пространстве, однако снаружи они больше похожи на планету: большую, подозрительно темную планету. Вещество может вращаться вокруг нее, и обычно так и происходит. Но если бы вы попробовали потрогать то, что кажется ее поверхностью, ваша рука просто прошла бы насквозь: этот объект представляет собой пустое пространство. Предполагаемая поверхность, или «горизонт событий», на самом деле является просто гипотетической точкой невозврата, в которой попадающий туда газ или другое вещество могут поменять курс на противоположный, только двигаясь со скоростью больше скорости света. В случае Стрельца А* горизонт событий представляет собой сферу диаметром около 25 млн км. Вещество, пересекающее его, просто продолжает двигаться, как машина, заехавшая на тупиковую улицу с односторонним движением, и несется навстречу какой-то неопределенной и, предположительно, печальной кончине. «Это единственная уникальная особенность черной дыры, – говорит Нараян. – У черной дыры нет поверхности, и это меняет все. Газ и вся энергия, которую он несет, просто проглатываются».

Что же происходит со всем этим веществом? Это загадка. К сожалению, две главные теории в распоряжении физиков – теория тяготения и квантовая теория – приходят к диаметрально противоположным выводам о судьбе поглощенного вещества. Если говорить упрощенно, теория тяготения гласит, что падение в черную дыру необратимо, в то время как квантовая теория утверждает, что нет ничего необратимого. Первая говорит, что вещество не может выбраться оттуда, что оно поглощается черной дырой навсегда. Вторая говорит, что вещество должно выбраться оттуда и снова принять участие в жизни космоса. В чем дело? Это противоречие – красная лампочка, предупреждающая о том, что некоторые принципы современной физики, кажущиеся неотъемлемыми, возможно, неверны.

Наблюдения Нараяна не могут решить этот вопрос. Разрешение противоречий, связанных с черными дырами, требует создания объединенной физической теории, в которой квантовая теория и теория тяготения сливаются в квантовую теорию гравитации. И многие из тех, кто работает над такой теорией, сомневаются в справедливости принципа локальности. Если бы вещество могло перемещаться быстрее скорости света или перепрыгивать изнутри наружу, не проходя через лежащее между этими позициями пространство, у него была бы возможность ускользнуть из неприветливой тюрьмы черной дыры.

Главный поборник этой идеи – Стив Гиддингс. Он преподает в Калифорнийском университете в Санта-Барбаре, хотя, глядя на шорты с накладными карманами, флисовую куртку и незаправленную клетчатую рубашку, его можно принять за инструктора по горному туризму. И это не так уж далеко от правды: он мелькает как в научно-популярном журнале Scientific American, так и в журнале для туристов Climbing. Гиддингс достиг совершенства в скалолазании и ледолазании, в горных и равнинных лыжах, в альпинизме и каякинге. Он считает, что его страсть к науке и увлечение видами спорта на открытом воздухе дополняют друг друга. «Мне кажется, это две грани единения с природой», – говорит он. В детстве он увлекался книгами по физике, в колледже получил грант от Национального научного фонда на исследование гравитации, но при этом не упускал случая покататься на лыжах на природе. Летом после выпуска из колледжа он сам смастерил каяк и спустился на нем по реке Колорадо через Большой каньон. Затем Гиддингс доехал автостопом до Национального парка «Денали», это была первая из его поездок в те края. Он помнит, как северный олень с детенышем перебежал дорогу, не обращая на него никакого внимания. «Оглянувшись, я понял, почему им было не до меня, – говорит Гиддингс. – Они убегали от большого гризли. Медведь же направился ко мне». Вспомнив инструктаж смотрителя парка, Гиддингс не растерялся и кричал на медведя до тех пор, пока тот не отступил в поисках более легкой добычи.

Потом он переехал в Нью-Джерси. Там есть много чудесных мест, за исключением гор и каньонов. Но у Гиддингса не было на них времени. Дни, ночи, будни и выходные он проводил за подготовкой к экзаменам. Казалось, что принстонский курс физики для аспирантов был создан специально, чтобы опрокинуть его каяк. «Поддержка практически отсутствовала, – говорит Гиддингс. – В этой атмосфере студенты чувствовали себя совершенно затюканными». Гиддингс подумывал сбежать, но у него хватило твердости, чтобы сдать экзамены в 1984 г. Это было время большого воодушевления в области теоретической физики. Ученые по всему миру бросали все остальное и переключались на теорию струн, претендовавшую на звание единой теории всего.

Теория струн получила свое название от идеи о том, что субатомные частицы похожи на крошечные резиновые ленты или гитарные струны. То, что мы воспринимаем как разные виды частиц, – это на самом деле просто разные способы колебаний этих струн, что делает мир симфонией немыслимой сложности. Теория томилась в безвестности с конца 1960-х гг., и переломный момент наступил, когда немногочисленным энтузиастам удалось убедить большинство в ее внутренней непротиворечивости. «Это было настоящее дело, и оно захлестнуло меня с головой», – вспоминает Гиддингс. Эдвард Виттен, корифей этой области, попросил его решить ключевое уравнение, и через несколько месяцев упорного труда, пробуя один математический метод за другим, он сделал это. Тем временем Гиддингс познакомился с несколькими любителями каяка и обнаружил, что Штат садов[7] получил свое прозвище не совсем незаслуженно. «Я начал понимать, что это, может быть, и сработает», – говорит он.

Разрешение противоречий с черными дырами было одной из главных причин для поиска единой теории, и в 1990 г. Гиддингс решил заново пройти шаги, приведшие к парадоксу, которые были изложены знаменитым кембриджским теоретиком Стивеном Хокингом в середине 1970-х гг. Хокинг исходил из того, что распад – это закон природы. Практически все в этом мире в конце концов умирает. И черные дыры – не исключение, и не могут им быть, раз они образуются. Разрушение – это создание наоборот. «Если можно сделать черную дыру из случайного мусора, значит, черная дыра может распасться на случайный мусор», – говорит Гиддингс.

Согласно исследованиям Хокинга, распад не означает, что внутреннее содержимое черной дыры просачивается наружу. Да разве такое возможно? Чтобы вырваться за пределы горизонта событий, внутреннее содержимое должно вытекать со сверхсветовой скоростью. Вместо этого дыра разрушается от краев к середине. Горизонт событий выводит из равновесия электрическое, магнитное и другие поля, заставляя их излучать частицы как чешуйки ржавчины. Черная дыра, равная по массе нашему Солнцу, испускает примерно одну частицу в секунду, что слишком мало для того, чтобы такие астрофизики, как Нараян, могли обнаружить это с помощью приборов, но достаточно для того, чтобы за триллионы лет превратить черную дыру в беспорядочное, бесформенное облако частиц. Структура попавшей туда материи, информация, содержавшаяся в ней, все следы того, чем она была раньше, – все утрачивается. Другими словами, попадание в черную дыру необратимо не только в том смысле, что из нее нельзя выбраться обратно. Это было бы не так страшно, поскольку, если вообразить себя богом, можно заглянуть в черную дыру и восстановить, как там оказалось все, что в ней есть. Но попадание в черную дыру необратимо еще и в том смысле, что материя в ней уничтожается с такой тщательностью, что даже богу не удалось бы восстановить оригинал.

Как заметил сам Хокинг, его вычисления были непростыми. Он смог понять, как черная дыра влияет на вылетающие частицы, но не то, как вылетающие частицы влияют на черную дыру: а это взаимное влияние могло бы открыть потайную дверь между пространством снаружи и внутри дыры, позволяющую захваченной материи возвращаться наружу. Если так, то попадание в черную дыру было бы все же обратимо и парадокс исчез. Поэтому Гиддингс и несколько его коллег провели новое исследование, основанное на теории струн, в поисках потайных дверей и лазеек, не учтенных в вычислениях Хокинга. Они ничего не нашли. Хокинг был прав. «С помощью этих простых моделей в самом деле подтверждается первоначальное видение Хокинга», – говорит Гиддингс.

Таким образом, нет простого способа избежать парадокса (не говоря уже о черной дыре). Одно из допущений, используемых при доказательстве, должно быть ошибочно, а таких допущений в действительности всего два: обратимость и локальность. Сначала Хокинг посчитал неверным первое из них. Он предположил, что квантовая теория неверна и падение в черную дыру необратимо. Однако похоже, что в квантовой теории работает правило «все или ничего»: если она не работает в одном месте, то не работает нигде. Если она дает осечку там, где предположил Хокинг, мы должны видеть подобные проколы и в обычных условиях, а мы их не видим. В итоге Хокинг согласился с тем, что черные дыры должны быть обратимы. Тогда, по умолчанию, ошибочным должен быть принцип локальности. «Я продолжаю биться над вопросом о том, как попадает наружу информация: похоже, что этот процесс просто обязан быть нелокальным», – говорит Гиддингс.

Примерно к тому же выводу пришли еще несколько исследователей, но общее настроение было неоднозначным. Нелокальность в черных дырах еще труднее переварить, чем нелокальность в экспериментах с частицами. Если квантовая запутанность – трудноуловимое явление, не противоречащее открыто никаким другим законам физики, то движение со сверхсветовой скоростью через горизонт событий настолько грубое противоречие, что грубее придумать сложно. Это нарушение так же нахально, как езда со скоростью 150 км/ч на виду у патрульного. Гиддингс не мог шага ступить по коридору или выйти за чашечкой кофе, чтобы какой-нибудь коллега не высказался против его готовности серьезно рассматривать нелокальность, и в итоге он забросил эту тему почти на десятилетие. «Это выглядело довольно безумно, – говорит он. – Я не пошел дальше. Я слишком быстро уступил скептикам». На деле Гиддингс просто немного опередил свое время.

Бетономешалка и дочь скульптора

Даже простая возможность существования второго типа нелокальности чрезвычайно существенна. Она указывает на то, что явление, обнаруженное Эйнштейном, лишь один из фрагментов большой мозаики. Это не доказывает, что нелокальность действительно работает или что эти два типа нелокальности как-то связаны, но психологически очень важно. В науке, как и в жизни вообще, именно второй, а не первый случай привлекает внимание людей. Третий случай означает наличие тенденции.

Этот следующий тип нелокальности, о котором я расскажу, не настолько признан, как квантовая запутанность или черные дыры, но если он действительно существует, то все еще серьезнее. Он проявляется в наблюдениях, которые кажутся настолько очевидными, что вы можете даже не воспринимать их как наблюдения. Если вы взглянете на ночное небо, то увидите, что оно темное. Наверное, это вряд ли будет откровением. И все же темнота ночи – одна из основ теории Большого взрыва, поскольку темнота означает, что Вселенная конечна по возрасту, или по размеру, или по тому и другому сразу. Если бы Вселенная была бесконечно большой и древней, то мы бы видели бесконечно далеко во всех направлениях и в поле зрения всегда попадала бы какая-нибудь звезда. Звезды создавали бы непрерывную стену света. Это было бы похоже на жизнь в таком глухом и старом лесу, что, куда бы вы ни посмотрели, вы бы увидели дерево. Так что в следующий раз, когда будете смотреть на ночное небо, представьте, что звезды – это деревья, а чернота между ними – просветы, показывающие, что лес либо настолько маленький, что вы видите сквозь него, либо настолько молодой, что еще не стал густым.

Мало того что ночное небо темное, оно еще и выглядит практически одинаково, куда бы вы ни посмотрели. На конференции, которую я посетил в 1996 г., астрономы показали плакат с самой поразительной демонстрацией однородности, которую я когда-либо видел. Они направили космический телескоп Hubble на темный участок неба рядом с ковшом Большой Медведицы и оставили его в таком положении на 10 дней, чтобы собрать свет для самого чувствительного изображения из когда-либо сделанных: Hubble Deep Field. Три года спустя они сделали то же самое с почти диаметрально противоположной частью неба, в Южном полушарии. Эти изображения не так эффектны, как некоторые другие снимки, сделанные телескопом, – их красота недооценена. На них видны объекты, находящиеся почти на самом пределе нашего зрения, они настолько тусклые, что телескоп получал от них всего один фотон света в минуту. Тысячи небольших красноватых пятен на изображении – это целые галактики, включая такие, которые сформировались самыми первыми. Северные и южные изображения с точки зрения статистики выглядят одинаково, из чего следует парадокс, который профессор Мэрилендского университета Чарльз Мизнер впервые заметил в 1969 г.

1 В повседневной речи locality переводится как «местность», но в научном контексте используется англицизм «локальность». – Прим. пер.
2 Джон Донн (1572–1631) – английский поэт, воспевавший нераздельность и единство влюбленных. – Прим. ред.
3 Exxon Mobil Corp. – американская нефтяная компания, известная, в частности, тем, что финансировала исследования, результаты которых отрицали влияние парниковых газов на изменение климата. – Прим. пер.
4 Алан Стюарт «Эл» Франкен – американский писатель, комик, радиоведущий и политик. – Прим. пер.
5 Star Trek – популярный американский научно-фантастический телесериал, созданный Джином Родденберри и положивший начало целой вселенной «Звездного пути». – Прим. пер.
6 Руб Голдберг – американский карикатурист, писатель и изобретатель. Известен серией карикатур, изображающих чрезвычайно сложные и громоздкие устройства для выполнения очень простых функций. – Прим. ред.
7 Официальное прозвище штата Нью-Джерси. – Прим. пер.
Скачать книгу