Тайная жизнь домашних микробов: все о бактериях, грибках и вирусах бесплатное чтение

Дирк Бокмюль
Тайная жизнь домашних микробов: все о бактериях, грибках и вирусах

Dirk Bockmühl

Keim daheim:

Alles über Bakterien, Pilze und Viren



Original title: Keim daheim Copyright © 2018 Droemer Verlag. An imprint of Verlagsgruppe Droemer

Knaur GmbH & Co. KG, München.

All rights reserved. Illustrations by сlaire Lenkova

Copyright © 2018 Droemer Verlag. An imprint of Verlagsgruppe Droemer

Knaur GmbH & Co.KG, Munich


© Юринова Т.Б., перевод на русский язык, 2019

© Оформление. ООО «Издательство «Эксмо», 2020

Предисловие

У вас за последнее время был какой-нибудь странный телефонный разговор, можете припомнить? Я вот помню – это было в перерыве между двумя лекциями, я сидел в своем кабинете и только собирался приняться за бутерброд с сыром, как раздался телефонный звонок. Звонил коллега из одной фирмы, мы с ним уже неоднократно делали совместные проекты.

– Прости, что отвлекаю тебя, – начал он, – но дело в том, что меня собирается убить моя посудомоечная машина!

– Ну, да, ясное дело, – с усмешкой парировал я, одновременно жуя бутерброд. – Но тут наверняка уже подключилась космическая полиция, уж очень это дело смахивает на дешевую научную фантастику.

– А не веришь, так сходи по ссылке, которую я тебе только что выслал.

Я так и поступил, и действительно, на экране появился заголовок из американского интернет-журнала Science Daily: «Моя посудомоечная машина пытается меня убить». Там рассказывалось о работе группы ученых из Словении, обнаруживших в посудомоечных машинах болезнетворные виды грибков, в том числе один вид с таким мрачным названием, как «черные дрожжи», который при определенных обстоятельствах может вызывать тяжелые инфекции.



Мы с коллегой еще какое-то время продолжали перезваниваться и обсуждать это исследование и оценку, данную ему американским научным журналом. Не хочу утомлять вас всеми деталями, но позвольте сформулировать суть дела в одном вопросе: если посудомойка таит в себе такую смертельную опасность, то почему никто из вашего окружения еще не пал жертвой посудомоечной машины? Что касается меня, то я лучше умру, чем снова буду мыть посуду руками. Ясно также следующее: если задумать кого-то умертвить посудомоечной машиной, то придется очень сильно напрячься, причем микробы, укрывшиеся в кухонном агрегате, скорее всего никакой роли при этом играть не будут. Поэтому, прежде чем обходить стороной эту якобы смертоносную машину, запомните, что посудомойка дает превосходную возможность тщательно вымыть посуду и очистить ее от микроорганизмов, если вы, например, возились с сырой курицей, что, между прочим, действительно дело рисковое, поскольку в мертвой курице кишат орды бактерий, которые только и ждут шанса устроить вам изрядный понос с рвотой. Поэтому куриное мясо тщательно доводите до готовности, а разделочные доски, которыми пользовались в процессе, сразу отправляйте в эту самую посудомоечную машину (надеюсь, она у вас есть). Если бы весь мир перестал отправлять трудно отмываемую посуду в посудомойки, поскольку в них якобы затаился какой-то там грибок, который спит и видит, как бы ему наброситься на род человеческий, – вот это бы и стало на самом деле проблемой!

В ходе нашей беседы на страницах этой книги мы подробнее поговорим о том, что правда, а что – нет в подобных публикациях; о том, когда микроорганизмы действительно становятся опасными, а когда они нам необходимы. Однако категорично разделять представителей окружающего нас невидимого мира на хороших и плохих было бы слишком примитивно, и, если вспомнить science fiction, это скорее из области фантастики, чем науки. Хотя среди микробов встречаются не менее яркие персонажи, чем Люк Скайуокер и Дарт Вейдер. Именно поэтому очень полезно больше знать о наших микробиологических попутчиках, тогда можно будет правильно действовать в тех ситуациях, в которых мы с ними сталкиваемся. А если вам все же хочется поиграть в «Звездные войны», то бегайте себе на здоровье, размахивая спреем с очистительным средством вместо пистолета, но имейте в виду, что иногда следует проявлять доброту к крошечным микроорганизмам – они многое для нас делают.

Что именно – с этим я вас поближе познакомлю в своей книге. Я приглашаю вас в невидимый мир микроорганизмов в нас и вокруг нас. В мир, который уже столько лет приводит меня в восторг. До такой степени, что (почти) ничто мне так не мило, как исследовать данную тему и заражать людей своей увлеченностью. Не бойтесь, эта зараза абсолютно безопасна. Пожалуй, для начала я расскажу вам кое-что об этих удивительно многогранных существах и только потом приглашу вас к себе домой на микробиологическую экскурсию, после чего мы выйдем за порог дома на небольшую прогулку. Вас ожидает много открытий и масса практических советов. Для верности я еще раз собрал их в самом конце книги в руководство по правилам хорошего тона в обращении с микробами, чтобы впоследствии вы могли вести себя в их обществе надлежащим образом.

Ну что ж, кажется, можно начинать. Вы готовы?

Часть I
Невидимый мир вокруг нас

1. Микробы и люди – идеальная команда?

Наши невидимые сожители

Мы не одиноки! На эту фразу я натолкнулся недавно в статье бывшего немецкого астронавта Ульриха Вальтера, где он не только высказал предположение о существовании другой жизни во Вселенной, но и математически обосновал его. Меня как микробиолога эта информация с общенаучной точки зрения, конечно, заинтересовала, но в математике, скажем честно, я не особо силен, поэтому математические выкладки отследить не смог. Формулы, приведенные в доказательство существования наших соседей по космосу, оказались для меня длинноваты. Но одно не вызывает сомнений даже у математически не подкованного микробиолога: мы действительно не одиноки, причем везде и в любой момент своей жизни. Чтобы понять это, не обязательно даже всходить на космический корабль и уноситься на поиски в далекие галактики. Можно спокойно оставаться на Земле и выжидать. Ибо наши братья непременно сами нас найдут. Я имею в виду те самые микроорганизмы, которые хоть и невидимы для нас, но исключительно нам важны и обитают повсюду внутри и вокруг нас. Позвольте мне сразу же, прежде чем вы на этом месте состроите брезгливую мину, встать на защиту этих существ. Да, при слове «микроорганизмы» большинство неизбежно подумают о возбудителях болезней, всякой заразе и процессах разложения – да пусть даже всего лишь о недавно вылеченном желудочном гриппе[1], – однако свою главную роль микробы играют в делах, идущих человеку на пользу и защиту. Я даже могу это доказать. Вы когда-нибудь принимали антибиотики? Тогда вполне вероятно вы могли испытать сомнительное удовольствие от одного побочного явления, которого практически не избежать: диареи. Почему? А очень просто: антибиотики призваны уничтожать бактерии, из-за которых вы попали к врачу и которым обязаны болью в горле, воспалением мочевого пузыря или что там еще с вами случилось. И когда вы глотаете таблетку с антибиотиком, действующее вещество распространяется по вашему организму и, можно надеяться, находит возбудителей вашего заболевания. Но вот только в вас живут и другие бактерии, без которых вам пришлось бы туго, поскольку они помогают при пищеварении, расщепляя определенные частицы пищи и приводя их в то состояние, которое идет вам на пользу. Согласен, кишечник – это не лучшее место жительства, но наши маленькие друзья чувствуют себя там хорошо. Пока не повстречаются с таким вот медикаментом, вероломно пускающим их в расход. Ведь антибиотик не различает, что перед ним – «хорошая» кишечная бактерия или «злой» возбудитель ангины. Вот и получается, что кишечник остается без своих хороших бактерий, а ваш непереваренный обед уходит окольными путями.

Бактерии живут и служат нам защитой не только в кишечнике, но и на коже, где они, в частности, способствуют созданию известной всем кислотной мантии. Мы все выделяем кожный жир, придающий нашей коже эластичность и мягкость, а микроорганизмы перерабатывают его компоненты в слабые кислоты. Эти кислоты, в свою очередь, способствуют тому, что прочие бактерии – те, которые вызывают кожные болезни, – перестают размножаться и, следовательно, больше не могут причинить нам вред.

Этот принцип работает, впрочем, не только на коже. Возьмем, например, кислую капусту. Она не портится, потому что в свежую белокочанную капусту добавляют молочнокислые бактерии, а гнилостных бактерий кислоты не терпят. В прежние времена наструганную капусту хорошенько утаптывали босыми ногами в бочке – попробуйте сами догадаться, откуда поступали молочнокислые бактерии…

 Бактерии, что находятся на коже, помогают создавать кислотную мантию, мешая размножаться вредоносным бактериям.

Как видите, мы заселены, надо надеяться, преимущественно полезными микроорганизмами, причем весьма щедро. Разумеется, никто точно их количество не подсчитывал, но можно исходить из того, что бактериальных клеток в нас примерно столько же, сколько соматических, то есть примерно от 30 до 40 триллионов. Если у вас уже упомянутые выше проблемы с математикой, поясню: триллион – это единица с двенадцатью нулями. Кстати, из клеток нашего организма 25 триллионов составляют красные кровяные тельца; жировых клеток значительно меньше. Знание этого факта меня особенно радует после Рождества, когда начинает казаться, будто жировые клетки (по крайней мере мои) размножаются сверх всяких пропорций.

Но, как известно, цифры – это всего лишь цифры; намного интереснее, что именно мы носим в себе и на себе. На данный момент ответ на этот вопрос уже найден, ну, или по крайней мере сделана попытка его найти. Пару лет назад один американский научный консорциум проанализировал так называемый микробиом человека, то есть ученые исследовали, какие микробы живут в человеческом организме и на теле. Квинтэссенцию кратко сформулирую так: каждого человека сопровождает весьма впечатляющий зоопарк бактерий и грибков, причем по составу этого микробиологического сообщества можно столь же точно определить индивидуума, как по отпечатку пальцев (если даже не точнее). И если вам сейчас на память пришел последний из просмотренных вами теледетективов, то мыслите вы, в общем, верно. Побывав в каком-то помещении, человек оставляет в нем после себя такую уникальную, единственную в своем роде смесь микробиологических клеток, что анализ ее состава позволяет точно установить, что именно тот человек находился в комнате, а не другой. Преступникам это обстоятельство дает повод для беспокойства, ведь криминальные эксперты тоже в курсе, и мы вполне можем предположить, что Шерлок Холмс конца двадцать первого века не будет возиться с отпечатками пальцев для поимки преступников, а возьмет на вооружение молекулярную биологию.

Но, несмотря на существенные успехи, достигнутые в области анализа человеческого микробиома, сегодня мы все еще далеки от понимания, чем хороши «наши» микроогранизмы в частности и каждый в отдельности. Защитная функция кожной флоры, о которой говорилось выше, или помощь при пищеварении, которую оказывают кишечные бактерии, – это все неоспоримые факты, но задачи наших микробов наверняка намного, намного масштабнее. Профессор журналистики Майкл Поллан из Беркли писал как-то, что некоторые из его лучших друзей – бактерии; так далеко я не стал бы заходить, поскольку старомоден и люблю общаться со своими друзьями лично, а с бактериями это, как доподлинно известно, несколько… гм… сложновато. Но высказывание Поллана задает верное направление мысли.

Давайте же, следуя в этом направлении, познакомимся с одной очень интересной группой дружественных нам микробов.

Пробиотики – бактерии, приносящие пользу

Для начала позвольте отметить следующее: не стоит полагать, будто мы сможем управлять нашей микрофлорой. Скорее следует смириться с мыслью, что это она нами управляет, или, по выражению того же Поллана, что мы должны приводить свои интересы в соответствие с интересами наших микробиологических обитателей. Мне в связи с этим импонирует образ садовника, который не может приказать своим посадкам расти, а может лишь поливать и удобрять их, то есть заботиться о том, чтобы его подопечным было хорошо. И когда-нибудь, при условии тщательного ухода, удобрения и прополки, садовник сможет пожать плоды своего труда, а если говорить буквально – сможет наслаждаться цветами или вкушать собственноручно выращенные фрукты и овощи.

 В организме обитает примерно триллион кишечных бактерий!

Ну, а «наши» бактерии, помогут ли они нашему выздоровлению, поспособствуют ли поддержанию здоровья? Это интересный вопрос, ответ на который уже давно нашла пищеперерабатывающая промышленность: пробиотики! Вам наверняка знакомы молочные продукты со всевозможными полезными бактериальными культурами, носящими такие звучные имена, как Lactobacillus acidophilus или Lactobacillus casei; и, вероятно, вы также знаете, что эти молочнокислые бактерии присутствуют в продуктах главным образом для того, чтобы из жидкого молока получился более или менее густой йогурт. Но что же в нем, в пробиотическом йогурте, такого особенного? Я упоминал уже, что кишечная флора для нас очень важна. Мы только сейчас начинаем понимать, что на самом деле делают для нас живущие в нашем кишечнике маленькие помощники. Ну да, сейчас уже ни для кого не секрет, что бактерии помогают нам переваривать пищу, но ведь это еще далеко не все. Практически бесспорно доказано, что кишечные бактерии помогают тренировать иммунную систему и способствуют ее исправной работе. Возможно, вы уже слышали о том, что у детей, вскормленных грудью, меньше проблем с аллергией. Этот феномен объясняется тем, что материнское молоко поддерживает определенные кишечные бактерии, и те в ответ проявляют свои целебные свойства. Этих благодетелей называют бифидобактериями, и они, как и их вышеупомянутые родственники, содержатся в некоторых пробиотических йогуртах, но также их можно купить в концентрированной форме в аптеке – в качестве биоактивной добавки.

В связи с этим возникает один интересный вопрос: а действуют ли бактерии, если принимать их с пищей и если материнское молоко давно уже выведено из рациона по возрасту? Ответить на этот вопрос на самом деле довольно сложно: исследований в настоящее время проводится невероятное количество, но благословенный мир кишечника не так уж просто устроен… Во-первых, бактерии, которые вы отправляете в рот с йогуртом, должны для начала в кишечник попасть, поскольку для бактериальной клетки путь туда больше напоминает путь хоббита через Мордор, чем увеселительную прогулку. Если вы не в курсе, напомню историю из книги Дж. Р. Р. Толкиена «Властелин колец»: там маленькие существа должны преодолевать множество опасностей, чтобы добраться до места, от которого, собственно, хорошо бы держаться подальше, потому что там темно и воняет. И даже если в нашем пищеварительном тракте орки и тролли не водятся, однако есть там одно место, наводящее ужас на наши добрые кисломолочные бактерии, это желудок, в котором столько агрессивной кислоты, что большинство микробов там погибает. Но тут нашим маленьким героям помогает одно их качество, которое вы при упоминании выше слова Lactobacilli, возможно, уже смогли распознать – по крайней мере если вам, как и мне, пришлось в школе пару лет мучиться с латынью. Все же есть порой какая-то польза от знания мертвого языка. Итак, дополнение acidophilus означает «любящий кислоту»; понятно, что у бактериальных клеток с такими предпочтениями довольно хорошие шансы преодолеть путь через желудок.

И все же, действительно ли количества бактерий, попадающих в кишечник, достаточно для того, чтобы они сотворили там доброе дело? На первый взгляд да, если исходить из того, что с капелькой йогурта мы потребляем приблизительно, ну, скажем, миллиард бактерий. Однако у вас в организме кишечных бактерий – опять-таки весьма приблизительно – триллион! Получается, что каждая пробиотическая бактерия, которую вы съели с йогуртом, должна выстоять против тысячи уже обосновавшихся там бактериальных клеток! Могу лишь предполагать, насколько это трудно. Мне, например, обычно ох как не просто отстоять свои предпочтения в собственной семье, когда мы обсуждаем, что будем есть на ужин; а ведь у нас в семье соотношение один к трем. Понятно, что, когда фирмы, которые сбывают такие молочные продукты, заказывают всевозможные исследования, они ставят задачу доказать положительное воздействие полезных штаммов бактерий, и в некоторых случаях есть вполне обоснованные свидетельства тому, что вся концепция работает. Но в последние несколько лет в Европейском союзе стало довольно сложно продвигать целебные свойства продуктов питания; это получается лишь при наличии основательно подкрепленных научных доказательств. Поэтому продвигающей пробиотики индустрии пока что еще сложно разъяснять потребителям, что эти продукты вообще нам несут. Особенно если учесть, что, конечно же, не каждый человек с ходу придет в восторг от перспективы вкушать бактерии и представлять себе, какую работу они там проделывают. Есть вещи, которые человек просто не хочет знать!

Для небрезгливых читателей расскажу историю открытия пробиотиков; между прочим, это не сказка, хоть и может так показаться. Итак, жил когда-то врач по имени Альфред Ниссле, и довелось ему лечить солдат времен Первой мировой войны. Лечил доктор Ниссле не только боевые ранения, но и тяжелые, опасные для жизни диарейные заболевания – в те годы разгулялась жестокая эпидемия[2]. Удивительно, но ему встречались бойцы, которых эта проблема чудесным образом обходила. Ниссле решил докопаться до причины. Он исследовал содержимое желудка оставшегося здоровым солдата и изолировал некий непатогенный штамм известного вида бактерий Escherichia coli, который и оказался этой причиной.

 Каждая пробиотическая бактерия вступает в бой с 1000 бактериальных клеток.

И действительно – когда Ниссле в ходе лечения начал вводить измученным диареей солдатам концентрированные дозы этих бактерий, пациенты выздоравливали. Бактерия E.coli Stamm Nissle 1917 является основой препарата, который мы на сегодняшний день можем без рецепта купить в аптеке наряду со многими другими подобными средствами для хорошего самочувствия нашего кишечника.

Не беспокойтесь, это не такие же (и тем более не те же самые) бактерии, на которых замешан ваш йогурт; а вот история пробиотических йогуртовых бактерий, к счастью, не такая мерзость. Уже в начале XX века русский иммунолог Илья Мечников описал взаимосвязь между высокой продолжительностью жизни некоторых этнических групп населения Болгарии и потреблением типичных для этой местности молочных продуктов; тем самым он еще до Ниссле обосновал принцип действия пробиотиков. Впрочем, долгие годы многие медики очень критично относились как к молочным продуктам из супермаркетов, так и к биоактивным добавкам из аптек, поскольку их действие еще не было бесспорно подтверждено. Однако со временем возможности этого метода были полностью признаны, во всяком случае, мы можем считать, что эти продукты не вредят, поэтому если от них кому-то хорошо… то и хорошо.

2. Микроб или не микроб – вот в чем вопрос

Я сейчас все время говорил о микроорганизмах, но что же, собственно, понимается под микроорганизмами? Один мой бывший коллега, сотрудник отдела маркетинга, как-то раз сказал мне: «Я звоню тебе по поводу всего, что размером меньше собаки». Я работал тогда микробиологом на одном предприятии, выпускавшем потребительские товары, и был своего рода белой вороной среди сплошных экономистов и химиков. Одна из моих задач состояла в том, чтобы отвечать на вопросы, связанные с микробиологией, причем отвечать быстро и по возможности на все вопросы. Преимущественно это были вопросы: «Какие микробы вызывают прыщи и перхоть?» или – на волне эпидемии гриппа в Германии – «А не эффективны ли наши продукты против этого вируса?» В связи с этим однажды возник и такой вопрос: «А, собственно, какими организмами занимается микробиолог?» Ответить на него оказалось не так просто. Коллега из отдела маркетинга упростил задачу, и хотя его определение полностью принимать всерьез не стоит, но нельзя сказать, что он абсолютно не прав.

Что же это такое – микроорганизмы?

Далекий от науки человек может, наверное, думать, что есть вот животные и растения, а еще есть ряд экзотических тварей типа амеб и медуз (кажется, это тоже животные), грибов (вообще-то это растения… или нет?), а также бактерий и вирусов (но они очень маленькие). Примерно так же представлял себе картину мира и я, когда начинал учиться на биолога, но вскоре вынужден был переосмыслить свои взгляды на живую природу. Прежде чем выяснить местоположение лучших студенческих кабаков, я успел на занятиях уразуметь, что с биологической точки зрения самое разумное – подразделять живые существа на три группы, а именно: бактерии, археи и эукариоты. При этом бактерии и археи, как правило, объединяют в одну группу под названием «прокариоты». Представляю выражение ваших лиц, когда вы читаете эти строки, ибо точно так же выглядел в то время и я; но ничего, сейчас мы вместе посмотрим на эту картину.



На картинке вы видите так называемое филогенетическое дерево жизни, где название «филогенетическое» происходит от греческих слов phyle (род) и genesis (возникновение). Это нечто вроде родословного древа, только представлены тут не мои родственники и предки, а родственные связи между всеми живыми существами на нашей Земле. Принцип при этом тот же: точки пересечения означают общих предков и чем короче отрезок между двумя именами, тем теснее родство между ними.

Возможно, все это еще немного абстрактно, но сейчас покажу на примере моей семьи, и станет ясно.

Ближайший общий предок между мной и моей сестрой – это моя мать. Ближайший общий предок моей тети и меня – моя бабушка. Поскольку отрезок между мной и сестрой короче отрезка между мной и тетей, то мы с сестрой более близкие родственники.



В такую игру можно сыграть с любыми живыми существами, нужно только пропорционально подгонять отрезки, а то общая картина получится не очень наглядной. Показывать все поколения на ней не обязательно. Если вы посмотрите на вышеприведенное филогенетическое древо, то увидите, что у животных, грибов и растений когда-то в прошлом был один общий предок. А еще, намного-намного раньше, общий предок был даже у нас c бактериями – у нас как у животных, которыми мы, собственно, и являемся. Ну, правда, если между вами с тетей временно́е расстояние лет, скажем, шестьдесят, то в этом случае будет чуть подольше. Общий предок растений, животных и грибов, например, обитал миллиард лет тому назад – это если говорить навскидку, прошу не ловить меня на слове, если я ошибся на пару сотен тысячелетий в одну или в другую сторону.

Бактерии и грибы: самые известные микробы

Почему я, собственно, все это вам рассказываю? А вот почему: на родословном древе можно увидеть очень разветвленную группу живых существ самых разных видов под общим названием бактерии. Это уже само по себе примечательно, люди ведь обычно не различают бактерии и сваливают их в одну кучу: и те, которые населяют кишечник, и те, которые живут на коже, и те, которые превращают молоко в йогурт. Хотя мы, люди, намного более близкие родственники с каким-нибудь шампиньоном, чем эти бактерии между собой. Однако ради одного такого претенциозного сравнения у меня бы не было необходимости заходить настолько издалека, я хочу прояснить кое-что другое: каждое живое существо состоит из клеток. Бактерии, как известно, состоят из одной-единственной клетки, и если я не очень-то похож даже на свою кузину, то вы, наверное, можете себе представить, что клетки, из которых мы с вами состоим, давно уже имеют мало общего с бактериальной клеткой. С практической точки зрения это очень удобно, поскольку позволяет, например, относительно просто найти антибиотик, который убьет клетку туберкулезной бактерии, а клетки легочных тканей в непосредственной близости от нее не затронет: ведь клеточная структура, которую атакует антибиотик, в такой форме в наших клетках вообще не встречается. Антибиотик, кстати, это такого рода химическое боевое вещество, которое первоначально получали из грибковых клеток, потому что они умели защищаться от бактерий. Достаточно посмотреть на филогенетическое древо, чтобы понять, почему это работает: клетки грибов скорее похожи на клетки животных и потому должны быть столь же невосприимчивы к антибиотикам, как и клетки человеческого организма.

 Бактерии состоят всего из одной клетки, и они не могут выстраивать сложные структуры, в отличие от грибов.

Так что грибки и бактерии друг другу не родственны, и хотя мы часто употребляем выражение «бактериальная флора», все эти организмы с растениями ничего общего не имеют. И клетки бактерий и грибков тоже в корне различаются. Это, в частности, проявляется в том, что вышеупомянутые бактериальные клетки-одиночки сами по себе жизнеспособны, а клетки грибков – не всегда. Если внимательно присмотреться к дрожжам (тем самым, с которыми мы печем хлеб и варим пиво), то такой грибок состоит из одной-единственной клетки. А с плесневым грибком (это тот, что растет на сыре камамбер) дело обстоит иначе: его клетки выстраиваются в длинные нити (гифы), которые, в свою очередь, могут собираться в трехмерные клубки – их называют мицелием.

Из этого довольно хаотического соединения удивительным образом формируются сложные формы, такие как шляпка шампиньона, например. Более того – подобная конструкция может принимать невероятно большие размеры. Чаще всего такой грибковый мицелий распространяется под землей. И как! Самый крупный мицелий был найден в штате Орегон и занимал колоссальную площадь в 9 тысяч квадратных километров – это немногим больше, чем 1200 футбольных полей. На поверхности земли мало что можно увидеть, тут мы, как правило, лицезрим лишь репродуктивные органы грибов, а именно шляпки, которые потом оказываются в жарком на сковородке.

В отличие от грибов, бактериальные клетки не могут выстраивать столь сложные структуры, поскольку единичные клетки после деления остаются более или менее независимыми. Впрочем, некоторые могут создавать цепочки, но формируются они вследствие того, что вновь образованные клетки как бы прилипают к старым; так что некоторые цепи бактериальных клеток на удивление похожи на грибковые гифы, однако отдельные клетки все так же не зависят друг от друга. Таким образом, эукариотические грибы (см. разделение на прокариотов и эукариотов на древе жизни) прошли этап, который бактериям пройти не удалось: они сделали шаг к многоклеточным организмам. В более совершенном варианте такой многоклеточный организм будет состоять из ткани и органов, то есть из в высшей степени специализированных комбинаций клеток; такое мы встречаем, только начиная с растений и животных.

Если я вас привел в замешательство многочисленными терминами и клеточными структурами, то приведенная ниже иллюстрация, надеюсь, внесет ясность.


Бактериальные клетки (в форме шариков или палочек) могут образовывать цепочки


Дрожжи – это одноклеточные грибы, размножающиеся почкованием


Грибковый мицелий – это трехмерная структура из клеточных волокон (гиф)


По рисункам слева вы видите, что бактериальные клетки также могут быть различной формы. При этом большинство бактерий имеют либо шаровидную форму, либо выглядят как палочки. По-научному шаровидная клетка называется Coccus, а продолговатая – Bacillus. По-немецки вы, впрочем, можете их называть также «кокками» и «бациллами», если вам так больше нравится. Зачем я вам все это рассказываю? Затем, что многие виды бактерий как выглядят, так и называются. Давайте рассмотрим пару примеров. Тут, кстати, есть возможность проявить себя не только знатокам латыни, но и тем, кто когда-то зубрил древнегреческий, потому что многие названия происходят из греческого. Staphylococcus, например, это шаровидная бактерия, ясное дело. А поскольку staphylos переводится как «виноградная лоза» или «виноград», то становится ясно, как эти шаровидные клетки соединяются друг с другом – в форме виноградной кисти. Желаете еще пример? Как насчет Lactobacillus? Это должна быть клетка в форме палочки, потому что она зовется Bacillus. Lacto — нам знакомо по слову «лактоза» (или на сегодняшний день скорее по словосочетанию «непереносимость лактозы»); это молочный сахар, так что Lacto — должно иметь какое-то отношение к молоку (от латинского lac – молоко). И что же мы тут имеем? Конечно же, молочнокислую бактерию, мы с ней уже познакомились, когда говорили о пробиотиках. Еще один пример напоследок? Отгадайте-ка, где живет Pediococcus? Понятия не имеете? Латинисты, ваш черед: на латыни pes – это «стопа». Теперь, если вы представите себе форму клетки (шарообразную, разумеется) и соответствующий запах, то вам будет интересно узнать, что Pediococcus используют также в производстве различных сыров. Так понемногу кое-что проясняется!



Пойдем дальше. В науке все организмы принято называть двойными именами, взять, к примеру, Staphylococcus aureus. Здесь второе слово означает вид, а первое – родовое название вышестоящего уровня. Это примерно как в Баварии, где сначала вам назовут фамилию человека, а потом его имя. Так, Хубер Шорш – это представитель семьи Хубер, а конкретно – Шорш. Соответственно, Staphylococcus aureus – это вид, относящийся к стафилококкам, и он имеет золотистую окраску: aureus происходит от латинского слова aurum, что означает золото. Не так уж и сложно, верно?

То, что микробиологи вечно сыплют латинскими словами, лишь отчасти понты; в значительной степени это результат того, что только малая часть микроорганизмов носит немецкие имена! Пивные дрожжи, например, на самом деле называются Saccharomyces cerevisiae (если вам приходилось когда-нибудь покупать пиво в Испании, вы знаете почему), но пиво варят и с другими видами дрожжей, например с Saccharomyces carlsbergensis. Ну, что это может быть за пиво?[3] И вот что прекрасно: если вы увлеклись пивоварением и открыли новый вид дрожжей, то можете сами дать название этому виду. Но свое имя использовать при этом запрещено. Например, если ваша фамилия Майер (Meier), то вы не имеете права назвать новый вид Saccharomyces meieri. Вы можете назвать его, скажем, в честь кого-то, кого вы цените, или по названию города, где вы сделали открытие, и при этом вполне могут получаться такие высоко поэтичные словообразования, как, например, Saccharomyces castroprauxeli[4].

 Человек, открывший новый вид дрожжей, может сам дать ему название, но есть некоторые правила, которых нужно придерживаться.

Ну, а если штука во что бы то ни стало должна носить ваше имя? Вообще такая возможность существует, но есть в ней подводный камень. Дело в том, что в прошлом возбудителей болезней ученые часто открывали, героически проделывая опыты над самими собой. Они инфицировали себя и от полученной болезни умирали, а изумленные потомки в честь бесстрашного исследователя называли возбудителя его именем. Я бы лично предпочел ранее упомянутый подход к присвоению имени, но это, конечно, дело вкуса…

Без хозяина никуда: вирусы и паразиты

Наряду с грибками и бактериями есть еще одна группа микроорганизмов, которой вообще нет в нашем родословном древе. Может показаться странным, но причина вполне понятна: на самом деле вирусы не живые существа, а всего лишь нечто вроде биологических механизмов, которые хоть и могут размножаться с помощью хозяйских клеток, но не имеют практически ничего из того, что мы ожидаем от живых существ. Если я сейчас начну давать определение, что такое жизнь, то это уведет нас слишком далеко, скажу лишь, что очень многого из того, что связано с понятием «жизнь», у вирусов нет: ни клеточного строения, ни самостоятельного размножения, энергию они не преобразовывают и с окружающей средой не коммуницируют.

Нам для начала вполне достаточно отметить следующее: вирусы могут размножаться только с помощью других клеток. Что означает: вирусная частица остается на какой-либо поверхности в одиночестве, в то время как бактериальная клетка может размножаться, и из нее получаются две клетки, из двух – четыре, затем – восемь, 16, 32, 64, 128 и так далее… Это на многое влияет, и в частности на то, будет ли опасен контакт с такой поверхностью. Однако делать вывод, что загрязненная вирусами поверхность не представляет опасности, было бы неверно и, возможно, даже фатально, поскольку иногда достаточно подхватить лишь пару вирусных частиц, которые начнут размножаться в нашем организме (то есть с помощью наших клеток) и нанесут нам существенный ущерб. Также многие вирусы обладают значительной невосприимчивостью к внешним воздействиям и средствам дезинфекции, и потому их не так просто обезвредить. То есть вирусы – это такие микроорганизмы, которые надо держать под контролем, пусть даже они и «неживые».

Ну, что, теперь мы со всеми познакомились? Бактерии, грибки и вирусы – это, пожалуй, самые важные. Осталось еще разобраться с определением про «все, что меньше собаки»? Да, есть среди микроорганизмов и те, которые размером чуть больше вышеперечисленных. Так мы подходим к еще одной группе тварей, которыми занимается микробиология, группе на этот раз очень неоднородной – к паразитам. Их мы находим на разных ответвлениях нашего родословного древа, но все они расположены с той стороны, где эукариоты. Среди организмов, которых мы причисляем к паразитам, есть одноклеточные и многоклеточные организмы, например жгутиковые и амебы (одноклеточные), а также ленточные и круглые черви (многоклеточные). Почему столь разные существа объединены в одну группу? Очень просто. Их объединяет одно общее свойство, причем весьма неприятное: все паразиты живут за счет других организмов. На это вы можете заметить, что подобное можно сказать и про бюрократов от науки… и будете недалеки от правды. Но у паразитов более тесные отношения со своими кормильцами, чем у госслужащих и налогоплательщиков, поскольку паразиты живут непосредственно на и в организме своего хозяина.

 Паразиты – неоднородная группа. Единственная общая черта, которая присуща всем им: они живут за счет организма своего хозяина.

Возьмем банального плоского червя: он селится в кишечнике животных и людей и пожирает там все, что ему попадется. Не слишком аппетитно, но очень эффективно. Это «чревоугодие» функционирует настолько исправно, что пациенты с глистами сильно теряют в весе, если этому делу не положить конец. Было дело, когда один ловкач даже продавал ленточных глистов в качестве средства для похудения, и его покупатели действительно худели, но некоторые, к сожалению, столь резко, что не могли эту процедуру пережить: ленточные глисты могут достигать длины в несколько метров, и тогда обитателям кишечника от ужина остаются одни объедки. Но, как правило, паразит не очень-то заинтересован в убийстве своего хозяина, ведь он таким образом лишится источника своего питания. Однако иногда, особенно если эта мразь произвела на свет многочисленное потомство, может наступить момент, когда хозяйский организм выполнил свой долг и может уходить.

Если у вас сейчас создалось негативное впечатление о паразитах, то именно этого я и добивался. Чтобы хоть как-то реабилитировать этих тварей, должен сказать, что есть среди них и условно безобидные варианты, например те, которые всего лишь пьют нашу кровь, – комары, клещи, блохи. Надо признать, это тоже весьма неприятно, однако не так опасно, кроме тех случаев, когда из-за укусов кровопийц переносятся болезнетворные бактерии и вирусы. Один из самых трагичных примеров тому – чума. Ее вызывают бактерии, но столь масштабно она могла распространяться потому, что возбудители чумы передавались через блох и крыс: блоха кусает заболевшего чумой, затем прыгает на крысу и инфицирует бактериями ее кровь. Крыса (а она по закону подлости сама не заболевает) перебирается на каком-нибудь, скажем, корабле или на повозке в другое место, где ее опять-таки поджидают многочисленные блохи, которые выуживают из крысы возбудителей чумы и передают их следующей жертве человеческого рода. Таким образом, эта эпидемия в прошлые века неоднократно распространялась по торговым путям на полмира и за пару лет могла выкосить целые регионы. В наше время чума уже не столь страшна, потому что, к счастью, многие люди живут в условиях, не допускающих столь близкого контакта с крысами и блохами, как это было в средневековой Европе. К тому же мы теперь знаем, что истинными виновниками чумы являются бактерии, а от них у нас есть защита – антибиотики эффективны против большинства бактериальных инфекций. И от чумы в том числе.

Старый, древний, архаичный

Если вы внимательный читатель, то, возможно, вы заметили, что в начале главы я упомянул одну группу микроорганизмов, про которую еще ничего не рассказал. Я имею в виду археев. Посмотрите еще раз на родословное древо и отметьте, что они занимают довольно большую часть кроны дерева и располагаются на той ее стороне, где указаны прокариоты. Эти организмы – раньше их также называли архаичными бактериями – известны, вероятно, очень немногим, хотя их влияние на нас огромно. Своим именем археи обязаны тому, что они считаются древнейшим – то есть архаичным – видом и существовали на нашей земле еще тогда, когда она не была такой обжитой, как сегодня. И среди них мы находим непревзойденных мастеров в деле заселения жизненных пространств, в которых больше никто не желает обитать: например, в токсичных кипящих вулканах на морском дне, соляных озерах, ледяных пустынях или обжигающих горячих источниках. То есть в тех местах, про которые можно поручиться, что там не может существовать ничто живое, а все же там есть жизнь, и это археи. Но и это еще не все: животные, способные использовать целлюлозу в качестве питания (к примеру, корова, которую кормят сеном, или термиты, подтачивающие деревянное строение), могут переваривать целлюлозу только потому, что у них в пищеварительном тракте в качестве «домашних животных» содержатся археи. Только они способны биохимически расщеплять целлюлозу и приводить ее в то состояние, с которым корова может справиться. Это сложный процесс, поэтому у коровы переваривание при пережевывании также происходит трудоемко, и в результате образуется побочный продукт, доставляющий нам сегодня столько проблем. Речь идет о метане. В какой-то момент он выходит из коровы, сзади или спереди, и попадает в атмосферу, где, увы, провоцирует парниковый эффект. По данным федерального ведомства по охране окружающей среды, более половины выбросов метана в Германии приходится на сельское хозяйство и в значительной степени именно из-за этих процессов. Что еще раз свидетельствует о том, что все имеет оборотную сторону, и корова тоже, простите за каламбур.



Ну, вот, теперь мы действительно поговорили обо всех существах, которыми занимаются микробиологи, и я надеюсь, что смог вас немного «подзаразить» своей увлеченностью микробиологией и наполнить жизнью эти невидимые организмы хотя бы перед вашим умственным взором. Наверное, мне стоит еще кое-что сказать по поводу терминов, которые я употребляю. Мы уже уяснили, что между вирусами, грибами и бактериями есть разница. Когда я говорю о «микроорганизмах» в общем смысле, я в этой книге могу использовать синонимы, главным образом слово «микробы». Я делаю это преимущественно из языковых соображений, хотя самые дотошные читатели могут уличить меня в неточности, поскольку под микробами традиционно имеются в виду прежде всего возбудители болезней. И все же в этой книге я буду эти два понятия – микроорганизмы и микробы – употреблять в одинаковом смысле, немного разнообразия в конечном счете ведь не повредит. Но что-то я тут разговорился, пора уже переходить к теме нашего сосуществования с бактериями, вирусами и прочей братией, и именно к этому мы сейчас приступим.

3. Что нужно микробу для жизни

Некоторые любят погорячее

При каких условиях вы чувствуете себя наилучшим образом? Как насчет такой ситуации: лето, отпуск, на улице 28 градусов, вы сидите у бассейна в гостинице, потягиваете кофе глясе и в кругу друзей перемываете косточки окружающим или беседуете с членами вашей семьи. Нормально, да? Читатели-мужчины могут, естественно, заменить кофе глясе и бассейн на пиво и гриль, но в принципе понятно. Для хорошего самочувствия нужна комфортная температура воздуха, что-нибудь для приятных физических ощущений и хорошая компания. Если я вам теперь скажу, что у бактерий абсолютно такое же представление о приятном времяпрепровождении, вы, возможно, посчитаете, что я спятил: бактерии, без всяких сомнений, могут обитать у гостиничного бассейна, но чтобы они при этом попивали кофе глясе? Вряд ли. Но давайте представим себе эту картинку в более абстрактном варианте и будем исходить из того, что дело в температуре, питании и контакте с окружением, и вам станет понятно, что наши предпочтения схожи.

Рассмотрим детали этой картинки более подробно: для нас правильная температура окружающей среды может способствовать хорошему самочувствию, а для микроорганизмов это вопрос выживания. Возможно, вы знаете, что биологические реакции протекают тем быстрее, чем выше температура. А если и не знаете, то этот принцип все же довольно очевиден (представьте хотя бы, что случится с вашим глясе на солнцепеке, если вы будете долго плескаться в бассейне). Тепловое воздействие ускоряет процессы, вот почему мы запираем бактерии в термостаты, когда хотим, чтобы они размножались, что, попросту говоря, означает деление клеток. Это функционирует, как правило, без проблем, но в какой-то момент высокие температуры скорее вредят, чем приносят пользу, и это нам тоже знакомо хотя бы по тому, что, прокипятив воду, мы убиваем в ней возбудителей болезней.

Если 100 °C – это очевидный перебор, то остается вопрос, какая же температура благоприятна для микробов? Универсального ответа нет, потому что точно так же, как среди нас наряду с почитателями солнца есть те, кто предпочитает проводить отпуск на севере Швеции, так и у грибов с бактериями могут быть разные предпочтения. В общем и целом для большинства организмов 0 °C является нижней границей. С другой стороны, температуры выше 40 °C для подавляющей части микроорганизмов – это уже не ласковое солнышко, а показание к прекращению размножения. Почему? Дело вот в чем. Точка замерзания – это важный ограничивающий фактор, поскольку клетки наполнены водным раствором (цитоплазмой), в котором проистекают все биологические процессы. Когда вода при плюс-минус 0 °C замерзает, в клетках больше ничего не происходит. В них образуются колкие кристаллы льда, которые бактериальную клетку в буквальном смысле слова протыкают и таким образом разрушают. У нас, людей, такой проблемы нет, потому что мы великими стараниями поддерживаем температуру тела на уровне около 37 °C. У прочих же живых организмов, подвергающихся воздействию очень низких температур, например у вечнозеленых растений наших широт, в плазме есть самый настоящий антифриз – средство против замерзания содержимого клеток.

 Биологические реакции протекают быстрее при повышенной температуре.

Подобные защитные механизмы мы находим и у некоторых микроорганизмов. По этой причине такие организмы можно замораживать и снова оттаивать – как только температура повысится, они снова примутся радостно размножаться. Простой пример: когда вы кладете стейк из свиной шейки в холодильник, то при температуре 4 °C микробы, которые могут содержаться в мясе, будут делиться так медленно, что вы можете рассчитывать, что стейк сразу не испортится. Он может храниться там пару дней, но если процесс размножения бактерий на мясе нужно остановить на долгий срок, то мясо лучше заморозить. Но учтите: никаких гарантий, что от заморозки умрут все микробы, нет, и вполне возможно, что после оттаивания они снова начнут размножаться. Поэтому размороженный кусок мяса надо быстро бросить на сковородку или как вы там еще хотите его приготовить.

Уловка с холодильником срабатывает, к сожалению, не со всеми микроорганизмами. Каждый из нас когда-нибудь с таким сталкивался: забыли в дальнем углу холодильника кусок сыра, а спустя несколько недель нашли его заплесневелым. Плесневые грибки, как это ни досадно, могут расти и при очень низких температурах, и с ними у нас случаются проблемы не только в холодильнике, но и в холодном погребе.

 Вредные вещества разрушаются в воде, если нагреть ее до 60–65 °C.

Но есть и такие микроорганизмы, которые любят тепло, как, например, наши друзья из кишечной флоры, с которыми мы уже немного познакомились. 37 °C для этих бактерий оптимальны, но это не значит, что при 30 или 39 градусах они не будут размножаться. И есть даже такие бактерии, которые любят погорячее. Внимательный читатель сразу вспомнит про горячие источники и археев, их я упоминал в предыдущей главе. Но я имел в виду вовсе не их, ведь мы же хотим разобраться главным образом с явлениями, с которыми сталкиваемся в повседневной жизни. Не знаю, как вы, но я уже целую вечность не купался в 30-градусном источнике… Так что вернемся в свои пенаты, где живет один очень интересный род бактерий, доставляющий нам в последнее время массу хлопот. Речь о легионеллах, которые просто обожают горячие водопроводные трубы и отопительные батареи, причем, что удивительно, при температуре выше 50 °C!

Свое название легионеллы получили потому, что эти бактерии вызывают заболевание – нечто вроде воспаления легких, – которое изначально было описано у группы военных ветеранов. Это случилось в 1976 году: на встрече «Американского легиона» некоторые ее участники подхватили заразу, надышавшись в душе аэрозолем (это мельчайшие капельки в воздухе). На самом деле легионеллез постигает в первую очередь курильщиков и алкоголиков мужского пола старше 60 лет. Так что эти ветераны были, естественно, идеальной целевой группой…

В отличие от понтиакской лихорадки (легкой формы легионеллеза), которую некоторые эксперты считают причиной летнего гриппа, при воспалении легких, вызванном легионеллами, довольно высокий процент смертности, в результате чего на настоящий момент в Германии все объекты, где используется горячая вода, взяты под строгий контроль. В последние годы проблема усугубилась, в частности, потому, что современные домашние устройства для отопления и для подачи горячей воды работают уже не при столь высоких температурах, как прежде. Это значит, что легионеллы могут размножаться, например, в резервуаре для горячей воды, и когда человек будет принимать душ, он рискует вдыхать вредные, содержащие микробы капельки. Поэтому современные отопительные устройства сконструированы так, чтобы периодически нагревать воду до 65 °C. Это позволяет избавиться от засевших в резервуарах легионелл. Если у вас такого современного устройства нет, то во избежание проблем вам следует каждые два месяца самим подкручивать регулятор температуры.

Однако при температуре выше 60 °C даже легионеллы откидывают копыта, поскольку все процессы, происходящие в клетках – будь то клетки бактериальные или человеческие, – управляются и осуществляются ферментами. Ферменты состоят из протеинов, которым высокая температура, как правило, противопоказана: она разрушает типичную структуру протеинов, столь необходимую им для функционирования. То же происходит с яичным белком на горячей сковородке. Белок состоит в основном из протеинов, собственно, он и дал название этому классу веществ: протеин = (вот сюрприз!) белок.

Итак, высокие температуры разрушают протеины в клетках (если вы хотите произвести впечатление, то можете сказать «денатурируют»), и тогда все процессы там останавливаются. Занавес. Поскольку эта проблема касается принципиально всех клеток, то мы очень стараемся не допускать чрезмерного повышения температуры нашего тела: например, начинаем потеть, когда становится жарко. Бактерии, естественно, это делать не умеют. Вообще-то жаль, если задуматься, ведь 40 триллионов бактериальных клеток в организме человека могли бы стать очень существенной целевой группой для производителей дезодорантов. Они, правда, разработали ряд других средств от воздействия жары, но жара, как вы поняли, сама прекрасно убивает микробы.

Чего желают душа и тело микроба

Итак, давайте запомним: бактерии и грибы могут, в зависимости от их вида, выживать и размножаться в широком температурном диапазоне. Чтобы помешать этому, их нужно либо заморозить (низкотемпературная морозильная камера), либо поддать им пару.

Но подходящая температура – это не единственное, что нужно микроорганизмам для жизни. В конце концов, они не меньше нашего любят не только болтаться у бассейна, но и вкушать при этом кофе глясе… хотя для большинства из нас потребляемые с ним калории будут лишними, и все же – для комфортного самоощущения какое-нибудь лакомство просто необходимо. То же и с микробом: ему требуются питательные вещества, но что именно по вкусу бактерии? Ответ на этот вопрос и прост, и сложен одновременно, поскольку в принципе нет такого источника питания, который бы хоть какие-нибудь виды микроорганизмов для себя не открыли. Под источниками питания я, однако, не имею в виду подразделение на мясо и свежие овощи, как вы, возможно, подумали. Честно говоря, я пока еще не задумывался о том, есть ли на свете микробы-веганы; все эти тонкости большинству бактерий и грибов по барабану. Микробиологи подразделяют своих подопечных на гораздо более широкие категории: на те микроорганизмы, которые преобразуют в энергию органическую материю (что, впрочем, мы тоже делаем независимо от того, съели мы шницель из свинины или из соевых бобов), и на те, которые предпочитают питаться неорганическими субстанциями.

В органических веществах мы, в общем-то, ориентируемся: есть углеводы (к примеру, сахар и крахмал, но также целлюлоза, если вы микроб), белки и жиры. Микроорганизмы в принципе потребляют все эти питательные вещества, и это вполне понятно: в них во всех заложено много энергии. А как насчет неорганических веществ? Не знаю, когда в вашем меню в последний раз был бефстроганов из железа с пюрированной серой на гарнир, могу лишь сказать про себя, что ничего подобного пока не пробовал. Но если серьезно: некоторым бактериям это нравится. Когда во время своих лекций я объясняю, как именно происходит переработка этих веществ, процентов, наверное, девяносто моих студентов сидят в «Фейсбуке», поэтому не буду здесь вдаваться в подробности. Скажу лишь, что у поедателей железа довольно нелегкая доля, и микроб тоже предпочел бы ливерную колбаску, будь у него возможность ее раздобыть. Но вот что стоит запомнить: нет ничего, чего бактерии не смогли бы переработать. Это их свойство могло бы, кстати, приносить практическую пользу; так, можно было бы, например, изничтожить нефтяное пятно в Северном море с помощью специальных штаммов бактерий или очистить территории старых химических заводов от токсичных веществ. Некоторые бактерии могут получать энергию из солнечного света, как растения. А вот грибы устроены проще и жрут все, что попадет им на тарелку. Что еще раз свидетельствует о нашем относительно близком родстве с шампиньоном.

 Некоторые бактерии могут получать энергию из солнечного света, как растения.

Однако для выработки энергии из свиной рульки с картофельными клецками (будем исходить из этого благоприятного расклада, а не из того, что обычно происходит на практике, когда свиная рулька перекочевывает непосредственно в жировые клетки в области живота) нам требуется кое-что еще, а именно кислород. Говоря простыми словами, он нужен нам затем, чтобы захватывать энергию, содержащуюся в углеводах, белках и жирах, прежде чем эта энергия на пути через наши клетки не будет выкачана из пищи и заныкана по другим местам. При этом атомы водорода из органических веществ взаимодействуют с кислородом, и от некогда калорийных составляющих нашего обеда остается лишь двуокись углерода (СО2). Такое явление называют дыханием, и с биологической точки зрения это исключительно эффективный способ добычи энергии. Неудивительно, что его используют также многие микроорганизмы, однако есть тут маленькая закавыка: молекула кислорода довольно агрессивна и может нанести клетке огромный урон (подсказка: свободные радикалы). У клеток человеческого организма есть некоторые защитные механизмы, способные сдерживать разрушительную силу кислорода. Но у многих микробов таких примочек в запасе нет, и потому они вынуждены не только обходиться без дыхания, но и залезать в самые укромные уголки, куда не доберется кислород. Такой образ жизни называют анаэробным, а его приверженцев – анаэробионтами. Эти самые анаэробионты в большинстве своем довольно несимпатичные малые, главным образом потому, что продукты обмена веществ бескислородного метаболизма, как правило, отвратительно воняют.

Итак, мы прошлись сейчас почти по всем важнейшим факторам, влияющим на жизнь микроба: температура, питательные вещества, присутствие или отсутствие кислорода. Интересно, что у микробов встречаются самые дикие предпочтения или комбинации этих факторов: например, есть бактерии, которые вместо кислорода «дышат» серными соединениями, или такие, которые благоденствуют лишь при температуре 120 °C и выше. Но есть еще кое-что, без чего большинство микробов не может обойтись, – это вода. Утверждение банальное, но в то же время чрезвычайно важное. Если на температуру, количество кислорода и наличие питательных веществ вы сами влиять не можете (если только вы не смываете в раковину волосы и щетину, не сидите на голодном пайке и не прогреваете квартиру до 70 °C), то против избытка влаги, а заодно и против непрошеных гостей-микробов вы кое-что можете предпринять.

Вода – это жизнь

Почему серый хлеб и хрустящие хлебцы не плесневеют? Разумеется, потому, что в хрустящих хлебцах практически нет влаги, и, следовательно, микроорганизмы ими не интересуются. Еще один пример: если вы хотите сохранить фрукты на долгое время, вы можете сварить из них варенье, причем с большим количеством сахара. «Опять он растекается мыслью по древу», – наверное, подумали вы, – но нет, не растекаюсь, ведь варенье может долго храниться именно из-за того, что в нем у микробов нет возможности воспользоваться водой. Почему? Да потому, что дело не в фактическом содержании влаги в продукте питания, а в том, сколько влаги доступно бактериальным и грибковым клеткам. Из-за сахара в варенье настоящий дефицит воды, по крайней мере с точки зрения одноклеточных живых существ. Дело в том, что молекулы сахара окружают себя слоем из молекул воды – гидратной оболочкой, – и этот слой накрепко приклеивается к сахару, так что клетки микроорганизмов могут тянуть их и рвать сколько угодно, но молекулу воды они из оболочки не вынут. Хуже того: молекулы сахара со своей стороны тоже пытаются добраться до воды, содержащейся в молекулах микроорганизмов, причем небезуспешно. В варенье микробы форменно высыхают и погибают, поэтому вы можете не беспокоиться, как бы ваше варенье не испортилось.

Этот феномен с транспортировкой воды из клетки называется осмосом, и в биологии он играет важнейшую роль. Клетки корней растений, например, содержат большое количество растворенных веществ (не только сахара, принцип действует и с другими веществами, например с солями), которые даже через стенки клеток могут засасывать воду из земли и прямо-таки накачивать этой водой клетки. Растения сохраняют таким образом форму, однако вода им нужна также для фотосинтеза. Поэтому они зависят от постоянного поступления влаги, и если вы когда-нибудь забудете полить цикламен, подаренный вам ко дню рождения тетей Гудрун[5], то листья у него повиснут именно потому, что в них не накачивается вода.

Но вернемся к микробам. Хотите подпортить жизнь коллеге? Вы можете сделать это, щедро посыпав что-то из его продуктов сахаром или солью. Единственный минус тут в том, что высококонцентрированные сахарные и солевые растворы (если вы проделываете это, скажем, с овощами или фруктами) извлекают воду из клеток продуктов, подлежащих консервации. Вы запросто можете это сами проверить, когда будете в следующий раз готовить салат из огурцов. Через пару минут после того, как вы посыплете огурцы солью, нарезанные огуречные кружки будут плавать в собственном соку.

Плесень растет там, где влажно, поэтому сначала разберитесь с источником влаги: не нужно начинать с химических средств борьбы с плесенью.

Все это, разумеется, работает не только с продуктами питания, но и почти везде. Не случайно страховой эксперт, пришедший в вашу квартиру освидетельствовать проблему с плесенью, будет искать причину этой проблемы, имя которой, как вы уже догадываетесь, конечно же, влага. Когда обои попорчены плесенью, то обычно происходит это от того, что стена под ними влажная, чаще всего вследствие плохой герметизации или поврежденной трубы. В наши дни такое вполне вероятно также из-за так называемых тепловых мостов, особенно если вы живете в хорошо изолированном доме. Дело в том, что в таких домах внутренняя стена благодаря внешней теплоизоляции сохраняет тепло. Что само по себе прекрасно, но если на каком-то месте изоляцию проложить забыли – часто это бывает возле оконных проемов и у стыков между домами, – то водяной пар будет конденсироваться внутри, в квартире, аккурат на холодном месте, так же как пар в ванной комнате обычно осаждается на относительно прохладном зеркале. А поскольку повсюду в воздухе летают споры плесневых грибков, они, естественно, начинают расти именно там, где собирается влага, вот вам и нанесенный ущерб. Прежде чем пытаться вывести плесень химическими средствами, поищите возможный источник влаги; в большинстве случаев он находится, и проблема сама по себе уйдет, как только будет проведен дренаж.

4. Пакости, творимые микробами

Зло в кубе: микробы и инфекции, отравления, аллергии

Но почему вообще плесень является проблемой? Ведь, скажем, с черными пятнами на стене вы можете смириться, поверив в то, что они являют собой цветовой контрапункт в интерьерном решении вашего склонного к экспрессионизму дизайнера. На этот вопрос есть в принципе три ответа, которые мы ниже рассмотрим; именно на плесневых грибках можно очень хорошо разъяснить проблемы, которые несут нам микроорганизмы.

Проблема первая: инфекции. Обычно слово «инфекция» вспоминается тогда, когда дело связано с микробами. А что же, собственно, следует понимать под инфекцией? В общих чертах инфицирование происходит таким образом: сначала мы подхватываем возбудителя болезни, который может проникнуть в нас разными путями. Самый удобный для них путь в наш организм лежит через какую-нибудь из слизистых, которых у нас множество: например, в пищеварительном тракте, в глазах, на пути в легкие, в области гениталий (впрочем, в этом месте в основном только у женской части населения).

Только представив себе, где у нас слизистые оболочки, вы уже в принципе поймете, как в нас попадают микробы: вместе с приемом пищи (это желудок-кишечник), с дыханием (легкие) или – если вам угодно получать удовольствие при инфицировании – при половых сношениях (вагинальные слизистые). И вот микробы уже внутри вас, но значит ли это, что вы теперь больны? Разумеется, еще нет, потому что заболевает человек только вследствие деятельности микробов в его организме. Они могут творить там массу всяких пакостей, например образовывать определенные ядовитые вещества, которые по-научному называют токсинами. Большой вред наносит нам также размножение микроорганизмов и непосредственное разрушение ими наших клеток.

В какой-то момент возбудители покидают наш организм, как правило, примерно тем же путем, каким они туда и попали. Если пришли с пищей, то обычно уходят фекально-оральным путем (то есть сзади вышел и сверху снова вошел, если хотите). Это многосторонний процесс, и в нем задействованы не только люди, фекальную часть берут на себя животные. Скажем, вы недостаточно тщательно промыли удобренный навозной жижей салат (в Германии поэтому удобрять грунтовый салат запрещено) или в процессе убоя кишечная флора курицы рассредоточилась по всей курятине. Капельная инфекция на первом месте для микробов, путешествующих дыхательными путями: они попадают к вам, если вас кто-то обкашлял, однако чаще, если кто-то откашлялся в руку, вы эту руку пожали, а затем поковырялись в своих слизистых: во рту, в глазах или где еще. Тут, кстати, нужно сказать – и никогда не будет лишним это повторить, – что руки являются первейшим средством передачи микробов, причем с большим отрывом от остальных средств! Поэтому регулярное мытье рук – это архиважная гигиеническая мера, и она исключительно действенна для защиты от простуд и гриппа.

 Микробы выходят из организма примерно тем же путем, каким попали в него.

Передачу микробов при половых сношениях я уже упоминал, а поскольку при них, в зависимости от практики, предпочтений и горячности обеих сторон, на определенных вовлеченных в процесс частях тела могут возникать микротравмы, мы здесь уже близки к попаданию инфекции непосредственно в кровь. Тут уже даже не обязательно вкалывать использованный шприц себе в вену или горстями втирать грязь в открытые раны. Так, что я еще забыл? Ах да, контактная инфекция. Опять же через слизистые оболочки, иначе, чем при фекально-оральном варианте, и не обязательно через рот, а фекально-вагинальным путем, к примеру. На этом месте можно было бы вставить полезные указания, в каком направлении подтираться туалетной бумагой, но вам это, разумеется, и так давно известно или стало понятно сейчас…

А вот чего люди долгое время не ведали – хотя сегодня мы считаем это само собой разумеющимся, – так это то обстоятельство, что виновны в инфекционных заболеваниях именно бактерии. Самая печально известная инфекционная болезнь всех времен – это, конечно, уже упоминавшаяся здесь чума, косившая в Средние века население целых регионов. Сегодня мы знаем, что чуму вызывает бактерия по имени Yersinia pestis, которая переносится от человека к человеку через блошиные укусы и – об этом тоже уже говорилось – с помощью пораженных блохами крыс может путешествовать на далекие расстояния. С учетом тогдашних условий путь инфекции «крыса – блоха – человек» может казаться нам столь очевидным, что сейчас трудно себе представить, какими беспомощными оказывались люди перед лицом этого заболевания. Врачи, лечившие в то время чуму, носили маски в форме птичьего клюва, куда можно было закладывать благовония, – люди думали, что чума передается с дурными запахами.

Невежество и ошибочные предположения по поводу инфекций способствовали быстрому распространению не только этой эпидемии, но и многих других заразных заболеваний. И только Роберт Кох в середине XIX века сделал открытие, изменившее жизнь всех нас: он обнаружил, что туберкулез вызывают бактерии, а конкретно – микобактерии. Туберкулез называли белой чумой, но было у него также много других имен, например легочная чахотка, или черная смерть, или черный мор. Основываясь на знании, что инфекцию вызывают бактерии, можно было уже пытаться победить заболевание, ведь первый шаг к победе – это узнать своего врага.

Итак, предпосылки инфекционной болезни – возбудитель и соответствующий путь его передачи. Это важно себе уразуметь, поскольку в Интернете часто встречаются сомнительные статьи, вводящие нас в заблуждение. Обычно я в подобных случаях люблю выстраивать такой пример и призываю своих студентов над ним поразмыслить: насколько велика опасность заболевания, когда возбудитель, передаваемый половым путем, оказывается в посудомоечной машине. Понятно, что я не стремлюсь узнать про личный опыт своих студентов, но меня успокаивает хотя бы уже то, что даже те из моих подопечных, которые по уши торчат в Интернете, начинают старательно выискивать вероятный путь передачи инфекции. И даже если такой возбудитель все же будет доставлен в нужное место, это еще не означает, что человек заболеет. Потому что тут есть еще один важный игрок: наша иммунная система. Она в состоянии предотвращать многие заболевания, уничтожая возбудителей болезней до того, как они нанесут вред.

Не будь у нас иммунной системы, мы, вероятно, вообще не доживали бы до школьного возраста – так часто мы изо дня в день имеем контакты с микроорганизмами. Стало быть, бактериальных клеток должно быть изрядное количество, чтобы иммунная система прекратила сопротивление и мы заболели; при этом точное количество микробов, так сказать, критическая масса, которую мы должны получить, чтобы заболеть, зависит от вида возбудителя. Этот параметрический показатель называется «инфицирующая доза» и варьируется от пары до миллионов и миллиардов клеток. Так что от злодеев, которые десятью клетками доводят нас до болезни, следует держаться подальше, в то время как контакт с несколькими клетками микроба с высокой инфицирующей дозой вполне может закончиться благополучно. Особую осторожность в любом случае должны проявлять те из нас, у кого хромает иммунная система. Таких людей объединяют в группу YOPI, и если вы сейчас подумали о Йоханнесе Хестерсе[6], то вы в некоторой степени правы, потому что по крайней мере в последние годы своей жизни он в эту группу определенно входил. YOPI расшифровывается как «young, old, pregnant and immunocompromised», что в переводе с английского означает «молодежь, старики, беременные и иммунокомпрометированные». Люди, относящиеся к этой группе, особенно подвержены инфекционным болезням и, соответственно, должны проявлять предельную осторожность и всячески беречься.

Иммунная система научилась защищать нас от разных напастей, и без нее человек не доживал бы даже до школьного возраста.

До болезни дело доходит, когда возбудители попадают в наш организм в достаточно большом количестве и иммунная система больше не в состоянии напрямую с ними справляться. Тогда они размножаются и творят бесчинства. Маловероятно, что такую инфекцию вызовет плесневый грибок, ведь единственный путь, которым плесневые грибки могут попасть в наш организм, лежит через легкие: мы вдыхаем грибные споры. Но поры плесневых грибков слишком велики, чтобы проникнуть собственно в легочные ткани (они, можно сказать, застревают в перехватывающей сетке из легочных пузырьков), к тому же иммунная система хорошо заточена на защиту от спор. Так что инфекция плесневыми грибками – почти исключительно удел людей с очень ослабленным иммунитетом, таких как больные СПИДом на поздней стадии, – однако в этих случаях, увы, с катастрофическими последствиями, поскольку плесневые инфекции у таких пациентов часто заканчиваются смертельным исходом. Нам же, здоровым и в среднем иммунокомпетентным, следует в связи с плесневыми грибками больше опасаться второй связанной с микробами проблемы.

Вторая проблема: интоксикация. Когда мы, обильно вкусив не очень свежих бутербродов с рубленым мясом и маясь потому поносом, оккупируем домашний туалет, мы часто называем это «пищевым отравлением». Именно так и переводится слово «интоксикация» – отравление. По сути, так правильно будет назвать и желудочно-кишечную проблему, потому что подобное, как правило, не является инфекцией. Почему нет? Да потому, что, в отличие от инфекции, которая начинается с того, что микробы попадают в наш организм, потом распространяются и проявляют там свои вредоносные свойства, при потреблении испорченных продуктов дело происходит несколько иначе. В этом случае местом размножения микробов служит сама пища (прямо по Лютеру: «Почему б тебе не отрыгнуть и не пукнуть? Тебе не понравилось?»[7]), и вся эта мелочь пузатая очень привольно чувствует себя в рубленом мясе. Она там обжирается и в качестве продуктов пищеварения образует ядовитые вещества, то есть токсины. Если это продолжается достаточно долго, то количества потребленных бактериальных ядов будет достаточно, чтобы доставить нам немалые проблемы, и нам нужно будет от этой гадости избавляться, что обычно происходит в уборной вышеописанным способом…

 Микробы размножаются не внутри нас, они это сделали заранее, еще в пище.

То есть микробы размножаются не внутри нас, они это сделали заранее, еще в пище. А когда мы эту пищу съедаем, то заболеваем из-за образовавшихся токсинов, именно это и есть отравление. Плесневые грибки часто образуют токсины, которые называют микотоксинами (добавив греческое слово, обозначающее грибы). Однако микотоксины, как правило, не приводят к острым состояниям, так что далеко не факт, что после употребления заплесневелых продуктов вас непременно пронесет. Но от этого микотоксины, увы, не становятся менее опасными, так как эти токсичные вещества часто канцерогенны. Поэтому заплесневелые продукты употреблять не следует; впрочем, если вы разок что-то такое съели, то повода для паники нет. Я в связи с этим вспоминаю, как мне однажды позвонила обеспокоенная мать маленькой девочки: ее дочь выпила воды из бутылки с плесенью внутри. Первым делом я ее заверил, что человечество давно бы вымерло, если бы потребление плесневых грибков означало смертный приговор. Во-вторых, это еще бабушка надвое сказала, что тот вид плесневых грибков, который попал из бутылки в желудок девочки, вообще образует микотоксины. Вы тоже усомнитесь в огульном вреде плесени, если любите сыр бри, камамбер или горгонзолу. Ведь в ходе производства этих сортов сыров их облагораживают плесневыми грибами, равно как и многие другие продукты питания, например салями. И такие грибы, естественно, микотоксинов не образуют!

Засада в том, что неспециалисты (да, в общем, и эксперты тоже) не могут наверняка определить, что несет с собой беловато-зеленый налет, безопасен он или в нем скрывается фабрика по изготовлению биологического оружия. Поэтому, если сомневаетесь, руки прочь от плесневелых продуктов! При этом я как микробиолог питаю даже некоторую симпатию к продуктам с очевидной плесенью, поскольку они ясно предупреждают нас об опасности. Ситуация намного неприятнее, когда плесневеет не хлеб, находящийся в хлебнице, а само зерно в поле или в зернохранилище. После того как такое зерно будет перемолото в муку, уже не будет никакой возможности распознать поражение плесенью, а следовательно, и проистекающую из этого проблему с микотоксинами. В прошлые столетия такое явление стало для многих людей злым роком в связи с рожью, которая еще на поле могла заразиться грибком Claviceps, более известным под названием спорынья. Пораженные этим грибком ржаные зерна неестественно крупные и содержат некую субстанцию вроде ЛСД. Точно так же, как этот модный в 70-е годы прошлого века наркотик (на него, как считается, намекает известная песня Биттлз «Lucy in the Sky with Diamonds»), яд спорыньи вызывает галлюцинации плюс еще высыпания на коже и другие симптомы. В Средние века болезнь, вызываемую спорыньей, называли антониевым огнем, а заболевших уличали в одержимости дьяволом – несчастных сжигали на кострах, если они до этого сами не умирали от отравления грибком.

В оправдание инквизиции можно было бы сослаться на то, что в те времена, конечно, еще не знали, что виной тому плесневелая рожь, но по здравом размышлении это все же не дело – сразу на костер… По ходу замечу, что существовал в то время определенный круг лиц, умевших очень неплохо этот яд применять, например, в качестве абортивного средства – в небольших дозах он вполне мог избавить благочестивых фрейлин от неприятностей, связанных с нежелательной беременностью. Опять же, если их не застукивали на визите к знахарке, потому что и это почиталось за колдовство. В итоге – смотрите выше. Хорошо, что в наши дни мы свободны от подобных предрассудков, продукты питания контролируются, и чтобы зараженные плесенью ржаные зерна не были перемолоты в муку, их скрупулезно отбраковывают.

 Иногда плесень вырастает еще не в хлебе, а в зерне. Грибок спорынья, которым оно может заразиться, вызывает галлюцинации и высыпания на коже.

Но микотоксины могут скрываться не только в муке, но и в других продуктах с соответствующей предысторией. Здесь можно упомянуть высушенные травы и специи, или орехи, например, тоже могут заплесневеть при влажном хранении. Но у нас в Германии эти продукты также подвергаются достаточно тщательной проверке. По крайней мере те, которые продаются в надежных, проверенных магазинах. К сомнительным лоткам на толкучках или живописных рынках я отношусь несколько скептически и чаще всего довольствуюсь лишь оптическим удовольствием от созерцания подобных красот.

Прежде чем оставить вас (на время) в покое с темой про микотоксины, я должен рассказать еще одну историю, последнюю. Можете себе представить, что будет, если корову кормить плесневелым зерном? Возможно, вы догадались, и так оно и есть: образовавшиеся в зерне микотоксины проделают свой путь через корову и окажутся в мясе или в молоке. Так нередко случается с токсинами, образующимися от плесени под названием Aspergillus flavus; есть даже такое понятие, как молочные афлатоксины (по начальным буквам латинского названия самого грибка). Тот феномен, когда пораженное грибком сырье окольными путями попадает в конечный продукт, называется Carry over, то есть перенос, и мы можем с подобным явлением встретиться не только в молоке или в мясе, но и в пиве. Дело в том, что такие микотоксины – это чрезвычайно стабильные молекулы, их просто так не разрушить. Во всяком случае, проход через корову или процесс пивоварения и сбраживания им нипочем. Многие бактериальные токсины, к счастью, несколько более щепетильны и испускают дух уже при штатном нагревании. Однако вам не стоит излишне беспокоиться, ведь в наше время очень внимательно следят за тем, чтобы коровы не получали плесневелого зерна, и не в последнюю очередь потому, что яды плесневого грибка уменьшают также выход мяса и сокращают «производство» телятины.

Итак, у нас пока выходит два варианта неприятностей, которые могут причинить плесневые грибы: инфекция (что маловероятно) или интоксикация (не исключено, поэтому будьте осторожны с заплесневелыми продуктами). За мной третий вариант, и с этим мы подходим к…

…Третьей проблеме: аллергии. Такие неприятности, как инфекции и интоксикации, доставляют нам многие микроорганизмы, а у плесневых грибков (в особенности) есть для нас в запасе еще одна пакость. Я уже упоминал, что грибки состоят из мицелий, то есть из сплетения волокон (грибниц), распространяющихся в некоем субстрате. Мицелий, как правило, беловатого цвета. Но что мы обычно замечаем, когда смотрим на плесень? Мы видим черный или зеленоватый пушок. При ближайшем рассмотрении он, естественно, оказывается не волосистой структурой, а выступающими из мицелия крошечными усиками, на концах которых расселись шаровидные споры.



Поэтому то, что мы видим, это как бы только верхушка айсберга, вот почему не имеет особого смысла вырезать из хлеба только часть с видимой плесенью, ведь мицелий (а он может содержать и микотоксины) с большой вероятностью уходит глубже. Поэтому бабушкин совет выбрасывать весь хлеб, даже если плесень проступила лишь на самом краешке, очень даже разумен, как, впрочем, и большинство бабушкиных премудростей.

Если вы вспомните, что грибной мицелий может распространяться на многие километры, то возникает вопрос, почему так важны эти маленькие шарики – споры. Дело в том, что они являют собой нечто вроде формы распространения плесневых грибков и в качестве таковых миллионами, если не миллиардами, попадают в воздух. Приземляясь на место, где грибу бы понравилось, споры пускают ростки и образуют новый мицелий. Чтобы со спорой ничего не случилось, она исключительно надежно упакована; также она может долго ждать благоприятной возможности для прорастания: годы, десятилетия или даже столетия.

Теперь вы знаете, что в воздухе повсюду, где бы вы ни находились (ну, разве что вы сейчас в стерильном помещении, потому что работаете на производстве микрочипов), есть споры плесневых грибов: где-то больше, где-то меньше. Вероятность, что такая спора пустит росток в вашем организме и заразит вас, как мы уже обсуждали выше, практически исключена, потому что ваша иммунная система, как правило, умеет с этим справляться. Токсины тоже не проблема, поскольку в спорах они не образуются. Однако может случиться аллергическая реакция на эти споры. Никто не скажет, в какой момент возникнет аллергия и возникнет ли она вообще, но абсолютно точно, что вероятность тем больше, чем чаще вы встречаетесь с аллергенами. Чем чаще вы, например, пользуетесь каким-то парфюмом, тем вероятнее, что у вас разовьется аллергия на один из его компонентов. А поскольку споры плесневых грибков окружают нас действительно повсюду и содержатся главным образом в воздухе и в пыли, то совсем не исключено, что вы получите аллергию на плесневые грибки. У многих аллергиков на домашнюю пыль аллергию вызывают также споры плесневых грибков, и я сам тому пример. Когда я дома заявляю, что, будучи аллергиком, не могу вытирать пыль – хотя на самом деле нет ничего, что я делал бы охотнее, – мои слова просто не принимают всерьез, и тогда мне приходится, чихая и почесывая нос, нести вахту у мебельной стенки в гостиной. Вот так злоупотребляют добротой тяжело больного человека…

 Повсюду, где бы вы ни находились, в воздухе находятся споры плесневых грибов.

Так, на чем я остановился? Ах, да, аллергии и споры плесневых грибков. Пусть я только что несколько перебрал с иронией, но ведь на самом деле – нет ничего хорошего в постоянном нахождении в окружении больших масс плесневых спор. Возможно, библиотекарям и архивариусам приходится нередко иметь дело с зараженными плесенью книгами, тут уж повышенной дозы не избежать, профессия обязывает. Но если плесневый грибок распространился в вашей квартире, то следует позаботиться о том, чтобы как можно скорее от него отделаться. Тут я не имею в виду маленькие черные точки на силиконовых швах в ванной – эти хоть и выглядят непрезентабельно, но пока еще вроде никого не убили. Но если у вас появился налет на обширном участке стены или под ковром, то это уже не шутки, поскольку аллергия на плесень может когда-нибудь переродиться в астматические симптомы, если ничего не предпринимать. В худшем случае контакт с аллергеном вызывает у аллергика шоковую реакцию[8], как это бывает у людей с аллергией на укусы насекомых. Так что плесень – долой! А как мы уже выяснили выше, растет она обычно только там, где собирается влага из-за каких-нибудь строительных погрешностей, поэтому, так или иначе, стоит поискать причину. И даже если наша иммунная система, как правило, вполне справляется с неизбежно летающими вокруг нас спорами, обильная плесень все же может стать для нее чрезмерной нагрузкой.

Итак, теперь мы довольно подробно обрисовали три самых главных вредных воздействия, которые оказывают микроорганизмы в целом и плесневые грибы в частности: инфекция, интоксикация и аллергия. Далее мы подробнее остановимся еще на паре случаев, поэтому подержите эти понятия у себя в голове еще какое-то время. Однако если вы полагаете, будто на этом с вероятными пакостями, которых можно ожидать от микробов и иже с ними, покончено, тут я вас должен, увы, разочаровать, поскольку у этих типчиков в репертуаре имеется кое-что еще. Помимо того, что масштабное поражение микробами подчас не очень красиво выглядит, еще и все, на чем или в чем растут и размножаются микробные клетки, в конечном итоге служит им пищей, а микроорганизмы, как уже упоминалось, делают со своей пищей то же, что мы делаем со своей: они ее переваривают.

Зараженные участки, покрытые плесенью или налетом, не только ужасно выглядят, но могут вызвать или ухудшить уже существующую аллергическую реакцию.

Если вы когда-нибудь не откажете себе в удовольствии присмотреться к мертвому дереву, покрытому разросшимся грибом, а тем более прикоснуться к нему, вам после этого и в голову не придет соорудить из такой древесины шкафчик. Подобное разрушение древесины допустимо в лесу, и там оно может даже приносить пользу, но если у вас деревянный дом, то вам наверняка не понравится, если вашим срубом будут угощаться какие-то шкодники. Эта прелестная аллитерация приводит нас к следующей, в некоторой степени литературной проблеме, связанной с грибами: если вы коллекционируете старые книги, то обязательно обращайте внимание на плесневый налет. Ведь очень часто бывает, что ваши раритеты когда-то намокали, может, во времена Французской революции, когда монахи прятали свои библиофильские ценности от мирского сброда в амбарах и подвалах. Высохнув, грибные споры только того и ждут, чтобы времена стали лучше, а книги сырее. Плесень быстро покрывает страницы, и за скоростью процесса не уследить… Во время мощного наводнения 1966 года река Арно вышла из берегов и затопила старинный город Флоренцию со всеми его несусветными сокровищами[9]. Для спасателей предметов искусства одной из самых сложных задач стало сдерживание стремительно распространяющейся плесени, что ввиду невообразимого количества книг, деревянных статуй и произведений графики и живописи оказалось практически невыполнимым. Очень похожая проблема возникла несколько лет назад после пожара в библиотеке герцогини Анны-Амалии в Веймаре, содержавшей ценнейшую коллекцию немецкой классической литературы. Многие книги, которые огонь пощадил, после контакта с водой при тушении пожара столкнулись с другими, не менее опасными врагами: влагой и плесенью.

Любителей целлюлозы и древесины множество. Помимо уже неоднократно упоминавшихся плесневых грибков есть еще другие грибки, например эта противная домовая губка – грибок, один из самых нежелательных «сожителей» древесины в перекрытиях и деревянных крышах домов старой постройки. На латыни имя этих исключительно неприятных тварей звучит как Serpula lacrymans. Слово «lacrymans» переводится как «плачущий»; такое название грибок получил из-за крошечных капелек воды, которые часто можно заметить на желтой губке. Я же непроизвольно представляю себе слезы домохозяина, когда он подсчитал, в какую сумму может обойтись санация.

Разумеется, это далеко не полный перечень материального ущерба, который могут нанести микроорганизмы. Возможно, вы вспомните, что я говорил, что нет практически ни одной субстанции, которую не разлагали бы какие-либо виды бактерий или археев. Огромной проблемой, например, является микробиологическая коррозия, то есть разрушение микроорганизмами металлов. Любопытно, что такой вид коррозии проистекает без кислорода, что ставит перед человеком особые требования: представьте себе, вы только что проложили по морскому дну превосходный трубопровод, и вдруг он начинает ржаветь, потому что по нему распространилась невесть откуда взявшаяся бактерия. Не говоря уже о том, что такую дырку от ржавчины в трубе на глубине в несколько сотен метров уже не подлатать на скорую руку, как когда-то вы заделывали дырки в вашем старом «жучке» «Фольксваген» перед его последним техосмотром. Тут еще вот какое дело: а вдруг труба разгерметизируется и произойдет утечка нефти? Страшно подумать, не так ли? Минеральные строительные материалы тоже не защитят от бактериального заражения, и вот уже миру являются обшарпанные штукатурные фасады некоторых домов. Из-за активности бактерий происходит деминерализация, так называется этот процесс на языке профессионалов.

Бандитский микромир

Как и многие преступники, бактерии тоже, как правило, редко действуют в одиночку. Я вот что под этим имею в виду: не бывает такого, чтобы на какой-либо поверхности присутствовал только один вид микроорганизмов, там действуют своего рода организованные банды, состоящие из разных видов. Такие синдикаты не всегда вредоносны – вспомните хотя бы про нашу кишечную флору, достоинства которой я тут уже восхвалял, – но они создают проблемы особого рода. Ведь когда такая бактериальная банда распространяется по поверхности, скажем, по сливной трубе вашей раковины, клетки окружают себя защитным слоем из слизи. Если вы мне не верите, просто загляните как-нибудь в сифон, и вы это увидите, гарантирую! Это довольно хитро задумано, ведь слизистый слой защищает микроорганизмы от разных внешних воздействий, которые могут им повредить: от высыхания, от ультрафиолетового излучения или же от химической братии.

Подобная бактериальная коммуна, которую называют биопленкой, по сути даже самая частая форма существования микробиологических организмов. Пленки мы находим почти повсюду, но главным образом на поверхностях, омываемых водным носителем: в водопроводных трубах, на речной гальке или на наших зубах. Да-да, зубной налет – это не что иное, как биопленка, а именно группа совместно «проживающих» бактерий разных видов, окружившая себя защитной оболочкой из полисахаридов (это структуры из многочисленных отдельных компонентов сахара). И, естественно, кариес – это тоже не что иное, как разрушение материала бактериями, в роли материала в данном случае выступает наша зубная эмаль.

Зная, что налет на наших зубах – это бактериальная биопленка, вы сразу сообразите, что является лучшим способом борьбы с биопленками. Их можно удалять только механически, по сути так же, как мы чистим зубы. Вы можете легко это проверить, попытавшись удалить зубной налет с помощью одной лишь химии (то есть ополаскивателя для рта). Не получится. Лишь зубная щетка в комплекте с зубной пастой способны избавить нас от налета, по крайней мере на какое-то время, ибо вспомнив, что эту процедуру надо повторять минимум дважды в день, вы поймете, насколько быстро может образовываться такой налет.

Кариес – это разрушение зубной эмали бактериями.

Все относящееся к зубам в принципе можно перенести и на другие поверхности и виды биопленок. Прежде всего то, что пленки образуются постоянно и что удалить их можно только с помощью механического воздействия (скобления!). В сточной трубе кариеса, ясное дело, нет, но если вы последовали моему призыву заглянуть в сифон под раковиной, то вы должны были обнаружить, что внутри сифона не только вид из-за налета безрадостный, но и биопленка в стоке скорей всего пахла отнюдь не фиалками. Так мы подошли еще к одному свойству, присущему прежде всего бактериям, свойству, которое осложняет жизнь нам и нашим органам чувств: они иногда воняют.

Когда воняет

Во многих процессах, которые нам в буквальном смысле слова кажутся зловонными, действительно виноваты бактерии; будь то испорченные продукты, или ил в садовом пруду, или очистное сооружение, или же наши собственные испражнения – дурные запахи производят главным образом бактерии. Давайте рассмотрим это на таком примере: как вам, возможно, уже известно, свежий пот не пахнет. Впрочем, это не на сто процентов верно, в свежем поте содержатся некоторые пахнущие вещества, например гормоны. Однако для большей части компонентов пота это так. Но почему в какой-то момент он начинает скверно вонять? Да очень просто: микрофлора нашей кожи, главным образом живущие в подмышках бактерии, питаются определенными молекулами в поте, к примеру жирными кислотами с длинными цепями. В процессе переработки пищи бактерии разгрызают жирные длинноцепочечные кислоты на короткоцепочечные подобно тому, как мы грызем перед телевизором соленую соломку. Но, в отличие от соленой выпечки, короткоцепочечные жирные кислоты, к сожалению, довольно противно пахнут, например масляной кислотой или немытыми ногами. Прочие обитатели подмышек, перерабатывая протеины, разлагают их на отдельные субстанции, и при этом также выделяются летучие вещества, которые мы воспринимаем как запах пота. Все это, однако, не обязательно должно происходить на коже. Бактерии развивают аппетит практически везде, где им достаточно влажно. Может даже произойти такое, что определенные ткани начинают пахнуть после носки, если до этого на них попали компоненты пота вместе с кожными микробами. Стирка тут поможет лишь отчасти, но об этом позже.

Совсем дурно становится, когда бактерии трапезничают в отсутствие кислорода. Тогда образуются особо вонючие субстанции, например сероводород (пахнет тухлыми яйцами), путресцин (пахнет пометом) или аммоний (едкий запах). Целый ряд запахов, воспринимающихся нами как исключительно неприятные, возникает при определенных процессах – это газы, образующиеся при гниении, запах изо рта, фекальная вонь или противные газы, выходящие из кишечника; но в основе их всегда лежит бактериальный метаболизм.

Грибы тоже могут неприятно пахнуть, хоть и не так дурно. Так, влажный и спертый запах в подвале указывает на то, что там растет плесень. По медицинским показаниям и ввиду того, что заражение плесневыми грибками связано со строительными дефектами, сейчас есть уже даже специально выдрессированные собаки, способные учуять самые мизерные концентрации этих веществ и выследить плесневые гнезда под обоями и под ковровыми покрытиями.

Ну, а теперь, мне кажется, мы рассмотрели весь спектр тех пакостей, которые могут принести в нашу жизнь микроорганизмы, и вы видите, что они могут доставлять нам неприятности не «только» в качестве возбудителей болезней, но и как коварные отравители, подстрекатели аллергий, разрушители материалов и виновники запахов.

5. Друг или враг?

Ну что? Сильно я настроил вас в предыдущей главе против микроорганизмов, теперь вы готовы всех их замочить? И поделом: мы же видели, что бактерии, грибки и вирусы вызывают множество серьезных проблем. Но, с другой стороны, некоторых из этих крохотных существ вы смогли бы даже полюбить, ведь они делают такой вкусный йогурт, защищают вашу кожу и даже помогают при пищеварении. Не парьтесь, все так, как должно быть, все как в реальной жизни. Вы же не можете симпатизировать всем и каждому, в жизни тоже встречаются некоторые личности, с которыми лучше не сталкиваться. С другой стороны, близость друзей и семьи нам тоже нужна, совсем в одиночку никак. В случае с нашими микроскопически крошечными «сожителями» есть, однако, одна сложность: как отличить хороший микроорганизм от плохого, если большинство из них мы вообще даже не видим? Будете постоянно бегать с микроскопом наперевес – можете заслужить звание «чудилы года»; но даже микроскоп не очень поможет, поскольку эти крохотули даже при большом увеличении обычно выглядят, увы, настолько похожими, что номинироваться на столь почетное звание лучше каким-нибудь иным способом…

Итак: как же различить микробов вредных и полезных? Ответ таков: в принципе вообще никак. Вот, скажем, включив субботним вечером «Таторт»[10] и бегло посмотрев на действующих лиц, смогли бы вы сразу определить, кто убийца? То-то. Раньше, когда негодяи в кино выглядели негодяями, это еще было возможно. А микробы всегда были умнее телевидения. Поскольку этот ответ вас наверняка не удовлетворит, давайте просто поиграем в детективов и вместе пойдем по следу. Погодите только, я быстро схожу за своей трубкой и твидовым пиджаком, и можем отправляться. Вы готовы, доктор Ватсон?

Холмс и Ватсон спешат к месту преступления. По прибытии:

Холмс: «Ватсон, вы стоите прямо на красном пятне, где лежал труп лорда Пиммсботтома. Какая досада, что этот неумеха инспектор Лестрейд уже велел убрать тело!»

Ватсон (нагибается): «Но это совсем не похоже на кровь, Холмс. Дайте подумать… я однажды видел очень похожее пятно, это было в годы моей военной службы в Индии: пачка изысканнейшего обезжиренного йогурта, поставленного к столу махараджи Джайпура, пошла тогда коту под хвост, потому что йогурт покрылся бактериями под названием Serratia marcescens, и на нем были красные пятна. Какая незадача, однако!»



Холмс: «Да, Serratia – это известный виновник порчи продуктов, и он выдает себя красной окраской. Может ли этот феномен быть каким-то образом связан со смертью лорда Пиммсботтома?»

Ватсон: «Думаю, скорее нет. Этот вид бактерий, в сущности, не опасен. Кроме того, лорд вряд ли стал бы добровольно есть красный йогурт. А вот интересно, чем здесь так сильно пахнет?»

Холмс: «Я тоже обратил на это внимание. Сначала я подумал, что сержант, открывший нам дверь, страдает желудочно-кишечной инфекцией, распространенной на юге Ямайки, она вызывает исключительно зловонный выход газов. Но плохо выполненные дреды сержанта говорят о том, что он никогда не был на Ямайке, иначе он знал бы толк в качестве дредов. Затем я подумал, не исходит ли запах из винного погреба старого лорда; как вам наверняка известно, в этих погребах любит селиться один особый плесневый гриб, называемый Cladosporium. Однако дверь в винный погреб так крепка и почти герметично закрыта, что мы и эту возможность можем исключить. Но если вы залезете в левый карман своего пиджака, дорогой Ватсон, то вы обнаружите, что бретонский крестьянский сыр, с которым Мэри сделала вам сегодня бутерброд, просрочен примерно дней на десять».

Ватсон (в изумлении): «Как… откуда вы узнали про мой бутерброд?»

Холмс (затягивается трубкой): «Элементарно, Ватсон. Когда вы исключили все прочие возможности, оставшаяся должна оказаться правдой, даже если она пока кажется столь невероятной. Вонь сразу мне напомнила про род бактерий Pediococcus, и, разумеется, я вынужден был поначалу предположить, что это дуновение поднимается от ваших ног. Однако на вас уже не те носки, которые вы носили четыре последние недели, вот почему я мог с большой долей уверенности исходить из того, что вы по обыкновению совместили ежемесячную смену чулок с генеральным мытьем ног. Упомянутый род бактерий, несмотря на свое наименование, обитает не только на ногах; его также применяют на сыроварнях для производства особо пикантных сыров. Остальное было детской игрой».

Ватсон: «Ну хорошо, но это никак не помогает нам продвинуться в нашем деле. Что же все-таки случилось со старым лордом Пиммсботтомом?»

Холмс: «Ах, если б я это знал, Ватсон, если бы знал… (идет по комнате, что-то выискивая). Смотрите! Здесь лежит виноградная гроздь, вся сморщенная и покрытая серым налетом! Это грибок Botrytis cinereal, он среди грибов в некотором смысле как доктор Джекилл и мистер Хайд. С одной стороны, опасный вредитель, который портит продукты. Однако с другой (делает эффектную паузу)…»

Ватсон: «А с другой стороны?..»

Лорд Пиммсботтом (приближается сзади): «С другой стороны?»

Холмс (в удивлении): «Лорд Пиммсботтом, вы живы! Откуда вы появились? Нет, ничего не говорите. Вы относили зараженный Botrytis cinereal виноград в свой винный погреб, чтобы отпрессовать его для несравненного вина – знаменитого коллекционного вина из завяленного винограда!»

Лорд Пиммсботтом: «Из заплесневелых гроздьев? Ни в коем случае. Честно говоря, сегодня утром я заметил, что служанка еще не удалила пятно от йогурта, которое я вчера случайно поставил на ковре, а поскольку сегодня возвращается моя жена со своих гончарных курсов в Чичестере, я подумал, не спуститься ли мне в погреб за хозяйственным мылом, чтобы быстро самому удалить непорядок. Жена моя очень строга, позвольте вам заметить. Как бы то ни было, но только я спустился по лестнице в погреб, как дверь позади меня захлопнулась, и я только сейчас смог ее открыть, какая досада».

Холмс (разочарованно): «Ну, хорошо, тогда вы очевидно не мертвы. Пока не мертвы, должен я добавить, ваше сиятельство, потому что Ватсон сейчас непременно предложит вам поделиться своим бутербродом, и вот тут вам следует проявить исключительную осмотрительность!» (заливисто смеется и покидает комнату).


На этом мы оставим место предполагаемого преступления и вновь посвятим себя вопросу: хороший микроб или плохой микроб? Хотя диалог между двумя мастерами британской криминалистики не стоит принимать всерьез, однако все упомянутые микроорганизмы на самом деле существуют, и идентифицировать их Холмс и Ватсон смогли преимущественно по их предательским следам: специфический запах, типичные признаки окрашивания продуктов или же предполагаемые симптомы болезни. Так что если мы хотим узнать, кто нас в микробиологическом смысле окружает – друзья или враги, – надо идти по следу. Однако для точного распознавания требуется некоторый опыт, дилетанту задача может оказаться не под силу. Поэтому, чтобы подстраховаться и действовать наверняка, имейте в виду: если колбаса позеленела или начала странно пахнуть, ее надо выбрасывать независимо от того, болезнетворные на ней бактерии или нет. То же, как уже говорилось, касается заплесневелого хлеба. Дело становится занимательным, когда мы сталкиваемся с микробами, требующими бережного к себе отношения, например с теми, которые живут в нашей кишечной или кожной микрофлоре. Здесь вообще не должно возникать мыслей проявлять огульную предосторожность – то есть, если у вас проблемы с запахом тела или с загрязненной кожей, нет никакой необходимости сразу использовать антибактериальное средство. Но, столкнувшись с чем-то действительно серьезным, вы должны что-то предпринимать против зловредных микробов, и тут, конечно, важно знать, что и как действует.

Все на борьбу: что поможет от микробов

Прежде чем мы познакомимся с инструментами убийства злобных микробов, нам следует разобраться с парой терминов. Прежде всего само слово гигиена; я его здесь уже не раз применял, но, по сути, еще не объяснил. Беседуя со своими клиентами, я люблю задавать им вопрос, что они понимают под словом «гигиена». Это очень увлекательно, потому что обычно мнений столько же, сколько опрошенных. Почти все высказывают предположение, что «гигиенично» это более чем «чисто» и что это имеет какое-то отношение к бактериям. Почти верно, но давайте все же уточним. Термин «гигиена» происходит от имени древнегреческой богини здоровья Hygieia, и в словаре Дудена[11] определяется как «совокупность мер в самых различных сферах в целях сохранения и улучшения здоровья, а также для предотвращения заболеваний и борьбы с ними», а еще как «чистота, опрятность». Создается впечатление, что у самого Дудена нет ясного представления, что такое гигиена… мы можем тут сойтись на том, что гигиена объединяет различные меры, включая меры по наведению чистоты (в просторечии – уборка), которые в конечном счете служат для поддержания нашего здоровья.

Раньше профилактика болезней почти всегда подразумевала меры по предотвращению инфекций, а они в наши дни, разумеется, уже не самая важная причина, по которой мы заболеваем; взять хотя бы рак или сердечно-сосудистые заболевания. И все же гигиена по-прежнему включает в себя меры по борьбе с микроорганизмами, и можно даже пойти еще дальше: в том, что мы теперь уже не так сильно страдаем от инфекционных болезней, мы большей частью обязаны улучшению гигиенических стандартов. Если бы мы, например, отказались регулярно мыть руки с мылом, то, возможно, причины болезней снова сдвинулись бы в сторону инфекций. Однако понятие «гигиена» подразумевает не только противодействие болезням, оно также включает в себя средства защиты от прочих вредных воздействий со стороны микробов, с которыми мы познакомились выше. Так давайте же определимся, что же такое санитарно-гигиенические мероприятия.

Распространенным методом профилактики против пагубного воздействия микробов является консервирование. Под консервированием понимают «предотвращение или замедление процессов разложения» – прежде всего в продуктах питания, но косметику, моющие средства, краски и многое другое тоже консервируют. Если тут вам на ум сразу приходит химия, то должен вас разочаровать, потому что консервировать можно и абсолютно естественным путем, например высушиванием. Об этом уже упоминалось, когда мы говорили о хрустящих хлебцах и плесени, но круг продуктов, которые могут быть сохранены таким путем, можно расширить. Это и собачий корм, и сухофрукты, и вяленая рыба, и, кстати, засоленная ветчина тоже – ведь, как вы помните, сахара́ и соли экстрагируют воду из обработанных продуктов питания. Таким образом, микробы, лишенные того, в чем они нуждаются для жизни, навредить нам уже не могут, а у нас остаются наши консервы. Тут мы можем использовать все то, чему научились выше: не только обезвоживание, но и температурное воздействие путем охлаждения или заморозки.

Благодаря правилам гигиены инфекции перестали быть самой распространенной причиной болезней.

Есть один параметр, которым мы до сих пор пренебрегали, – я о показателе рН, выражаемом одним числом от 0 до 14. Понять его, к сожалению, не очень просто, но он чрезвычайно важен, ибо указывает на качество жидкости: кислотная она или щелочная. Знаете что, давайте сейчас немного позанимаемся химией, а потом вернемся к нашей теме.

Итак, вы, конечно, знаете, что молекула воды называется Н2О. В переводе с химического это означает, что молекула состоит из двух атомов водорода и одного атома кислорода и выглядит примерно так: Н – О – Н.

В стакане с водопроводной водой в плотном взаимодействии друг с другом находится огромное количество таких молекул, они и образуют жидкость. Однако атомы в молекуле воды стремятся разъединиться между собой, причем специфическим образом: на Н+ и ОН. Плюс и минус означают здесь электрический заряд, и заряженные таким образом частицы называются ионами. Вообще-то разнозаряженные частицы друг к другу притягиваются (и, значит, должны снова и снова образовывать молекулу Н2О), но ионы очень непостоянны и все время мечутся туда и обратно… если в стакане воды ионы Н+ и ОН находятся в равном количестве, то мы говорим, что рН там нейтральное. Значение рН в таком случае будет 7. Пожалуйста, не спрашивайте почему, это на самом деле сложно, и если я вам сейчас начну объяснять, то вы заскучаете, отложите книгу в сторону и потом никому ее не порекомендуете, а издательство будет мной недовольно. Давайте лучше добавим в воду кислоты и посмотрим, что из этого выйдет.

Очень простая с химической точки зрения соляная кислота[12] (HCl), состоящая из одного атома водорода и еще одного атома – хлора (Cl). Такая молекула тоже делится, подобно молекуле воды, но не на Н+ и ОН, а, соответственно, на Н+ и Cl. Смотрите-ка, химия не такая уж сложная штука, вполне даже все логично…

Предположим, у нас в стакане воды поначалу было 100 молекул воды (на самом деле значительно больше, но давайте разберемся на маленьких числах, с большими мы запутаемся). Если мы теперь в воду добавим, скажем, 10 молекул соляной кислоты HCl, у нас получится следующая ситуация: в стакане будет 10 ионов Cl (но они нас пока не интересуют, поскольку показатель рН отражает лишь соотношение между ионами ОН и ионами Н+), 100 ионов ОН (это прежнее количество) и – вы следите за подсчетами? – в общей сложности 110 ионов Н+! Когда ионов Н+ больше, чем ионов ОН, показатель рН меньше семи, и тогда мы говорим – это кислая среда.

Итак, кислота – это вещество, насыщающее воду ионами Н+. А что же тогда есть щелочь? Очень просто. Это вещество, которое делает, так сказать, наоборот, то есть добавляет в воду ионы ОН. Если в воде ионов ОН больше, чем ионов Н+, то среда будет называться щелочной. Теперь с этим можно немного поиграть: давайте добавим в нашу уже ставшую кислотной воду 10 молекул какой-нибудь щелочи, например едкого натра (NaOH). Тут мне уже не надо пояснять, что его молекула распадается на ион натрия Na+ и ион ОН? И мы можем снова рассчитать, что получится: теперь у нас 110 ионов Н+ и 110 ионов ОН, то есть одинаковое количество. Жидкость опять стала нейтральной, и, следовательно, показатель рН снова 7. Что у нас еще есть? 10 ионов Na+ и 10 ионов Cl, соединяясь, дают NaCl, больше известный в обиходе как поваренная соль. То есть смешивая такие две, в сущности, опасные субстанции, как соляная кислота и едкий натр, мы их обоюдно нейтрализуем и получаем безвредную смесь. На что только химия не способна!

Но вернемся к значению рН и консервированию. Многие бактерии предпочитают нейтральную среду; если среда, в которой они растут, становится слишком кислотной или слишком щелочной, они умирают. Плесневые грибы выживают при несколько более низких значениях рН, что может быть вам известно, если вы когда-нибудь находили на кухонной полке лимон (у него рН от 2 до 3 единиц) с зеленовато-белесым слоем плесени. Это интересный нюанс: лимоны не гниют – тогда бы бактерии разлагались, – а плесневеют. Получается, что добавление в продукт кислоты будет сдерживать рост микроорганизмов и, следовательно, порчу продукта, что и используется в маринованных огурцах и селедке! А можно обойтись и меньшими усилиями: использовать (хорошие) микроорганизмы, которым «позволено» быть в белокочанной капусте или в молоке. Они сами образуют кислоты (в данном случае молочную кислоту). Этот метод применяют для таких облагораживаемых микроорганизмами блюд, как кислая капуста и йогурт – это их и подкисляет, и заодно предохраняет от порчи, ведь потенциальные «возбудители» порчи плохо переносят кислую среду. Консервация такого рода – это химия или биология? Ответ на этот вопрос оставляю на ваше усмотрение.

В некоторых случаях можно сдерживать размножение микробов, а иногда необходимо от них избавляться. Для этого чаще всего достаточно сократить их численность до количества, не приносящего нам вреда, и такую меру называют дезинфекцией. Поскольку это понятие пришло из медицины, то под «количеством, не приносящим вреда» обычно подразумевается такое количество микроорганизмов, которое не представляет угрозы заражения. С понятием «инфицирующая доза» мы уже познакомились и знаем, что эта пороговая доза у всех видов бактерий, грибков или вирусов разная. Но откуда мне, черт возьми, знать, какие микроорганизмы расселись на сиденье домашнего унитаза в ожидании, когда смогут передать мне хороший такой желудочно-кишечный грипп? А еще мы буквально только что говорили, что этих поганцев внешне вообще не различить, разве что только по их деяниям, а тогда, естественно, будет уже поздно проводить дезинфекцию, ведь это мера предотвращения болезней, пока они не вспыхнули. Ответ на вопрос прост, хотя может вас озадачить: дезинфекция в той форме, в какой она задумана – то есть до этой самой инфицирующей дозы, – практически не работает, потому что целенаправленно сокращать поголовье возбудителей болезней до тех пор, пока оно не снизится до безопасного порога, задача, естественно, нереальная. Поэтому дезинфекционными средствами бьют наверняка, убивая все и не щадя даже самых безобидных бактериальных проказников.

 Лимоны не гниют! Они слишком кислые для разложения бактерий. Вместо этого они плесневеют.

Все это даже поддается расчетам, и в Европе принят стандарт, по которому средство может считаться дезинфекционным, если после его применения количество микроорганизмов уменьшается на пять порядков. Если вы не очень сильны в исчислении порядков, вот пересчет для чайников от математики: число следующего порядка больше предыдущего на один ноль, так, из единицы получается 10, из 100 – 1000 и так далее. И наоборот: уменьшение на один порядок будет означать, что я уменьшил количество микробов, скажем, со ста до десяти, что соответствует уменьшению на 90 процентов. С такой задачкой хорошо справятся по крайней мере те, кто пользуется скидочными купонами в магазинах. Так что же означает уменьшение на пять порядков? Это несложно, посмотрите:



Если сокращение количества микробов со 100 до 10 означает сокращение на 90 процентов (или минус один порядок), то это значит, что дезинфекция убивает 99,999 процентов всех микробов (что и есть сокращение на пять порядков). Вам нужно просто подсчитывать девятки, чтобы выразить процентное сокращение порядков: пять девяток = пять порядков. При этом, в общем-то, все равно, с какого исходного количества микробов начинать – сокращение с 1 000 000 до 100 000 – это те же 90 процентов, как если бы сокращали со 100 до 10.

Зачем я вам это рассказываю? Дело в том, что производители дезинфекционных средств и антибактериальных очистителей любят приводить эти цифры в рекламе, и нередко на упаковке вы можете прочитать, что применение продукта уничтожит 99 с хвостиком процентов микробов. Но в Германии любое средство, на котором написано «дезинфекция», должно обеспечивать уменьшение поголовья микробов на 5 порядков, при этом производители, естественно, не преувеличивают, но вполне вправе преуменьшить. Поэтому на упаковках многих продуктов значится 99,9 (и не более того), а это три порядка. Показатель представляется весомым и значимым, а лишние девятки после запятой все равно никто не поймет (кроме вас теперь). Но для существенного уменьшения количества микробов вам вообще не требуется какого-то «правильного» дезинфекционного средства. Мытье рук или уборка с обычными средствами устраняет около 99 процентов микробов: в большей части случаев, в частности именно в домашнем хозяйстве, этого уже достаточно, чтобы чувствовать себя уверенно.

Однако есть еще кое-что, что вам непременно надо иметь в виду: обязательному тестированию в Европе подлежат дезинфекционные средства против бактерий и грибков, но не против вирусов! Так что если у вас на работе или дома проблема с вирусами, вам следует внимательнее читать написанное на упаковках антивирусных средств. Там часто значится, что они эффективны против каких-то «особых» вирусов, что открытым текстом означает – данное квазисредство, может, и очистит поверхности от вирусов гриппа или даже ВИЧ, но с какими-то другими вирусами не справится. Например, с норовирусом, с которым мы позже еще встретимся – лишь фигурально, на страницах этой книги, и хорошо, что только так.

В Европе дезинфекционные средства тестируют против грибков и бактерий. Но не против вирусов, поэтому покупателю стоит внимательно прочитать, от чего же средство обещает защитить.

Поэтому с дезинфекцией все очень непросто, что наряду с прочими обстоятельствами побудило многие учреждения не рекомендовать массовым потребителям использование дезинфекционных средств в домашних хозяйствах. За этим много чего стоит, но поскольку все мы можем приобретать эти средства в супермаркетах, то я тут попытаюсь изложить вам основные причины и факты.

Однако прежде мы должны поговорить еще об одном термине, последнем – о стерилизации. В разговорах с потребителями я часто слышу, что многие не пользуются всеми этими антибактериальными средствами, поскольку не хотят в конечном итоге жить в стерильной среде. Мы уже выяснили, что, применяя эти продукты, мы в любом случае проводим дезинфекцию, то есть убиваем какую-то часть микроорганизмов, и, возможно, вы сами догадываетесь, к чему это сводится. На самом деле «стерильно» – это больше, чем «продезинфицировано», поскольку означает «очищено от способных к размножению микроорганизмов». То есть когда вы что-то стерилизуете, в этом «чем-то» (или на нем) не может оставаться вообще ничего живого, а определение «способные к размножению» подразумевает, что под стерилизацию попадают также формы покоя микроорганизмов (главным образом споры грибков и бактерий). На данный момент они, возможно, не совсем «живые», но могут ожить, когда позволят обстоятельства, – именно это и ставится целью предотвратить.

Иногда стерильность очень важна, например внутри консервной банки, ведь паштет, морковка и собачий обед с мясистыми кусочками – или что там еще у вас в кладовке про черный день – должны храниться если не вечно, то хотя бы какое-то продолжительное время, и в случае с пищей в банках данный метод прекрасно работает. И именно потому, что в банке не остается ни одной бактерии из числа тех, которые анаэробны, то есть любят бескислородную среду. Кстати, согласно легенде, консервную банку изобрел Луи Пастер, знаменитый французский микробиолог, который в ходе своего не менее знаменитого (по меньшей мере среди других микробиологов) эксперимента доказал, что бактерии не возникают ниоткуда и потому продукты питания можно хранить чуть ли не вечно, если уничтожить имеющихся в них микробов и обеспечить невозможность поступления новых извне. Ведь до середины XIX века верили в так называемую creation ex nihilo – «творение из ничего», или «самопроизвольное зарождение». Сильно утрируя, можно сказать и так: где-то вдруг – чпок! – и зародилась жизнь, например в форме бактериальной клетки.

Эксперимент Пастера, опровергнувший это предположение, проходил следующим образом: мэтр Пастер взял стеклянную колбу, ее горлышко он вытянул и изогнул наподобие лебединой шеи (в те времена ученые-естествоиспытатели нередко были сами себе стеклодувами, что позволяло им творить себе лабораторное оборудование) и подогрел содержимое колбы, а была в ней жидкая питательная среда, своего рода бульон. Обычно такой бульон, если оставить его стоять открытым, инфицируется вмиг, не успеешь и глазом моргнуть. Вытянутое горлышко позволяло горячему пару улетучиваться, это во-первых; а во-вторых, внутрь колбы не могли проникать микробы из наружного воздуха, потому что никакая бактерия не сможет проползти вниз в бульон по стеклянной трубке. Если бы жизнь рождалась из ничего, то в один прекрасный день раздался бы «чпок» и внутри колбы возникла бы бактериальная клетка. А у Пастера питательная среда осталась стерильной и бульон не испортился.

В вышеописанном эпизоде пока еще не хватает одного важного элемента аргументации. Каждое доказательство требует доказательства противоположного. В данном эксперименте оно выглядело так: в верхней части лебединой шеи должна была через какое-то время собраться пыль, в которой, как предполагал Пастер, должны были содержаться микроорганизмы. Поэтому, если опрокинуть колбу таким образом, чтобы жидкость из колбы перетекала в горлышко, а затем стекала обратно, то питательный бульон должен был подхватить микробов из пыли, и тогда он оказался бы зараженным. Так оно и случилось, это и стало окончательным доказательством, что микроорганизмы не возникают из ничего, а поступают из окружающей среды или прочих источников. Родилась идея стерилизации!

Если словесное описание трудно для понимания, ниже оно представлено в рисунках:



На самом деле Пастеру немного повезло, потому что простым кипячением всех способных к размножению микробов не изничтожить. Многим продуктам питания хватает такого подогревания, и этот метод мы в честь мэтра называем пастеризацией. Мог бы я сейчас вас немного подразнить, затеяв дискуссию, не является ли пастеризация скорее дезинфекцией, чем стерилизацией (потому что убиваются не все способные к размножению микробы), или, быть может, это консервация (поскольку служит увеличению срока хранения продуктов). Но поскольку я не хочу злоупотреблять доверием своих читателей, давайте лучше оставим этот вопрос и поразмышляем, как на практике применять ваши знания о консервации, дезинфекции и стерилизации.

Возможно, вам интересно, какие вещества применяются для борьбы с микроорганизмами. Высушивание, воздействие высокими температурами и то, что связано со значением рН, мы уже рассмотрели. Но во многих методах консервации и дезинфекции применяются химические вещества, и в них разобраться не всегда просто. Но мы постараемся…

Начнем со средств консервации. На косметике и продуктах питания часто пишут «без применения таких-то веществ», очевидно, потому, что многие потребители с большим подозрением относятся ко всяким добавкам. И не без оснований – ведь то, что вредит бактериальной, а тем более грибковой клетке, вполне может не понравиться и клетке человеческого организма.

 Вещества, которые вредят бактериальной или грибковой клетке, могут вредить и клеткам организма.

В наши дни консервантов бесчисленное множество, и мы не сможем здесь рассмотреть каждый из них в отдельности. Поэтому для начала ограничимся тем, что рассмотрим пару общих аспектов, а когда позже будем говорить о некоторых из этих средств, добавятся детали. Загодя надо сказать: в ходу множество всяких слухов, от некоторых из них волосы на голове дыбом встают, и много сомнительной информации о вредном воздействии консервантов. Вы, конечно, не хуже меня знаете, что нельзя верить всему, что курсирует в Интернете и пишется в средствах массовой информации… но нет ли во всем этом толики истины? Я тоже не всегда могу оценить появляющуюся в прессе информацию, и я очень рад, что есть у нас такие государственные организации, как Федеральный институт оценки рисков (BfR – Bundesinstitut für Risikobewertung), которые делают это за нас. На интернет-сайте BfR можно найти оценки и информацию о многих веществах, содержащихся в продуктах питания, в косметике и очистительных средствах, и о связанных с ними рисках; пусть иногда они публикуются с некоторой задержкой, зато это обдуманная и добросовестно составленная информация, ведь на объективную оценку требуется время. Не стану утомлять вас здесь деталями, а посоветую посетить эту страницу (повторюсь, о некоторых веществах я вам все-таки позже кое-что расскажу). Но прежде не могу не упомянуть одно важное обстоятельство: применение отдельных веществ, естественно, связано с некоторым риском. Тут необходимо взвешивать все риски, то есть вопрос вот в чем: что опаснее – применить какое-то определенное вещество или допустить до потребителей продукт без консервации?

Разумеется, желательно, чтобы крем для лица содержал минимум добавок. Ну, а если никто не может гарантировать, что крем не будет представлять микробиологического риска, оказавшись вскоре зараженным возбудителями болезней? Странно, что, садясь в машину, чтобы поехать за продуктами, большинство людей не задаются вопросом о вероятных опасностях этого мероприятия, хотя поездка в супермаркет связана с гораздо более высокими рисками для здоровья, чем, например, потребление консервированного продукта. Не поймите меня превратно: я не собираюсь здесь ломать копья в защиту пищевой и косметической промышленности. Но жизнь все же не черно-белая, так что приходится иногда идти на маленький риск, дабы избежать риска большего. Прошу вас иметь это в виду, когда мы дальше будет говорить о консервантах.

Однако мы вообще-то хотели поговорить о более радостных вещах, например о том, как элегантно разделаться с бактериями… если вы хотите (или вынуждены) прибегнуть к химическому оружию, есть много разных вариантов, которые, к счастью, не столь неохватны для понимания, как средства консервации.

Важнейшие антимикробные агенты

Алкоголь

Есть такой замечательный скетч у известного эстрадного сатирика Уве Лико, он же Херберт Кнебель из Эссена. Там он разыгрывает сценку, где пытается унять зубную боль с помощью бутылки бренди, которую прячет за телевизором. «К сожалению», когда мы применяем все эти алкогольсодержащие полоскания для рта, в какой-то момент возникает глотательный рефлекс – в нем и заключается фишка этого скетча, – и тогда желаемый антибактериальный эффект нулевой, зато зубная боль становится до лампочки.

В этой анекдотичной сценке схвачена одна любопытная вещь: похоже, что мы как бы инстинктивно прибегаем к алкоголю как к дезинфицирующему средству. Что является тому причиной? То, что на продукции с антимикробным действием алкоголь часто указан как действующее вещество, или же (что более вероятно) сказывается влияние голливудской кинопродукции, где чуть ли не каждый раненный на вьетнамской войне или какой-нибудь подстреленный ковбой с искаженным от боли лицом хватается за бутылку виски и, обильно смачивая им глубокую рваную рану, приговаривает: «Это пустяки, царапина…»

По поводу таких методов лечения следует вот что отметить: во-первых, да, спиртом можно, конечно, дезинфицировать, и он является основой большинства дезинфицирующих средств для рук, которыми пользуются, например, в больницах. Но в таком средстве очень важна правильная концентрация спирта. Очень распространено ошибочное предположение, и я его часто слышу, что якобы раз в очистителе для стекла содержится спирт, то он обладает антибактериальным эффектом. Но в данном случае это не соответствует действительности, потому что от той капли спирта, которая содержится в стеклоочистителе, пара микробов, быть может, и сдохнет от смеха, но средство активного антибактериального эффекта от него не обретет.

От одного лишь наличия спирта средство не становится антибактериальным: нужна правильная его концентрация.

Остановимся на этом моменте подробнее, давайте попробуем формат маленькой викторины. На картинке справа представлены некоторые содержащие алкоголь продукты, и вы, если хотите, можете вписать в этикетки, какова в них, по вашему мнению, концентрация алкоголя (не бойтесь, отметки ставиться не будут). Ответы вы найдете ниже в тексте, так что, если хотите поучаствовать, дальше пока не читайте!



Возможно, вы заметили, что в списке с ответами средства расположены по убыванию содержания алкоголя или спирта. Любопытно, что список возглавляют травяной шнапс и туалетная вода с 80 процентами. Эти продукты требуют большого количества спирта, главным образом в качестве растворяющего вещества для растительных экстрактов и, соответственно, парфюмерного масла, что не только улучшает их качества при применении по прямому назначению, но и провоцирует некоторых алкоголиков принимать их на грудь, когда больше нечего выпить. Средства для дезинфекции рук на 60–70 % состоят из спирта – идеальная концентрация для умерщвления микроорганизмов. Правда, часто действуют по принципу «чем больше, тем лучше», выбирая средство с большей концентрацией спирта, но это не всегда работает именно в дезинфицирующих средствах, поскольку спирт действует, в частности, как разрушитель белка в клетках микробов. А при его высокой концентрации денатурируются уже целые белки на поверхности клеток, образуя своего рода защитный слой, через который молекула спирта проникнуть больше не может, так что внутренность клетки во многом уцелевает. В 70 %-ном средстве алкоголя достаточно, чтобы добраться до протеинов внутри клеток бактерий и грибков и нанести им тот ущерб, какой требуется. Исключением из этого правила являются лишь средства дезинфекции против определенных вирусов. У них же не клеточное строение, и потому здесь требуется воздействие на белки как раз на внешней оболочке.

На этом мы уже подошли к виски с его 40 %, что ставит его на нижнюю границу списка средств, которыми вообще можно дезинфицировать. Тут следует упомянуть, что при зубной боли одной только дезинфекцией обычно не обойтись, и если вы оказались в той же ситуации, как Херберт Кнебель (см. выше), то вам, разумеется, надо идти к зубному врачу. Яичный ликер я в список включил, ясное дело, шутки ради, его и так никто не додумается использовать для дезинфекции; хотя тут у меня возникает вопрос, не потому ли Удо Линденберг[13] так хорошо сохранился, что он, по слухам, большой любитель этого сладкого напитка… Ну, а что же с красным вином? В нем содержится максимум 15 % алкоголя, и этого количества все же достаточно для обеспечения сохранности виноградного сока в его сброженной форме.

Разобравшись с этими данными, мы уяснили один важный принцип: вещества, способные в определенной своей концентрации умерщвлять микроорганизмы, в более низких концентрациях часто все еще задерживают рост – или, лучше сказать, сдерживают деление – клеток микробов. Так что образуемый дрожжами алкоголь в тех его концентрациях, которые наличествуют в вине или в пиве, действует в качестве консерванта; в случае с ячменным пивом, где алкоголя всего около пяти процентов, продлению срока хранения немного способствуют горькие вещества, содержащиеся в хмеле. Тут встает интересный вопрос: если алкоголь сдерживает размножение микроорганизмов, то почему сами дрожжи продолжают радостно размножаться? Может ли такое быть? Ответ будет в стиле армянского радио: «В принципе – да». Но дрожжевые клетки переносят (самопроизведенный) алкоголь тоже лишь до определенных границ, и эти границы соответствуют алкогольному градусу хорошего красного вина, то есть от 16 до 18 процентов. Начиная с этого градуса, дрожжам уже не так весело, и даже если есть еще в наличии сахар, дрожжи больше не смогут образовывать алкоголь.

В небольших концентрациях спиртосодержащие жидкости не дезинфицируют, но сдерживают деление клеток микробов.

На этом месте мы можем еще раз воздать почести Луи Пастеру, который первым обнаружил, что клетки дрожжей являются причиной брожения плодового сока. Несмотря на то что человечество тысячелетиями с благодарностью использовало данный феномен, люди до открытия Пастера верили, что алкогольное брожение – это спонтанный и чисто физический процесс. Сюда же можно отнести и ответ на вопрос, можно ли дезинфицировать очистителем для стекол. Естественно, нет, потому что в таких средствах обычно содержится менее 10 % алкоголя – он там опять-таки нужен как растворитель жира, чтобы на стекле не оставалось разводов. Поэтому в средствах для чистки стекол микробиология никакой роли скорее не играет, разве что способствует консервации состава.

После того как мы подробно разобрались с влиянием разных концентраций алкоголя на дезинфекционные свойства, мне, наверное, следует еще кое-что сказать по поводу самого термина «алкоголь». Вы ведь знаете, хотя сейчас, может, об этом и не задумывались, что алкоголь, знакомый нам по любимым напиткам, тот, который по-научному правильно назвать этанолом, – это не единственный вид алкоголя. С химической точки зрения алкоголи – это чрезвычайно разнообразная группа веществ, и среди них есть и другие виды алкоголя, используемые в качестве антибактериального действующего вещества, или активного реагента. Здесь можно упомянуть, к примеру, пропиловый спирт (его еще называют пропанолом), его часто применяют также в форме изопропанола, и пить его, естественно, нельзя. Алкоголи – это часто используемые дезинфекционные средства с широким спектром применения и быстрым действием. Большой их недостаток в том, что они нужны в очень высоких концентрациях как для дезинфекции, так и для консервирования, по крайней мере по сравнению с другими консервирующими веществами.

Фенол

Фенол, хоть он с химической точки зрения и относится к алкоголям, заслуживает отдельного упоминания, и главным образом по причинам, так сказать, историческим. Дело в том, что фенол (раньше его называли карболкой) был вообще самым первым дезинфекционным средством и в течение долгих десятилетий чуть ли не собирательным образом антибактериального средства. Так, например, если судить по старым описаниям госпиталей (вам они могут быть знакомы по черно-белым фильмам 1960-х годов, с сестрами милосердия в белых чепчиках), там непременно должен был стоять этот типичный для больницы запах – запах карболки, то бишь фенола. Сегодня люди уже не знают, как пахнет фенол, хотя запах у него очень характерный и его ни с чем не спутать.

В Европе на настоящий момент феноловые дезинфекционные средства преимущественно запрещены по причине побочных воздействий на человека и на окружающую среду, они вообще не особенно любимы именно из-за тяжелого запаха. Однако в Великобритании, на родине дезинфекции, их любят еще с тех давних пор, когда в конце XIX столетия сэр Джозеф Листер[14] первым успешно применил эти вещества для обработки ран. Британское дезсредство обычно отзывается на кличку «деттол», и в своей изначальной форме это грязный коричневый бульон, который, судя по этикетке, может применяться для всего, что связано с дезинфекцией, даже как эссенция для ванн. Разумеется, Британская империя снабжала этой штукой все свои колонии, так что и по сегодняшний день на основании дезинфекционных средств, стоящих на магазинной полке, можно определить, какие страны были когда-то под британским владычеством. Один мой коллега из Египта (тоже бывшая британская колония) рассказал мне в связи с этим милую байку, показывающую, насколько эти традиции накладывают отпечаток на человека: когда египетская домохозяйка ждет гостей и у нее не хватает времени привести в порядок квартиру, она брызгает по углам по паре капель фенолсодержащего средства. Едкий запах фенола, ощутимый даже в малых количествах, дает понять прибывающим гостям: «Ах, какая чистота у хорошей хозяйки!» Изящный прием, не правда ли?

Отбеливатели

Во Франции тоже можно провести подобный эксперимент – там ассоциации с чистотой вызывает характерный запах хлорки. Типичной «немецкой» ассоциацией на нее будет скорее бассейн, именно благодаря бассейну с ней знакомы люди по эту сторону Рейна. Помимо французов с запахом хлорки чистку и чистоту связывают также жители Южной Европы. Интересно, что подобно тому, как британцы привили жителям своих колоний привычку использовать феноловые средства дезинфекции, так и французская Eau de Javelle[15] используется в бывших французских владениях до нынешнего времени. В Германии к хлорке по понятным причинам относятся несколько сдержанно, ведь эта штука на самом деле не сахар. По-немецки мы называем ее Bleiche, что буквально переводится как «отбеливатель», и не случайно: она прекрасно умеет обесцвечивать все, включая те места, которые обесцвечивать никто не собирался, а раствор туда попал при уборке случайно. Также она довольно агрессивна по отношению к различным материалам и раздражает слизистые оболочки. Поэтому применение хлорной извести следует рассматривать только в определенных ситуациях (далее об этом подробнее).

Что хорошо в хлорке (как правило, ее применяют в форме гипохлорита) – она действительно расправляется со всеми мыслимыми микроорганизмами. Я когда-то участвовал в проекте, связанном с разработкой нового средства дезинфекции. У другой фирмы был к тому времени на рынке продукт, рекламировавшийся с лозунгом: «Убивает всех известных микробов!» Мой коллега из отдела маркетинга на это сказал:

– Мы тоже этого хотим.

– Хорошо, – ответил я. – Нет проблем, сделаем.

На что коллега заметил:

– Но это должен быть продукт, действующий без хлорной извести.

– Ну, тогда, – вынужден был я ему признаться, – ничего не получится. Кроме гипохлорита нет такой субстанции, которая с этим справится. По крайней мере в продукции для массового применения.

 Хлорка легко обесцвечивает, раздражает слизистые и способна разрушить материалы. В то же время это хорошее средство против микроорганизмов.

И на самом деле сложно найти что-то сравнимое по эффективности в борьбе против микроорганизмов. Чем это объясняется? Как следует уже из самого слова «отбеливатель», это вещество разрушает многие молекулярные структуры, и именно поэтому его применяют с целью обесцветить пятно от красного вина, растворить нерастворимые частицы (их потом можно выполоскать) или нейтрализовать основные структурные звенья микроорганизмов. Все это функционирует через реакцию окисления; сильно упрощая, можно сказать, что молекула реагирует с кислородом и таким образом меняет его свойства.

Но минуточку: кислород же есть везде, зачем тогда нужен хлор? А не нужен вообще, поскольку кислородом тоже можно прекрасно отбелить. В долине реки Вуппер, где я живу и откуда происходит моя семья, есть очень старая традиция отбеливания пряжи. Пряжу раскладывают на полянах по берегу реки, а затем периодически обрызгивают водой. Вода, кислород из воздуха и солнечный свет (вот в чем здесь настоящее чудо – ведь в Вуппертале почти всегда дожди!) образуют реактивные кислородные радикалы, от которых пряжа кремового цвета со временем становится белоснежной именно через окисление. Вещество, образующееся из воды и кислорода, называется пероксидом водорода, и это почти столь же хороший окисляющий агент – а вместе с тем отбеливатель, – как и гипохлорит. И вот в чем прелесть такого эффекта: после химической реакции с грязью, пятнами или микробами в воде ничего не остается! Потому этот метод гораздо привлекательнее отбеливания хлором, который оставляет за собой определенные органические соединения, они задерживаются в окружающей среде на целую вечность и к тому же токсичны. Но пероксид водорода, к сожалению, не очень эффективен. Его, однако, можно улучшить. Если вы посмотрите на упаковку своего средства для стирки (я имею в виду универсальное средство в твердой форме, то есть порошок, гранулы или таблетки), то увидите: там написано, что оно содержит «отбеливающее средство на основе кислорода». Это нечто подобное нашей перекиси водорода, только несколько более рафинированное. Ведь проблема с пероксидом начинается уже в бутылке: ему невозможно предписать, с чем реагировать. К тому же, продавая столь изысканный продукт, ему нужно обеспечить хороший запах, приятный глазу цвет и прочее. Все это с отбеливателем, увы, не получится, поскольку в жидкой форме пероксид водорода окисляет все, что ему попадется, и тогда спасайся кто может.

Так как же сделать отбеливающее средство для стирки, чтобы оно еще в коробке не устраивало нам содом и гоморру? Ответ: в жидких формах – вообще никак (поэтому универсальных отбеливающих средств в жидкой форме не бывает); в порошках, гранулах и таблетках применяют не перекись водорода, а тоже порошковую субстанцию, перкислоту. Этот первый слог – «пер» – указывает на химическую схожесть пероксида водорода и перкислот. Перкислоты действуют, только когда в реакцию вступает вода, и потому неконтролируемых реакций внутри упаковки опасаться не приходится. И только когда средство попадает в барабан стиральной машины, оно начинает действовать и добирается до пятен на воротнике (и до микробов, но об этом мы поговорим дальше). При этом кислородный отбеливатель в моющем щелочном растворе контролируется входящим в состав компонентом, который называют активатором отбеливания; он высвобождается уже при довольно низких температурах. Таких активаторов до 1970-х годов не существовало, поэтому, чтобы кислородный отбеливатель подействовал, стирать приходилось при температуре минимум 60 °C. А потом, в 1980-е, на рынке появился «ОМО с системой TAED». Я был тогда ребенком, и у меня в памяти хорошо сохранился этот слоган, впрочем, тогда он был не более чем заполнением скучной паузы между передачами, пока на телеэкран снова не пришли веселые человечки из Майнца[16]. Благодаря системе TAED отбеливающие свойства проявлялись уже при 40 °C, и она до сих пор в неизменном виде используется во всех твердых формах стиральных средств.

Аммонии

(Если вы подумали, что вам в руки случайно попал справочник по малогабаритным транспортным средствам, поясняю: Quats ничего общего не имеет с квадроциклом.) Это еще одна группа антимикробных агентов. Поскольку они не столь общеизвестны, как алкоголь или отбеливатели, то требуются некоторые объяснения.

Если я вам сейчас скажу, что ЧАС расшифровывается как «четвертичные аммониевые соединения» (quaternary ammonium compound – QUAT), то совсем собью с толку, и вы занервничаете. Естественно, я не хочу рисковать. И вот я думаю, не лучше ли вам просто сказать, что ЧАС – это положительно заряженные тензиды. Пожалуй, нет, поскольку чуть позже мы узнаем, что тензиды – это активные чистящие вещества, помогающие расщеплять жир и грязь. Что же мне делать? Могу вам просто разъяснить отличительные свойства этой группы веществ и почему они применяются не только в санитарных чистящих средствах, но также во многих других продуктах, таких как ополаскиватели для белья и кондиционеры для волос. Так вас устроит? Хорошо.

Итак. Четвертичные аммониевые соединения (как, впрочем, и все тензиды) обладают свойством образовывать на поверхностях пленку, а поскольку эти вещества заряжены положительно, то, естественно, они предпочитают отрицательно заряженные поверхности: шерсть или хлопок, например, которые за счет своего химического строения обычно несут отрицательный заряд. Когда эта пленка ложится на шерстяное волокно, поверхность его разглаживается; тут нам в помощь кондиционер для белья. Поскольку волосы с химической точки зрения есть не что иное, как (человеческая) шерсть, то это правило работает и для волос: с кондиционером волосы лучше расчесываются и не электризуются!



Какое все это имеет отношение к микроорганизмам? Дело в том, что поверхность клетки бактерии обычно заряжена отрицательно, так что ЧАС откладываются на ней. Там они воздействуют на бактериальную клетку через ее стенку, нарушая обмен веществ, тормозя функции некоторых сидящих в клетке ферментов и нанося таким образом ущерб бактерии. Поскольку эти вещества действуют даже в небольших концентрациях, то они идеальны для применения в стиральной машине, где содержимое барабана многократно разбавляется большим количеством воды. Так что есть все основания добавлять аммониевые соединения в гигиенические ополаскиватели для белья. Но почему-то на упаковках указывают их химические названия, а они довольно сложные. Чтобы вы могли в дальнейшем понимать, что кроется под длинными именами на упаковках, я сейчас их назову (хорошо, что их только два!): бензалкония хлорид (Benzalkonium chloride) и дидецилдиметиламмония хлорид (Didecyldimethylammonium chloride).

Эти вещества частично применяются также в чистящих средствах, и вам следует хорошенько подумать, стоит ли вам ими пользоваться. В отличие, например, от кислородных отбеливателей, эти вещества вполне могут наносить вред, попадая в окружающую среду. Когда мы чуть позже будем говорить о гигиене белья, мы обсудим эту тему подробнее.

Кислоты и щелочи

Тут нам будет попроще, ведь с кислотами и щелочами мы уже немного познакомились. Эти вещества обладают антимикробным действием, воздействуя на рН среды, окружающей микробные клетки, сильно понижая значение рН (в кислотах) или повышая его (в щелочах). Микробам от этого становится настолько не по себе, что шансов выжить у них практически не остается. Есть, конечно же, упоминавшиеся выше виртуозы, способные влачить свое жалкое существование даже при экстремальных значениях рН, а некоторые в этих условиях могут даже благоденствовать (вспомним археев), однако, к счастью, в нашем непосредственном окружении они вряд ли найдутся и потому зла нам причинить не могут. Эффективность кислот и щелочей, как и в случае с алкоголями, определяется их концентрацией: умеренного понижения (или же повышения) показателя рН достаточно для консервирования, а сильно кислые или щелочные значения убивают микроорганизмы. Сильные кислоты, к примеру соляная кислота, применяются не только как дезинфекционные средства, но и способны растворять известь, поэтому их можно найти в составе средств для чистки унитазов.

 Соляная кислота входит в состав средств для чистки унитазов.

Более слабые кислоты, такие как молочная или лимонная, тоже могут оказывать противомикробный эффект. Хотя слабые кислоты не всегда справляются с понижением рН за пределами микробной клетки до той степени, чтобы это было действительно дезинфекцией. Однако эффект достаточен, если дать им возможность проникнуть в бактериальную клетку, где нужно подкислить лишь маленький объем. Иногда и этого мало для уничтожения клетки, но рост ее тормозится, и мы имеем эффект консервации. Часто рекомендуют использовать уксус или лимонную кислоту в качестве очистителей, например для очистки от плесени короба для хлеба или для гигиенической уборки холодильника. Многим эта идея по душе. Наверное, бабушке было виднее, а современные очистители – это лишь дешевые имитации того, что делали старые добрые домашние средства. Мы (здесь и далее имеется в виду моя рабочая группа, с которой мы проводим собственные исследования) эту гипотезу однажды тестировали своими силами: хотели выяснить, действительно ли домашние средства типа уксуса или лимона столь же эффективны против бактерий и грибков, как коммерческие продукты на основе алкоголя или аммониев. Мы также протестировали обычный универсальный очиститель, и вот что получилось:



Как видите, спиртовой санитарный спрей и очиститель на основе аммиака (ЧАС) успешно справляются с задачей, но, будучи разбавленными, они показывают более слабый эффект (что на самом деле не должно вас удивлять, потому что мы об этом подробно говорили на примере алкоголей). Обычный универсальный очиститель без антимикробного агента тоже неэффективен, это понятно. А вот уксусная эссенция показывает хороший результат, но только если ее применять в неразбавленном состоянии. То есть немного уксуса в воде для уборки (а такую рекомендацию часто дают соответствующие интернет-сайты) особой пользы не принесет, по крайней мере в плане гигиены. Возможно, ваши гости по запаху почувствуют, что вы к их приходу убрались, но это совсем другая история. Уксусный очиститель и лимонная кислота в высоких концентрациях действуют удовлетворительно, но не более того.

При работе с очистителями соблюдайте следующие правила: огонь держите подальше от спирта, не вдыхайте испарения, надевайте перчатки.

Так что же там насчет бабушкиных советов? Конечно же, ваша любимая бабушка (как всегда) была права, но лишь отчасти: подходить к делу надо правильно. А именно: если у вас в коробе для хлеба или в холодильнике появилась плесень, то, смотря по обстоятельствам, можно, конечно, брызнуть туда уксусом, так сказать, для очистки совести. Но вот в чем неоспоримое преимущество специальных средств, которые вы покупаете для определенных, конкретных целей: на них всегда четко написано, как применять это средство и в какой концентрации, чтоб оно гарантированно сработало. Эта книга, несомненно, дает вам большое преимущество, потому что теперь вы знаете, что делаете, и можете осознанно взять не спиртовой спрей, а биоспиртовой (70-процентный, разумеется, он эффективен) или – если вас не смущает запах – уксусную эссенцию. Но будьте так добры, соблюдайте правила безопасности: а) не курите, когда залезаете с головой в холодильный шкаф в тот момент, когда щедро омываете его спиртом; б) после процедуры по уборке холодильника не садитесь за руль автомобиля (разумеется, то же правило обязательно после приема внутрь монастырского шнапса из мелиссы); в) используя уксусную эссенцию, надевайте перчатки и не вдыхайте испарения, поскольку это сильно раздражает кожу и дыхательные пути. Все эти указания вы, естественно, также найдете в инструкциях к готовым продуктам из супермаркета… но на бабушкиных домашних средствах их нет.

Серебро, медь и Ко

Нынешние цены на эти металлы таковы, что их дальнейшее широкое использование в качестве антимикробных реагентов становится все менее вероятным, однако факт остается фактом: ценные металлы обладают довольно хорошими антимикробными свойствами. Несколько лет назад вокруг серебра был форменный ажиотаж, и даже рубашку, пару носков или холодильник без каких-нибудь примочек из серебра не так просто было найти.

С поверхности серебра (как и многих других металлов) выделяются малые количества заряженных и незаряженных частиц, которые способны нарушать обмен веществ в клетках микробов. Серебро, например в форме таблеток, также используется для очистки воды; таблетки можно взять с собой в путешествие в дальние края и добавлять там в питьевую воду сомнительного происхождения. Примерно через полчаса вода в бутылке будет очищена по крайней мере от микробов; но если в воде присутствуют еще какие-то вредные вещества, то серебро с ними не справится.

Заряженные частички металлов потому обладают антимикробным действием, что они взаимодействуют с ферментами в клетке и тормозят их действие. То же самое частички серебра будут проделывать с ферментами и в наших клетках, впрочем, в глубокие слои кожи они практически не проникают. Не совсем добровольный опыт с воздействием серебра на кожу мог иметь любой школьник или студент, которому когда-то приходилось ковыряться c раствором нитрата серебра. Попадет чуть бесцветного раствора на кожу – и через несколько минут появляются черные пятна, которые уже не отмыть, как ни старайся. Дело в том, что ферменты и другие белки в наших клетках содержат много серы, а серебро с серой образует очень стабильные и не растворимые в воде соединения, которые, как почти все соли серебра, имеют черный цвет. Типичную окраску имеют многие соединения металлов: железосодержащие молекулы, как правило, красные, соединения меди – зеленые и так далее. Эта реакция с серебром приводит ферменты в негодность (что для клетки вред), но, с другой стороны, серебро полностью захватывается непосредственно при первом контакте с серосодержащими протеинами, и в результате оно практически не добирается до более глубоких слоев кожи. Если частички серебра очень маленькие – это знаменитое наносеребро, – картина, возможно, будет несколько иной, но объяснение здесь всех этих деталей может увести нас слишком далеко от темы.

 Некоторые металлы содержат частицы, которые нарушают обмен веществ в клетках микробов. Например, серебро или медь.

Есть помимо серебра и другие металлы с подобным действием, например свинец, ртуть и медь. Применять очень вредные тяжелые металлы, такие как свинец или ртуть, разумеется, не представляется возможным, а вот медь с ее антимикробной поверхностью, напротив, как раз переживает ренессанс. Впрочем, это вообще-то старая история, о которой толком теперь никто не вспоминает. Предположим, вы стоите в общественном туалете, перед вами две двери в кабинки: одна такая с иголочки, с современной пластиковой ручкой, а другая старая, обшарпанная, с захватанной ручкой из латуни. Какую дверь выберете?

Возможно, вы уже раскусили, в чем дело, и выберете, как и я, дверь с латунной ручкой. И правильно, потому что латунь – это медьсодержащий сплав, и поэтому в нем, как правило, нет микроорганизмов. Кстати, на монетах их тоже нет. Мы периодически просим участников нашей микробиологической практики брать пробы с поверхностей – любых, на выбор – и исследовать их на предмет микроорганизмов. Некоторые выбирают объектом исследования монеты и обычно бывают очень разочарованы, что вопреки ожиданиям на монетах вообще никакие микробы не обнаруживаются (с банкнотами, естественно, все иначе). Этот феномен приписывают антибактериальным свойствам металлов в сплавах, из которых чеканят монеты, и вот с недавних пор в больницах и домах престарелых стали даже вновь устанавливать ручки с медным покрытием на двери и на дозаторы дезинфекционных средств.

Так, а что же там было с носками, рубашками и холодильниками? Давайте сначала разберемся с текстилем. Втачанное в ткань серебро призвано главным образом защищать от запахов, образующихся при взаимодействии бактерий с потом. Это, в общем-то, очень хорошо работает, однако проблема состоит в том, что многие ткани меняют окраску вследствие непроизвольной реакции серебра с грязью на тканевой поверхности, и тогда образуются некрасивые разводы. К тому же во время стирки частицы серебра попадают в сточные воды – здесь тоже вероятны нежелательные последствия. Они, эти последствия, еще недостаточно исследованы, но лично мне кажутся сомнительными периодически появляющиеся сообщения, будто серебро помогает бороться с микробами в очистных сооружениях. Намного вероятнее, что серебро уже где-то по пути туда вступает в реакцию и оседает в грунт в виде труднорастворимой соли. И таким образом оно, разумеется, попадает в окружающую среду, чего допускать с тяжелыми металлами вовсе не следует.

Внутри холодильников есть антибактериальный слой, но это не значит, что его можно не мыть.

Однако еще бо́льшая проблема с этими «посеребренными» тканями заключается в том, что бактерии однажды становятся резистентными, то есть обретают способность освобождаться от серебра или сводить на нет ущерб, наносимый серебром бактериальной клетке. Текстиль с серебряным покрытием может также успешно применяться в медицинских целях, например у пациентов с плохо заживающими ранами или хроническими воспалениями, но, по моему мнению, серебро лучше «приберечь» для других целей. Дело в том, что пациент, который по задумке должен был бы получить пользу от такой повязки, взамен получает на коже резистентные бактерии, против которых медицинский текстиль уже ничего не может поделать.

Теперь обратимся к холодильнику. Я никогда так до конца и не понимал, зачем внутри холодильника нужен антибактериальный слой. Конечно, споры плесневых грибков и, при известных условиях, бактерии могут откладываться на внутренних поверхностях, но мыть холодильник в любом случае время от времени необходимо. Больше проблем я вижу в том, что само наличие антибактериального покрытия внушает мысль о безопасности, которой оно не дает. Что, в антибактериальной холодильной камере продукты будут не так быстро портиться? Или меньше спор перекочует с заплесневелого продукта на соседний, нетронутый? Конечно же, нет.

Мы позже еще познакомимся с несколькими важными правилами по гигиене холодильника, и хорошо бы вам принять эти правила во внимание, если у вас такой холодильник с серебряным покрытием. Так же нехороши (если не хуже) серебро и другие антибактериальные субстанции в разделочных досках, ножах и тому подобном. Позже вы увидите, насколько подобные кухонные принадлежности в принципе требовательны с точки зрения гигиены, антибактериальное покрытие ничего не даст. Так что относитесь к рекламе критически, даже если она очень хочет вас в чем-то убедить.

Альдегиды

Так потихоньку мы подходим к завершению нашего небольшого обзора самых распространенных дезинфекционных агентов. И хотя с рассмотрением продуктовой палитры мы уже покончили, насладившись, так сказать, «игрой красок» средств для домашнего употребления, я все же хотел бы коснуться еще одного класса веществ, представляющего интерес по крайней мере в историческом ракурсе.

Возможно, увидев слово «альдегиды», вы вздрогнули – снова химия! – но я уверен, что один из представителей этого класса вам наверняка знаком, это формальдегид. Какая комната страха без этого вещества! В нем можно консервировать и выставлять на всеобщее обозрение части человеческих трупов, чудеса природы и прочий органический материал – так и представляешь себе эти экзотические склянки, красующиеся на полках в леденящем душу подвале князя тьмы. Формальдегид, а точнее его водный раствор – формалин, – имеет одно бесценное преимущество: в нем ткани, препарированные соответствующим образом, сохраняются без каких-либо существенных изменений практически на безграничный период времени. Между тем применения формальдегида стали избегать, и небезосновательно. Он раздражает глаза и слизистые оболочки, а в высоких дозах оказывает сенсибилизирующий эффект – это нечто подобное начальной стадии аллергии. Однако за пределами Европы сам формальдегид или же вещества, постепенно его высвобождающие, по-прежнему сплошь и рядом используют для консервации такой продукции, как очистительные средства и косметика. Для дезинфекции и стерилизации формальдегид применялся в основном как газ, но сейчас его в этих целях практически уже не применяют, хотя это единственный газ, способный умерщвлять споры бактерий.

Есть еще ряд других альдегидов (например, глутаровый альдегид, который не столь опасен, как формальдегид), применяемых в области медицины для дезинфекции. Я еще потому не хотел отказываться от упоминания этого класса веществ, что мне очень хочется поделиться с вами замечательным каламбуром от моего бывшего преподавателя химии. Я надеюсь, что смог наделить вас некоторыми новыми знаниями… или все это были старые шляпы (в немецком языке созвучны слову «альдегиды»)



И многое другое

Наверное, в каждом регионе Германии есть слова, которые люди из другой местности поймут с трудом, даже если немецкий язык для них тоже родной. Когда коллега из Швабии, мой сосед, указывает на что-то из окна и сообщает, что по улице пробегает «дах-хаз» (Dachhas), я его не понимаю, пока он не пояснит, что имеет в виду кошку. На родине моей бабушки, в Рурском бассейне, словом «питтеркен» (Pitterken) называли маленький овощной ножик с изогнутым клинком, а когда наши друзья из Баварии отзываются о чем-то «шиах» (schiach), то подразумевают нечто безобразное, кривое-косое, в общем, нечто изуродованное (житель Рейнской области должен понять, о чем речь).

Там, откуда я родом, есть прекрасное слово «крос» (произносится как «кроос»); его используют также как прилагательное – «кроосовый». Это слово можно перевести как «беспорядок», хотя это больше, чем беспорядок. Мои дети могут в два счета превратить убранную комнату в «крос», а можно «прокросить» все воскресенье, то есть ничего путного за весь день не сделать. Пожалуй, самое меткое словцо с этим корнем – Krosschublade («крос-ящик») – нижний из выдвижных ящиков, скажем, в комоде, куда попадают неприкаянные, не нашедшие своего места вещи. Мне тоже сейчас нужен такой ящик, чтобы сложить в него не упоминавшиеся еще антимикробные вещества, места которым пока не нашлось. Честно говоря, в детали вдаваться не хочу, и вам могло показаться, что этот раздел скорее экскурс в специфику немецкого языка, чем глава из книги про микроорганизмы, что, в общем, недалеко от истины. Ну, а может, вы даже рады, что я даю вам передышку, а не заполняю долгие страницы терминами типа изотиазолинон, ортофенилфенол и бактериоцин, названия которых вы все равно тут же забудете. Давайте сойдемся на том, что существует еще бесчисленное множество прочих осложняющих микроорганизмам жизнь действующих веществ, и успокоимся тем, что знания о субстанциях, с которыми мы разобрались, помогут вам в повседневной жизни.

Со списком в магазин: что покупать против микробов

Под конец этой главы давайте лучше обратимся к конкретным, рутинным вопросам. Например, какие антимикробные средства стоит покупать в супермаркете. Подчеркиваю, что здесь я не буду распространяться о том, какие чистящие средства вам нужны и нужен ли вам специальный стиральный порошок для спортивной одежды, еще отдельные порошки для черного белья, для пестрого, для белого, и – да! – не забыть про порошки для детских вещей, для шелка и деликатных тканей… Нет, речь пойдет о том, какие растворы нужно иметь про запас на случай проблем с микроорганизмами или для профилактики таковых.

Прежде всего вам нужно знать следующее: в Европейском союзе продажа биоцидов в настоящее время довольно строго регламентируется, но от этого, к сожалению, проще не становится. Взять хотя бы сам термин: биоциды законодательство трактует как «растворы и изделия с действующими веществами для отпугивания, обезвреживания, подавления или уничтожения вредных организмов». Все ясно? Ясно, да не ясно, как это обычно бывает с юридическими текстами; средних способностей биологам и (другим) нормальным людям с ходу не понять.

Вредные организмы не обязательно убивать, их можно обезвредить каким-нибудь способом или отпугнуть.

Сначала о цели применения: против вредных организмов надо что-то делать. Этими вредными организмами могут быть уже знакомые нам микроорганизмы, но также и любое другое живое существо, как, например, растения и животные. Вредные организмы не обязательно убивать, их можно обезвредить каким-то иным способом или отпугнуть.

Последний вариант предлагает нам хороший пример для рассмотрения – репелленты от насекомых, то есть средства, которыми человек опрыскивается, чтобы комар убрался восвояси, прежде чем он человека укусит. Следовательно, биоциды – это средство, содержащее какое-либо действующее вещество, или изделие, в котором это вещество содержится, в нашем примере это банка-спрей с репеллентом, а может быть, москитная сетка, которую перед продажей обработали таким спреем.

Пока все вроде нормально. Но по сути не все продукты, отвечающие этим критериям, являются по закону биоцидами. С одной стороны, исключаются средства чисто физического воздействия на живые организмы (самый простой пример – мухобойка или классическая мышеловка), а с другой стороны (и это, к сожалению, сложнее) – все, что уже иным образом или в другом месте зарегламентировано законодательством. Сюда относятся, в частности, косметика, лекарственные препараты, медицинская продукция, а также химические средства защиты растений. И, таким образом, мы возвращаемся к нашему вопросу: антимикробные чистящие и дезинфицирующие средства для домашнего использования скорее всего подпадают под понятие биоциды, поскольку они не подходят ни под одно из исключений.

И что же это значит? На первый взгляд ничего особенного для вас как конечного потребителя, помимо того что эти продукты должны сопровождаться предупреждением. Вы его, возможно, видели в рекламных проспектах: «биоцидные продукты применять с осторожностью». Но если поразмыслить, то есть все же кое-что, касающееся нас, потребителей. Дело в том, что производители используют лишь определенные действующие вещества – те, что уже были зарегистрированы. Регистрировать новое действующее вещество ужасно дорого, и никто этого сегодня не делает.

К тому же помимо применяемого действующего вещества регистрировать нужно еще и конечный продукт, и это тоже стоит производителям средств и усилий. И вот теперь мы добрались до сути: есть продукты, способные убивать микроорганизмы, но при этом не продающиеся под маркой биоцидов. Почему? Потому что производитель не предназначил эти средства для использования в качестве биоцидов. Предусматривался какой-то иной эффект. Очень абстрактно, не так ли? Тогда давайте посмотрим на примере. Мы уже говорили, что кислоты могут убивать микробов, понижая показатель рН. Но кислотами можно также удалять известковый налет, и поэтому средство для удаления налета в унитазе (то, которым можно добраться под унитазную кромку) очень кислое. Предположим, вы хотите выпустить такой очиститель на рынок. Текст на упаковке будет на ваше усмотрение. При этом в самих продуктах будут содержаться одни и те же вещества в одинаковой комбинации и концентрации, то есть это будет один и тот же продукт.


Скачать книгу

Dirk Bockmühl

Keim daheim:

Alles über Bakterien, Pilze und Viren

Original h2: Keim daheim Copyright © 2018 Droemer Verlag. An imprint of Verlagsgruppe Droemer

Knaur GmbH & Co. KG, München.

All rights reserved. Illustrations by сlaire Lenkova

Copyright © 2018 Droemer Verlag. An imprint of Verlagsgruppe Droemer

Knaur GmbH & Co.KG, Munich

© Юринова Т.Б., перевод на русский язык, 2019

© Оформление. ООО «Издательство «Эксмо», 2020

Предисловие

У вас за последнее время был какой-нибудь странный телефонный разговор, можете припомнить? Я вот помню – это было в перерыве между двумя лекциями, я сидел в своем кабинете и только собирался приняться за бутерброд с сыром, как раздался телефонный звонок. Звонил коллега из одной фирмы, мы с ним уже неоднократно делали совместные проекты.

– Прости, что отвлекаю тебя, – начал он, – но дело в том, что меня собирается убить моя посудомоечная машина!

– Ну, да, ясное дело, – с усмешкой парировал я, одновременно жуя бутерброд. – Но тут наверняка уже подключилась космическая полиция, уж очень это дело смахивает на дешевую научную фантастику.

– А не веришь, так сходи по ссылке, которую я тебе только что выслал.

Я так и поступил, и действительно, на экране появился заголовок из американского интернет-журнала Science Daily: «Моя посудомоечная машина пытается меня убить». Там рассказывалось о работе группы ученых из Словении, обнаруживших в посудомоечных машинах болезнетворные виды грибков, в том числе один вид с таким мрачным названием, как «черные дрожжи», который при определенных обстоятельствах может вызывать тяжелые инфекции.

Мы с коллегой еще какое-то время продолжали перезваниваться и обсуждать это исследование и оценку, данную ему американским научным журналом. Не хочу утомлять вас всеми деталями, но позвольте сформулировать суть дела в одном вопросе: если посудомойка таит в себе такую смертельную опасность, то почему никто из вашего окружения еще не пал жертвой посудомоечной машины? Что касается меня, то я лучше умру, чем снова буду мыть посуду руками. Ясно также следующее: если задумать кого-то умертвить посудомоечной машиной, то придется очень сильно напрячься, причем микробы, укрывшиеся в кухонном агрегате, скорее всего никакой роли при этом играть не будут. Поэтому, прежде чем обходить стороной эту якобы смертоносную машину, запомните, что посудомойка дает превосходную возможность тщательно вымыть посуду и очистить ее от микроорганизмов, если вы, например, возились с сырой курицей, что, между прочим, действительно дело рисковое, поскольку в мертвой курице кишат орды бактерий, которые только и ждут шанса устроить вам изрядный понос с рвотой. Поэтому куриное мясо тщательно доводите до готовности, а разделочные доски, которыми пользовались в процессе, сразу отправляйте в эту самую посудомоечную машину (надеюсь, она у вас есть). Если бы весь мир перестал отправлять трудно отмываемую посуду в посудомойки, поскольку в них якобы затаился какой-то там грибок, который спит и видит, как бы ему наброситься на род человеческий, – вот это бы и стало на самом деле проблемой!

В ходе нашей беседы на страницах этой книги мы подробнее поговорим о том, что правда, а что – нет в подобных публикациях; о том, когда микроорганизмы действительно становятся опасными, а когда они нам необходимы. Однако категорично разделять представителей окружающего нас невидимого мира на хороших и плохих было бы слишком примитивно, и, если вспомнить science fiction, это скорее из области фантастики, чем науки. Хотя среди микробов встречаются не менее яркие персонажи, чем Люк Скайуокер и Дарт Вейдер. Именно поэтому очень полезно больше знать о наших микробиологических попутчиках, тогда можно будет правильно действовать в тех ситуациях, в которых мы с ними сталкиваемся. А если вам все же хочется поиграть в «Звездные войны», то бегайте себе на здоровье, размахивая спреем с очистительным средством вместо пистолета, но имейте в виду, что иногда следует проявлять доброту к крошечным микроорганизмам – они многое для нас делают.

Что именно – с этим я вас поближе познакомлю в своей книге. Я приглашаю вас в невидимый мир микроорганизмов в нас и вокруг нас. В мир, который уже столько лет приводит меня в восторг. До такой степени, что (почти) ничто мне так не мило, как исследовать данную тему и заражать людей своей увлеченностью. Не бойтесь, эта зараза абсолютно безопасна. Пожалуй, для начала я расскажу вам кое-что об этих удивительно многогранных существах и только потом приглашу вас к себе домой на микробиологическую экскурсию, после чего мы выйдем за порог дома на небольшую прогулку. Вас ожидает много открытий и масса практических советов. Для верности я еще раз собрал их в самом конце книги в руководство по правилам хорошего тона в обращении с микробами, чтобы впоследствии вы могли вести себя в их обществе надлежащим образом.

Ну что ж, кажется, можно начинать. Вы готовы?

Часть I

Невидимый мир вокруг нас

1. Микробы и люди – идеальная команда?

Наши невидимые сожители

Мы не одиноки! На эту фразу я натолкнулся недавно в статье бывшего немецкого астронавта Ульриха Вальтера, где он не только высказал предположение о существовании другой жизни во Вселенной, но и математически обосновал его. Меня как микробиолога эта информация с общенаучной точки зрения, конечно, заинтересовала, но в математике, скажем честно, я не особо силен, поэтому математические выкладки отследить не смог. Формулы, приведенные в доказательство существования наших соседей по космосу, оказались для меня длинноваты. Но одно не вызывает сомнений даже у математически не подкованного микробиолога: мы действительно не одиноки, причем везде и в любой момент своей жизни. Чтобы понять это, не обязательно даже всходить на космический корабль и уноситься на поиски в далекие галактики. Можно спокойно оставаться на Земле и выжидать. Ибо наши братья непременно сами нас найдут. Я имею в виду те самые микроорганизмы, которые хоть и невидимы для нас, но исключительно нам важны и обитают повсюду внутри и вокруг нас. Позвольте мне сразу же, прежде чем вы на этом месте состроите брезгливую мину, встать на защиту этих существ. Да, при слове «микроорганизмы» большинство неизбежно подумают о возбудителях болезней, всякой заразе и процессах разложения – да пусть даже всего лишь о недавно вылеченном желудочном гриппе[1], – однако свою главную роль микробы играют в делах, идущих человеку на пользу и защиту. Я даже могу это доказать. Вы когда-нибудь принимали антибиотики? Тогда вполне вероятно вы могли испытать сомнительное удовольствие от одного побочного явления, которого практически не избежать: диареи. Почему? А очень просто: антибиотики призваны уничтожать бактерии, из-за которых вы попали к врачу и которым обязаны болью в горле, воспалением мочевого пузыря или что там еще с вами случилось. И когда вы глотаете таблетку с антибиотиком, действующее вещество распространяется по вашему организму и, можно надеяться, находит возбудителей вашего заболевания. Но вот только в вас живут и другие бактерии, без которых вам пришлось бы туго, поскольку они помогают при пищеварении, расщепляя определенные частицы пищи и приводя их в то состояние, которое идет вам на пользу. Согласен, кишечник – это не лучшее место жительства, но наши маленькие друзья чувствуют себя там хорошо. Пока не повстречаются с таким вот медикаментом, вероломно пускающим их в расход. Ведь антибиотик не различает, что перед ним – «хорошая» кишечная бактерия или «злой» возбудитель ангины. Вот и получается, что кишечник остается без своих хороших бактерий, а ваш непереваренный обед уходит окольными путями.

Бактерии живут и служат нам защитой не только в кишечнике, но и на коже, где они, в частности, способствуют созданию известной всем кислотной мантии. Мы все выделяем кожный жир, придающий нашей коже эластичность и мягкость, а микроорганизмы перерабатывают его компоненты в слабые кислоты. Эти кислоты, в свою очередь, способствуют тому, что прочие бактерии – те, которые вызывают кожные болезни, – перестают размножаться и, следовательно, больше не могут причинить нам вред.

Этот принцип работает, впрочем, не только на коже. Возьмем, например, кислую капусту. Она не портится, потому что в свежую белокочанную капусту добавляют молочнокислые бактерии, а гнилостных бактерий кислоты не терпят. В прежние времена наструганную капусту хорошенько утаптывали босыми ногами в бочке – попробуйте сами догадаться, откуда поступали молочнокислые бактерии…

 Бактерии, что находятся на коже, помогают создавать кислотную мантию, мешая размножаться вредоносным бактериям.

Как видите, мы заселены, надо надеяться, преимущественно полезными микроорганизмами, причем весьма щедро. Разумеется, никто точно их количество не подсчитывал, но можно исходить из того, что бактериальных клеток в нас примерно столько же, сколько соматических, то есть примерно от 30 до 40 триллионов. Если у вас уже упомянутые выше проблемы с математикой, поясню: триллион – это единица с двенадцатью нулями. Кстати, из клеток нашего организма 25 триллионов составляют красные кровяные тельца; жировых клеток значительно меньше. Знание этого факта меня особенно радует после Рождества, когда начинает казаться, будто жировые клетки (по крайней мере мои) размножаются сверх всяких пропорций.

Но, как известно, цифры – это всего лишь цифры; намного интереснее, что именно мы носим в себе и на себе. На данный момент ответ на этот вопрос уже найден, ну, или по крайней мере сделана попытка его найти. Пару лет назад один американский научный консорциум проанализировал так называемый микробиом человека, то есть ученые исследовали, какие микробы живут в человеческом организме и на теле. Квинтэссенцию кратко сформулирую так: каждого человека сопровождает весьма впечатляющий зоопарк бактерий и грибков, причем по составу этого микробиологического сообщества можно столь же точно определить индивидуума, как по отпечатку пальцев (если даже не точнее). И если вам сейчас на память пришел последний из просмотренных вами теледетективов, то мыслите вы, в общем, верно. Побывав в каком-то помещении, человек оставляет в нем после себя такую уникальную, единственную в своем роде смесь микробиологических клеток, что анализ ее состава позволяет точно установить, что именно тот человек находился в комнате, а не другой. Преступникам это обстоятельство дает повод для беспокойства, ведь криминальные эксперты тоже в курсе, и мы вполне можем предположить, что Шерлок Холмс конца двадцать первого века не будет возиться с отпечатками пальцев для поимки преступников, а возьмет на вооружение молекулярную биологию.

Но, несмотря на существенные успехи, достигнутые в области анализа человеческого микробиома, сегодня мы все еще далеки от понимания, чем хороши «наши» микроогранизмы в частности и каждый в отдельности. Защитная функция кожной флоры, о которой говорилось выше, или помощь при пищеварении, которую оказывают кишечные бактерии, – это все неоспоримые факты, но задачи наших микробов наверняка намного, намного масштабнее. Профессор журналистики Майкл Поллан из Беркли писал как-то, что некоторые из его лучших друзей – бактерии; так далеко я не стал бы заходить, поскольку старомоден и люблю общаться со своими друзьями лично, а с бактериями это, как доподлинно известно, несколько… гм… сложновато. Но высказывание Поллана задает верное направление мысли.

Давайте же, следуя в этом направлении, познакомимся с одной очень интересной группой дружественных нам микробов.

Пробиотики – бактерии, приносящие пользу

Для начала позвольте отметить следующее: не стоит полагать, будто мы сможем управлять нашей микрофлорой. Скорее следует смириться с мыслью, что это она нами управляет, или, по выражению того же Поллана, что мы должны приводить свои интересы в соответствие с интересами наших микробиологических обитателей. Мне в связи с этим импонирует образ садовника, который не может приказать своим посадкам расти, а может лишь поливать и удобрять их, то есть заботиться о том, чтобы его подопечным было хорошо. И когда-нибудь, при условии тщательного ухода, удобрения и прополки, садовник сможет пожать плоды своего труда, а если говорить буквально – сможет наслаждаться цветами или вкушать собственноручно выращенные фрукты и овощи.

 В организме обитает примерно триллион кишечных бактерий!

Ну, а «наши» бактерии, помогут ли они нашему выздоровлению, поспособствуют ли поддержанию здоровья? Это интересный вопрос, ответ на который уже давно нашла пищеперерабатывающая промышленность: пробиотики! Вам наверняка знакомы молочные продукты со всевозможными полезными бактериальными культурами, носящими такие звучные имена, как Lactobacillus acidophilus или Lactobacillus casei; и, вероятно, вы также знаете, что эти молочнокислые бактерии присутствуют в продуктах главным образом для того, чтобы из жидкого молока получился более или менее густой йогурт. Но что же в нем, в пробиотическом йогурте, такого особенного? Я упоминал уже, что кишечная флора для нас очень важна. Мы только сейчас начинаем понимать, что на самом деле делают для нас живущие в нашем кишечнике маленькие помощники. Ну да, сейчас уже ни для кого не секрет, что бактерии помогают нам переваривать пищу, но ведь это еще далеко не все. Практически бесспорно доказано, что кишечные бактерии помогают тренировать иммунную систему и способствуют ее исправной работе. Возможно, вы уже слышали о том, что у детей, вскормленных грудью, меньше проблем с аллергией. Этот феномен объясняется тем, что материнское молоко поддерживает определенные кишечные бактерии, и те в ответ проявляют свои целебные свойства. Этих благодетелей называют бифидобактериями, и они, как и их вышеупомянутые родственники, содержатся в некоторых пробиотических йогуртах, но также их можно купить в концентрированной форме в аптеке – в качестве биоактивной добавки.

В связи с этим возникает один интересный вопрос: а действуют ли бактерии, если принимать их с пищей и если материнское молоко давно уже выведено из рациона по возрасту? Ответить на этот вопрос на самом деле довольно сложно: исследований в настоящее время проводится невероятное количество, но благословенный мир кишечника не так уж просто устроен… Во-первых, бактерии, которые вы отправляете в рот с йогуртом, должны для начала в кишечник попасть, поскольку для бактериальной клетки путь туда больше напоминает путь хоббита через Мордор, чем увеселительную прогулку. Если вы не в курсе, напомню историю из книги Дж. Р. Р. Толкиена «Властелин колец»: там маленькие существа должны преодолевать множество опасностей, чтобы добраться до места, от которого, собственно, хорошо бы держаться подальше, потому что там темно и воняет. И даже если в нашем пищеварительном тракте орки и тролли не водятся, однако есть там одно место, наводящее ужас на наши добрые кисломолочные бактерии, это желудок, в котором столько агрессивной кислоты, что большинство микробов там погибает. Но тут нашим маленьким героям помогает одно их качество, которое вы при упоминании выше слова Lactobacilli, возможно, уже смогли распознать – по крайней мере если вам, как и мне, пришлось в школе пару лет мучиться с латынью. Все же есть порой какая-то польза от знания мертвого языка. Итак, дополнение acidophilus означает «любящий кислоту»; понятно, что у бактериальных клеток с такими предпочтениями довольно хорошие шансы преодолеть путь через желудок.

И все же, действительно ли количества бактерий, попадающих в кишечник, достаточно для того, чтобы они сотворили там доброе дело? На первый взгляд да, если исходить из того, что с капелькой йогурта мы потребляем приблизительно, ну, скажем, миллиард бактерий. Однако у вас в организме кишечных бактерий – опять-таки весьма приблизительно – триллион! Получается, что каждая пробиотическая бактерия, которую вы съели с йогуртом, должна выстоять против тысячи уже обосновавшихся там бактериальных клеток! Могу лишь предполагать, насколько это трудно. Мне, например, обычно ох как не просто отстоять свои предпочтения в собственной семье, когда мы обсуждаем, что будем есть на ужин; а ведь у нас в семье соотношение один к трем. Понятно, что, когда фирмы, которые сбывают такие молочные продукты, заказывают всевозможные исследования, они ставят задачу доказать положительное воздействие полезных штаммов бактерий, и в некоторых случаях есть вполне обоснованные свидетельства тому, что вся концепция работает. Но в последние несколько лет в Европейском союзе стало довольно сложно продвигать целебные свойства продуктов питания; это получается лишь при наличии основательно подкрепленных научных доказательств. Поэтому продвигающей пробиотики индустрии пока что еще сложно разъяснять потребителям, что эти продукты вообще нам несут. Особенно если учесть, что, конечно же, не каждый человек с ходу придет в восторг от перспективы вкушать бактерии и представлять себе, какую работу они там проделывают. Есть вещи, которые человек просто не хочет знать!

Для небрезгливых читателей расскажу историю открытия пробиотиков; между прочим, это не сказка, хоть и может так показаться. Итак, жил когда-то врач по имени Альфред Ниссле, и довелось ему лечить солдат времен Первой мировой войны. Лечил доктор Ниссле не только боевые ранения, но и тяжелые, опасные для жизни диарейные заболевания – в те годы разгулялась жестокая эпидемия[2]. Удивительно, но ему встречались бойцы, которых эта проблема чудесным образом обходила. Ниссле решил докопаться до причины. Он исследовал содержимое желудка оставшегося здоровым солдата и изолировал некий непатогенный штамм известного вида бактерий Escherichia coli, который и оказался этой причиной.

 Каждая пробиотическая бактерия вступает в бой с 1000 бактериальных клеток.

И действительно – когда Ниссле в ходе лечения начал вводить измученным диареей солдатам концентрированные дозы этих бактерий, пациенты выздоравливали. Бактерия E.coli Stamm Nissle 1917 является основой препарата, который мы на сегодняшний день можем без рецепта купить в аптеке наряду со многими другими подобными средствами для хорошего самочувствия нашего кишечника.

Не беспокойтесь, это не такие же (и тем более не те же самые) бактерии, на которых замешан ваш йогурт; а вот история пробиотических йогуртовых бактерий, к счастью, не такая мерзость. Уже в начале XX века русский иммунолог Илья Мечников описал взаимосвязь между высокой продолжительностью жизни некоторых этнических групп населения Болгарии и потреблением типичных для этой местности молочных продуктов; тем самым он еще до Ниссле обосновал принцип действия пробиотиков. Впрочем, долгие годы многие медики очень критично относились как к молочным продуктам из супермаркетов, так и к биоактивным добавкам из аптек, поскольку их действие еще не было бесспорно подтверждено. Однако со временем возможности этого метода были полностью признаны, во всяком случае, мы можем считать, что эти продукты не вредят, поэтому если от них кому-то хорошо… то и хорошо.

2. Микроб или не микроб – вот в чем вопрос

Я сейчас все время говорил о микроорганизмах, но что же, собственно, понимается под микроорганизмами? Один мой бывший коллега, сотрудник отдела маркетинга, как-то раз сказал мне: «Я звоню тебе по поводу всего, что размером меньше собаки». Я работал тогда микробиологом на одном предприятии, выпускавшем потребительские товары, и был своего рода белой вороной среди сплошных экономистов и химиков. Одна из моих задач состояла в том, чтобы отвечать на вопросы, связанные с микробиологией, причем отвечать быстро и по возможности на все вопросы. Преимущественно это были вопросы: «Какие микробы вызывают прыщи и перхоть?» или – на волне эпидемии гриппа в Германии – «А не эффективны ли наши продукты против этого вируса?» В связи с этим однажды возник и такой вопрос: «А, собственно, какими организмами занимается микробиолог?» Ответить на него оказалось не так просто. Коллега из отдела маркетинга упростил задачу, и хотя его определение полностью принимать всерьез не стоит, но нельзя сказать, что он абсолютно не прав.

Что же это такое – микроорганизмы?

Далекий от науки человек может, наверное, думать, что есть вот животные и растения, а еще есть ряд экзотических тварей типа амеб и медуз (кажется, это тоже животные), грибов (вообще-то это растения… или нет?), а также бактерий и вирусов (но они очень маленькие). Примерно так же представлял себе картину мира и я, когда начинал учиться на биолога, но вскоре вынужден был переосмыслить свои взгляды на живую природу. Прежде чем выяснить местоположение лучших студенческих кабаков, я успел на занятиях уразуметь, что с биологической точки зрения самое разумное – подразделять живые существа на три группы, а именно: бактерии, археи и эукариоты. При этом бактерии и археи, как правило, объединяют в одну группу под названием «прокариоты». Представляю выражение ваших лиц, когда вы читаете эти строки, ибо точно так же выглядел в то время и я; но ничего, сейчас мы вместе посмотрим на эту картину.

На картинке вы видите так называемое филогенетическое дерево жизни, где название «филогенетическое» происходит от греческих слов phyle (род) и genesis (возникновение). Это нечто вроде родословного древа, только представлены тут не мои родственники и предки, а родственные связи между всеми живыми существами на нашей Земле. Принцип при этом тот же: точки пересечения означают общих предков и чем короче отрезок между двумя именами, тем теснее родство между ними.

Возможно, все это еще немного абстрактно, но сейчас покажу на примере моей семьи, и станет ясно.

Ближайший общий предок между мной и моей сестрой – это моя мать. Ближайший общий предок моей тети и меня – моя бабушка. Поскольку отрезок между мной и сестрой короче отрезка между мной и тетей, то мы с сестрой более близкие родственники.

В такую игру можно сыграть с любыми живыми существами, нужно только пропорционально подгонять отрезки, а то общая картина получится не очень наглядной. Показывать все поколения на ней не обязательно. Если вы посмотрите на вышеприведенное филогенетическое древо, то увидите, что у животных, грибов и растений когда-то в прошлом был один общий предок. А еще, намного-намного раньше, общий предок был даже у нас c бактериями – у нас как у животных, которыми мы, собственно, и являемся. Ну, правда, если между вами с тетей временно́е расстояние лет, скажем, шестьдесят, то в этом случае будет чуть подольше. Общий предок растений, животных и грибов, например, обитал миллиард лет тому назад – это если говорить навскидку, прошу не ловить меня на слове, если я ошибся на пару сотен тысячелетий в одну или в другую сторону.

Бактерии и грибы: самые известные микробы

Почему я, собственно, все это вам рассказываю? А вот почему: на родословном древе можно увидеть очень разветвленную группу живых существ самых разных видов под общим названием бактерии. Это уже само по себе примечательно, люди ведь обычно не различают бактерии и сваливают их в одну кучу: и те, которые населяют кишечник, и те, которые живут на коже, и те, которые превращают молоко в йогурт. Хотя мы, люди, намного более близкие родственники с каким-нибудь шампиньоном, чем эти бактерии между собой. Однако ради одного такого претенциозного сравнения у меня бы не было необходимости заходить настолько издалека, я хочу прояснить кое-что другое: каждое живое существо состоит из клеток. Бактерии, как известно, состоят из одной-единственной клетки, и если я не очень-то похож даже на свою кузину, то вы, наверное, можете себе представить, что клетки, из которых мы с вами состоим, давно уже имеют мало общего с бактериальной клеткой. С практической точки зрения это очень удобно, поскольку позволяет, например, относительно просто найти антибиотик, который убьет клетку туберкулезной бактерии, а клетки легочных тканей в непосредственной близости от нее не затронет: ведь клеточная структура, которую атакует антибиотик, в такой форме в наших клетках вообще не встречается. Антибиотик, кстати, это такого рода химическое боевое вещество, которое первоначально получали из грибковых клеток, потому что они умели защищаться от бактерий. Достаточно посмотреть на филогенетическое древо, чтобы понять, почему это работает: клетки грибов скорее похожи на клетки животных и потому должны быть столь же невосприимчивы к антибиотикам, как и клетки человеческого организма.

 Бактерии состоят всего из одной клетки, и они не могут выстраивать сложные структуры, в отличие от грибов.

Так что грибки и бактерии друг другу не родственны, и хотя мы часто употребляем выражение «бактериальная флора», все эти организмы с растениями ничего общего не имеют. И клетки бактерий и грибков тоже в корне различаются. Это, в частности, проявляется в том, что вышеупомянутые бактериальные клетки-одиночки сами по себе жизнеспособны, а клетки грибков – не всегда. Если внимательно присмотреться к дрожжам (тем самым, с которыми мы печем хлеб и варим пиво), то такой грибок состоит из одной-единственной клетки. А с плесневым грибком (это тот, что растет на сыре камамбер) дело обстоит иначе: его клетки выстраиваются в длинные нити (гифы), которые, в свою очередь, могут собираться в трехмерные клубки – их называют мицелием.

Из этого довольно хаотического соединения удивительным образом формируются сложные формы, такие как шляпка шампиньона, например. Более того – подобная конструкция может принимать невероятно большие размеры. Чаще всего такой грибковый мицелий распространяется под землей. И как! Самый крупный мицелий был найден в штате Орегон и занимал колоссальную площадь в 9 тысяч квадратных километров – это немногим больше, чем 1200 футбольных полей. На поверхности земли мало что можно увидеть, тут мы, как правило, лицезрим лишь репродуктивные органы грибов, а именно шляпки, которые потом оказываются в жарком на сковородке.

В отличие от грибов, бактериальные клетки не могут выстраивать столь сложные структуры, поскольку единичные клетки после деления остаются более или менее независимыми. Впрочем, некоторые могут создавать цепочки, но формируются они вследствие того, что вновь образованные клетки как бы прилипают к старым; так что некоторые цепи бактериальных клеток на удивление похожи на грибковые гифы, однако отдельные клетки все так же не зависят друг от друга. Таким образом, эукариотические грибы (см. разделение на прокариотов и эукариотов на древе жизни) прошли этап, который бактериям пройти не удалось: они сделали шаг к многоклеточным организмам. В более совершенном варианте такой многоклеточный организм будет состоять из ткани и органов, то есть из в высшей степени специализированных комбинаций клеток; такое мы встречаем, только начиная с растений и животных.

Если я вас привел в замешательство многочисленными терминами и клеточными структурами, то приведенная ниже иллюстрация, надеюсь, внесет ясность.

Бактериальные клетки (в форме шариков или палочек) могут образовывать цепочки

Дрожжи – это одноклеточные грибы, размножающиеся почкованием

Грибковый мицелий – это трехмерная структура из клеточных волокон (гиф)

По рисункам слева вы видите, что бактериальные клетки также могут быть различной формы. При этом большинство бактерий имеют либо шаровидную форму, либо выглядят как палочки. По-научному шаровидная клетка называется Coccus, а продолговатая – Bacillus. По-немецки вы, впрочем, можете их называть также «кокками» и «бациллами», если вам так больше нравится. Зачем я вам все это рассказываю? Затем, что многие виды бактерий как выглядят, так и называются. Давайте рассмотрим пару примеров. Тут, кстати, есть возможность проявить себя не только знатокам латыни, но и тем, кто когда-то зубрил древнегреческий, потому что многие названия происходят из греческого. Staphylococcus, например, это шаровидная бактерия, ясное дело. А поскольку staphylos переводится как «виноградная лоза» или «виноград», то становится ясно, как эти шаровидные клетки соединяются друг с другом – в форме виноградной кисти. Желаете еще пример? Как насчет Lactobacillus? Это должна быть клетка в форме палочки, потому что она зовется Bacillus. Lacto — нам знакомо по слову «лактоза» (или на сегодняшний день скорее по словосочетанию «непереносимость лактозы»); это молочный сахар, так что Lacto — должно иметь какое-то отношение к молоку (от латинского lac – молоко). И что же мы тут имеем? Конечно же, молочнокислую бактерию, мы с ней уже познакомились, когда говорили о пробиотиках. Еще один пример напоследок? Отгадайте-ка, где живет Pediococcus? Понятия не имеете? Латинисты, ваш черед: на латыни pes – это «стопа». Теперь, если вы представите себе форму клетки (шарообразную, разумеется) и соответствующий запах, то вам будет интересно узнать, что Pediococcus используют также в производстве различных сыров. Так понемногу кое-что проясняется!

Пойдем дальше. В науке все организмы принято называть двойными именами, взять, к примеру, Staphylococcus aureus. Здесь второе слово означает вид, а первое – родовое название вышестоящего уровня. Это примерно как в Баварии, где сначала вам назовут фамилию человека, а потом его имя. Так, Хубер Шорш – это представитель семьи Хубер, а конкретно – Шорш. Соответственно, Staphylococcus aureus – это вид, относящийся к стафилококкам, и он имеет золотистую окраску: aureus происходит от латинского слова aurum, что означает золото. Не так уж и сложно, верно?

То, что микробиологи вечно сыплют латинскими словами, лишь отчасти понты; в значительной степени это результат того, что только малая часть микроорганизмов носит немецкие имена! Пивные дрожжи, например, на самом деле называются Saccharomyces cerevisiae (если вам приходилось когда-нибудь покупать пиво в Испании, вы знаете почему), но пиво варят и с другими видами дрожжей, например с Saccharomyces carlsbergensis. Ну, что это может быть за пиво?[3] И вот что прекрасно: если вы увлеклись пивоварением и открыли новый вид дрожжей, то можете сами дать название этому виду. Но свое имя использовать при этом запрещено. Например, если ваша фамилия Майер (Meier), то вы не имеете права назвать новый вид Saccharomyces meieri. Вы можете назвать его, скажем, в честь кого-то, кого вы цените, или по названию города, где вы сделали открытие, и при этом вполне могут получаться такие высоко поэтичные словообразования, как, например, Saccharomyces castroprauxeli[4].

 Человек, открывший новый вид дрожжей, может сам дать ему название, но есть некоторые правила, которых нужно придерживаться.

Ну, а если штука во что бы то ни стало должна носить ваше имя? Вообще такая возможность существует, но есть в ней подводный камень. Дело в том, что в прошлом возбудителей болезней ученые часто открывали, героически проделывая опыты над самими собой. Они инфицировали себя и от полученной болезни умирали, а изумленные потомки в честь бесстрашного исследователя называли возбудителя его именем. Я бы лично предпочел ранее упомянутый подход к присвоению имени, но это, конечно, дело вкуса…

Без хозяина никуда: вирусы и паразиты

Наряду с грибками и бактериями есть еще одна группа микроорганизмов, которой вообще нет в нашем родословном древе. Может показаться странным, но причина вполне понятна: на самом деле вирусы не живые существа, а всего лишь нечто вроде биологических механизмов, которые хоть и могут размножаться с помощью хозяйских клеток, но не имеют практически ничего из того, что мы ожидаем от живых существ. Если я сейчас начну давать определение, что такое жизнь, то это уведет нас слишком далеко, скажу лишь, что очень многого из того, что связано с понятием «жизнь», у вирусов нет: ни клеточного строения, ни самостоятельного размножения, энергию они не преобразовывают и с окружающей средой не коммуницируют.

Нам для начала вполне достаточно отметить следующее: вирусы могут размножаться только с помощью других клеток. Что означает: вирусная частица остается на какой-либо поверхности в одиночестве, в то время как бактериальная клетка может размножаться, и из нее получаются две клетки, из двух – четыре, затем – восемь, 16, 32, 64, 128 и так далее… Это на многое влияет, и в частности на то, будет ли опасен контакт с такой поверхностью. Однако делать вывод, что загрязненная вирусами поверхность не представляет опасности, было бы неверно и, возможно, даже фатально, поскольку иногда достаточно подхватить лишь пару вирусных частиц, которые начнут размножаться в нашем организме (то есть с помощью наших клеток) и нанесут нам существенный ущерб. Также многие вирусы обладают значительной невосприимчивостью к внешним воздействиям и средствам дезинфекции, и потому их не так просто обезвредить. То есть вирусы – это такие микроорганизмы, которые надо держать под контролем, пусть даже они и «неживые».

Ну, что, теперь мы со всеми познакомились? Бактерии, грибки и вирусы – это, пожалуй, самые важные. Осталось еще разобраться с определением про «все, что меньше собаки»? Да, есть среди микроорганизмов и те, которые размером чуть больше вышеперечисленных. Так мы подходим к еще одной группе тварей, которыми занимается микробиология, группе на этот раз очень неоднородной – к паразитам. Их мы находим на разных ответвлениях нашего родословного древа, но все они расположены с той стороны, где эукариоты. Среди организмов, которых мы причисляем к паразитам, есть одноклеточные и многоклеточные организмы, например жгутиковые и амебы (одноклеточные), а также ленточные и круглые черви (многоклеточные). Почему столь разные существа объединены в одну группу? Очень просто. Их объединяет одно общее свойство, причем весьма неприятное: все паразиты живут за счет других организмов. На это вы можете заметить, что подобное можно сказать и про бюрократов от науки… и будете недалеки от правды. Но у паразитов более тесные отношения со своими кормильцами, чем у госслужащих и налогоплательщиков, поскольку паразиты живут непосредственно на и в организме своего хозяина.

 Паразиты – неоднородная группа. Единственная общая черта, которая присуща всем им: они живут за счет организма своего хозяина.

Возьмем банального плоского червя: он селится в кишечнике животных и людей и пожирает там все, что ему попадется. Не слишком аппетитно, но очень эффективно. Это «чревоугодие» функционирует настолько исправно, что пациенты с глистами сильно теряют в весе, если этому делу не положить конец. Было дело, когда один ловкач даже продавал ленточных глистов в качестве средства для похудения, и его покупатели действительно худели, но некоторые, к сожалению, столь резко, что не могли эту процедуру пережить: ленточные глисты могут достигать длины в несколько метров, и тогда обитателям кишечника от ужина остаются одни объедки. Но, как правило, паразит не очень-то заинтересован в убийстве своего хозяина, ведь он таким образом лишится источника своего питания. Однако иногда, особенно если эта мразь произвела на свет многочисленное потомство, может наступить момент, когда хозяйский организм выполнил свой долг и может уходить.

Если у вас сейчас создалось негативное впечатление о паразитах, то именно этого я и добивался. Чтобы хоть как-то реабилитировать этих тварей, должен сказать, что есть среди них и условно безобидные варианты, например те, которые всего лишь пьют нашу кровь, – комары, клещи, блохи. Надо признать, это тоже весьма неприятно, однако не так опасно, кроме тех случаев, когда из-за укусов кровопийц переносятся болезнетворные бактерии и вирусы. Один из самых трагичных примеров тому – чума. Ее вызывают бактерии, но столь масштабно она могла распространяться потому, что возбудители чумы передавались через блох и крыс: блоха кусает заболевшего чумой, затем прыгает на крысу и инфицирует бактериями ее кровь. Крыса (а она по закону подлости сама не заболевает) перебирается на каком-нибудь, скажем, корабле или на повозке в другое место, где ее опять-таки поджидают многочисленные блохи, которые выуживают из крысы возбудителей чумы и передают их следующей жертве человеческого рода. Таким образом, эта эпидемия в прошлые века неоднократно распространялась по торговым путям на полмира и за пару лет могла выкосить целые регионы. В наше время чума уже не столь страшна, потому что, к счастью, многие люди живут в условиях, не допускающих столь близкого контакта с крысами и блохами, как это было в средневековой Европе. К тому же мы теперь знаем, что истинными виновниками чумы являются бактерии, а от них у нас есть защита – антибиотики эффективны против большинства бактериальных инфекций. И от чумы в том числе.

Старый, древний, архаичный

Если вы внимательный читатель, то, возможно, вы заметили, что в начале главы я упомянул одну группу микроорганизмов, про которую еще ничего не рассказал. Я имею в виду археев. Посмотрите еще раз на родословное древо и отметьте, что они занимают довольно большую часть кроны дерева и располагаются на той ее стороне, где указаны прокариоты. Эти организмы – раньше их также называли архаичными бактериями – известны, вероятно, очень немногим, хотя их влияние на нас огромно. Своим именем археи обязаны тому, что они считаются древнейшим – то есть архаичным – видом и существовали на нашей земле еще тогда, когда она не была такой обжитой, как сегодня. И среди них мы находим непревзойденных мастеров в деле заселения жизненных пространств, в которых больше никто не желает обитать: например, в токсичных кипящих вулканах на морском дне, соляных озерах, ледяных пустынях или обжигающих горячих источниках. То есть в тех местах, про которые можно поручиться, что там не может существовать ничто живое, а все же там есть жизнь, и это археи. Но и это еще не все: животные, способные использовать целлюлозу в качестве питания (к примеру, корова, которую кормят сеном, или термиты, подтачивающие деревянное строение), могут переваривать целлюлозу только потому, что у них в пищеварительном тракте в качестве «домашних животных» содержатся археи. Только они способны биохимически расщеплять целлюлозу и приводить ее в то состояние, с которым корова может справиться. Это сложный процесс, поэтому у коровы переваривание при пережевывании также происходит трудоемко, и в результате образуется побочный продукт, доставляющий нам сегодня столько проблем. Речь идет о метане. В какой-то момент он выходит из коровы, сзади или спереди, и попадает в атмосферу, где, увы, провоцирует парниковый эффект. По данным федерального ведомства по охране окружающей среды, более половины выбросов метана в Германии приходится на сельское хозяйство и в значительной степени именно из-за этих процессов. Что еще раз свидетельствует о том, что все имеет оборотную сторону, и корова тоже, простите за каламбур.

Ну, вот, теперь мы действительно поговорили обо всех существах, которыми занимаются микробиологи, и я надеюсь, что смог вас немного «подзаразить» своей увлеченностью микробиологией и наполнить жизнью эти невидимые организмы хотя бы перед вашим умственным взором. Наверное, мне стоит еще кое-что сказать по поводу терминов, которые я употребляю. Мы уже уяснили, что между вирусами, грибами и бактериями есть разница. Когда я говорю о «микроорганизмах» в общем смысле, я в этой книге могу использовать синонимы, главным образом слово «микробы». Я делаю это преимущественно из языковых соображений, хотя самые дотошные читатели могут уличить меня в неточности, поскольку под микробами традиционно имеются в виду прежде всего возбудители болезней. И все же в этой книге я буду эти два понятия – микроорганизмы и микробы – употреблять в одинаковом смысле, немного разнообразия в конечном счете ведь не повредит. Но что-то я тут разговорился, пора уже переходить к теме нашего сосуществования с бактериями, вирусами и прочей братией, и именно к этому мы сейчас приступим.

3. Что нужно микробу для жизни

Некоторые любят погорячее

При каких условиях вы чувствуете себя наилучшим образом? Как насчет такой ситуации: лето, отпуск, на улице 28 градусов, вы сидите у бассейна в гостинице, потягиваете кофе глясе и в кругу друзей перемываете косточки окружающим или беседуете с членами вашей семьи. Нормально, да? Читатели-мужчины могут, естественно, заменить кофе глясе и бассейн на пиво и гриль, но в принципе понятно. Для хорошего самочувствия нужна комфортная температура воздуха, что-нибудь для приятных физических ощущений и хорошая компания. Если я вам теперь скажу, что у бактерий абсолютно такое же представление о приятном времяпрепровождении, вы, возможно, посчитаете, что я спятил: бактерии, без всяких сомнений, могут обитать у гостиничного бассейна, но чтобы они при этом попивали кофе глясе? Вряд ли. Но давайте представим себе эту картинку в более абстрактном варианте и будем исходить из того, что дело в температуре, питании и контакте с окружением, и вам станет понятно, что наши предпочтения схожи.

Рассмотрим детали этой картинки более подробно: для нас правильная температура окружающей среды может способствовать хорошему самочувствию, а для микроорганизмов это вопрос выживания. Возможно, вы знаете, что биологические реакции протекают тем быстрее, чем выше температура. А если и не знаете, то этот принцип все же довольно очевиден (представьте хотя бы, что случится с вашим глясе на солнцепеке, если вы будете долго плескаться в бассейне). Тепловое воздействие ускоряет процессы, вот почему мы запираем бактерии в термостаты, когда хотим, чтобы они размножались, что, попросту говоря, означает деление клеток. Это функционирует, как правило, без проблем, но в какой-то момент высокие температуры скорее вредят, чем приносят пользу, и это нам тоже знакомо хотя бы по тому, что, прокипятив воду, мы убиваем в ней возбудителей болезней.

Если 100 °C – это очевидный перебор, то остается вопрос, какая же температура благоприятна для микробов? Универсального ответа нет, потому что точно так же, как среди нас наряду с почитателями солнца есть те, кто предпочитает проводить отпуск на севере Швеции, так и у грибов с бактериями могут быть разные предпочтения. В общем и целом для большинства организмов 0 °C является нижней границей. С другой стороны, температуры выше 40 °C для подавляющей части микроорганизмов – это уже не ласковое солнышко, а показание к прекращению размножения. Почему? Дело вот в чем. Точка замерзания – это важный ограничивающий фактор, поскольку клетки наполнены водным раствором (цитоплазмой), в котором проистекают все биологические процессы. Когда вода при плюс-минус 0 °C замерзает, в клетках больше ничего не происходит. В них образуются колкие кристаллы льда, которые бактериальную клетку в буквальном смысле слова протыкают и таким образом разрушают. У нас, людей, такой проблемы нет, потому что мы великими стараниями поддерживаем температуру тела на уровне около 37 °C. У прочих же живых организмов, подвергающихся воздействию очень низких температур, например у вечнозеленых растений наших широт, в плазме есть самый настоящий антифриз – средство против замерзания содержимого клеток.

 Биологические реакции протекают быстрее при повышенной температуре.

Подобные защитные механизмы мы находим и у некоторых микроорганизмов. По этой причине такие организмы можно замораживать и снова оттаивать – как только температура повысится, они снова примутся радостно размножаться. Простой пример: когда вы кладете стейк из свиной шейки в холодильник, то при температуре 4 °C микробы, которые могут содержаться в мясе, будут делиться так медленно, что вы можете рассчитывать, что стейк сразу не испортится. Он может храниться там пару дней, но если процесс размножения бактерий на мясе нужно остановить на долгий срок, то мясо лучше заморозить. Но учтите: никаких гарантий, что от заморозки умрут все микробы, нет, и вполне возможно, что после оттаивания они снова начнут размножаться. Поэтому размороженный кусок мяса надо быстро бросить на сковородку или как вы там еще хотите его приготовить.

Уловка с холодильником срабатывает, к сожалению, не со всеми микроорганизмами. Каждый из нас когда-нибудь с таким сталкивался: забыли в дальнем углу холодильника кусок сыра, а спустя несколько недель нашли его заплесневелым. Плесневые грибки, как это ни досадно, могут расти и при очень низких температурах, и с ними у нас случаются проблемы не только в холодильнике, но и в холодном погребе.

 Вредные вещества разрушаются в воде, если нагреть ее до 60–65 °C.

Но есть и такие микроорганизмы, которые любят тепло, как, например, наши друзья из кишечной флоры, с которыми мы уже немного познакомились. 37 °C для этих бактерий оптимальны, но это не значит, что при 30 или 39 градусах они не будут размножаться. И есть даже такие бактерии, которые любят погорячее. Внимательный читатель сразу вспомнит про горячие источники и археев, их я упоминал в предыдущей главе. Но я имел в виду вовсе не их, ведь мы же хотим разобраться главным образом с явлениями, с которыми сталкиваемся в повседневной жизни. Не знаю, как вы, но я уже целую вечность не купался в 30-градусном источнике… Так что вернемся в свои пенаты, где живет один очень интересный род бактерий, доставляющий нам в последнее время массу хлопот. Речь о легионеллах, которые просто обожают горячие водопроводные трубы и отопительные батареи, причем, что удивительно, при температуре выше 50 °C!

1  Видимо, имеется в виду кишечный грипп – ротавирусная инфекция.
2  Речь идет о дизентерии.
3  Saccharomyces cerevisiae – так называемые пекарские дрожжи; cerveza по-испански – пиво. Saccharomyces carlsbergensis – пивные дрожжи низового брожения; пиво Карлсберг.
4  Сastroprauxeli – производное от Кастроп-Рауксель (Castrop-Rauxel) – названия ничем не примечательного небольшого городка в Германии, пригорода промышленного центра Дортмунд.
Скачать книгу