Квантовые миры и возникновение пространства-времени бесплатное чтение

Шон Кэрролл
Квантовые миры
и возникновение пространства-времени

Права на издание получены по соглашению с Brockman Agency. Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.


Серия «New Science»


Перевел с английского О. Сивченко

© 2019 by Sean Carroll

© Перевод на русский язык ООО Издательство «Питер», 2022

© Издание на русском языке, оформление ООО Издательство «Питер», 2022

© Серия «New Science», 2022

* * *

Отзывы

Захватывающее повествование о величайшем интеллектуальном достижении человечества – квантовой механике. Со смелой ясностью Кэрролл разоблачает квантовую таинственность, чтобы показать нам странную, но совершенно удивительную реальность.

Брайан Грин, профессор физики и математики, директор Центра теоретической физики при Колумбийском университете, автор книги «Элегантная Вселенная»

Бесконечно приятная книга Шона Кэрролла «Квантовые миры и возникновение пространства-времени» позволяет читателю лицом к лицу встретиться с фундаментальной квантовой запутанностью Вселенной – или, правильнее сказать, «вселенных»? Дочитав книгу, вы, возможно, поймаете себя на мысли, что квантовые странности не такие уж странные.

Джордан Элленберг, профессор математики в Мэдисоновском университете Висконсина, автор книги «Как не ошибаться»

Шон Кэрролл всегда пишет доходчиво и интересно, для читателя – одно удовольствие; при этом сам текст у него необычайно глубокий. Он выступает за принятие квантовой механики в ее самой минимальной, чистой, можно сказать, первозданной (и именно этим привлекательной) формулировке. Таким образом, он полностью отбрасывает привычные представления о реальности, выводя им на смену крайне сюрреалистическую многомировую интерпретацию. Шон приглашает нас вступить в битву между простой реальностью и множеством реальностей, хотя человеческого разума хватает лишь на самое приблизительное постижение такой многомировой картины. Он приобщает нас и к философским идеям, на основе которых зарождается революция. Это увлекательная и важная книга.

Ханна Левин, профессор физики и астрономии в колледже Барнарда, автор книги «Блюз черных дыр»

Шон Кэрролл прекрасно разъясняет суть споров, касающихся основ квантовой механики, отстаивая при этом самый элегантный и смелый подход: поразительную многомировую интерпретацию. Его комментарии о достоинствах и недостатках этой концепции – ясные, беспристрастные и потрясающие с философской точки зрения.

Стивен Строгац, профессор математики в Корнельском университете, автор книги Infinite Powers

Кэрролл позволяет, словно из первых рядов партера, познакомиться с развитием новых представлений о физике: это картина, объединяющая наш повседневный опыт с головокружительно устроенной Вселенной, напоминающей лабиринт отражений, где приходится усомниться даже в привычных представлениях о собственном «я». Эта увлекательная идея – как раз такая, в которой могут таиться ключи к гораздо более глубокой реальности.

Кэти Мак, астрофизик-теоретик из Университета Северной Каролины, автор готовящейся книги The End of Everything

Я не смог сдержать слез радости, убедившись, что множество фундаментальных проблем объяснены в этой книге лучше, чем когда-либо ранее. «Квантовые миры» – это шедевр, стоящий в одном ряду с книгой Фейнмана «КЭД» как одна из двух лучших научно-популярных книг по квантовой механике, какие я когда-либо видел. Если же считать, что «КЭД» писалась с другой целью, то перед нами попросту лучшая книга по популяризации квантовой механики – и точка.

Скотт Ааронсон, профессор информатики в Техасском университете, город Остин, и директор Центра квантовой информации при Техасском университете

Не оторваться, читать – одно удовольствие. Хотя эта книга и посвящена одной из глубочайших тайн современной физики, она также рассказывает и о метафизике. Кэрролл помогает нам не только задуматься об истинной, скрытой природе реальности, но и найти в ней смысл. Мне эта книга очень понравилась.

Приямвада Натараян, астрофизик-теоретик из Йельского университета, автор книги Mapping the Heavens

Пролог
Не бойтесь

Посвящается мыслителям всех времен, не напрасно державшим порох сухим

Квантовая механика выглядит пугающе даже для тех, кто ничего не понимает в теоретической физике. Но все не так страшно.

Это может показаться странным. Квантовая механика – это лучшая из имеющихся у нас теорий об устройстве микромира. Она описывает, как на уровне фундаментальных сил природы взаимодействуют атомы и частицы, с невероятной точностью прогнозируя исход любого эксперимента. Следует признать, что за квантовой механикой закрепилось своеобразное реноме чего-то сложного, таинственного, сравнимого чуть ли не с магией. Однако из всех людей именно физики должны быть удовлетворены подобной теорией: они постоянно заняты нетривиальными вычислениями, в которых учитываются квантовые феномены, и сооружают огромные приборы, предназначенные строго для проверки результатов этих вычислений. Надеюсь, никто всерьез не считает, что все это время они просто «создают видимость»?

Нет, о «создании видимости» речь не идет, но и друг с другом физики в данном случае не вполне честны. С одной стороны, квантовая механика – это сердце и душа современной физики. Астрофизики, специалисты по физике частиц, физики-атомщики, физики-ядерщики – все они постоянно пользуются квантовой механикой, причем пользуются мастерски. Таким образом, это не какие-нибудь элитарные исследования: квантовая механика применяется в современных технологиях повсеместно. Полупроводники, транзисторы, микрочипы, лазеры, компьютерная память – все это работает на основе квантовой механики. Если уж на то пошло, то квантовая механика необходима для понимания основополагающих свойств окружающего мира. В принципе, вся химия – это прикладная квантовая механика. Чтобы понять, как светит солнце или почему столы твердые, нужна квантовая механика.

Представьте, что вы закрыли глаза. Становится довольно темно, не так ли? Это кажется логичным, ведь свет не проникает сквозь веки. Однако все не совсем так: инфракрасный свет с длиной волны чуть больше, чем у видимого света, постоянно излучается любыми теплыми объектами, в том числе человеческим телом. Если бы наши глаза были столь же восприимчивы к инфракрасному спектру, как и к видимому свету, то инфракрасный свет слепил бы нас даже при закрытых веках – ведь инфракрасное излучение исходит и от глазных яблок. Однако палочки и колбочки – светочувствительные рецепторы у нас в глазах – воспринимают только видимый свет, но не инфракрасный. Как это удается? В конечном итоге ответ на этот вопрос лежит в области квантовой механики.

Квантовая механика – это не магия. Это глубочайшее и наиболее исчерпывающее из имеющихся у нас представление о реальности. Насколько нам сегодня известно, квантовая механика – это не аппроксимация истины, а истина в чистом виде. Это мнение может измениться, если появятся неожиданные экспериментальные результаты, но до сих пор не наблюдается даже намека на подобные сюрпризы. Разработка квантовой механики пришлась на начало XX века и проходила с участием таких великих ученых, как Планк, Эйнштейн, Бор, Гейзенберг, Шрёдингер и Дирак. В результате к 1927 году было вполне понятно, что квантовая механика – одно из величайших интеллектуальных достижений в истории человечества. У нас есть все основания ею гордиться.

С другой стороны, вспомним знаменитую цитату Ричарда Фейнмана: «Думаю, я смело могу сказать, что квантовую механику никто не понимает». Квантовая механика используется для проектирования новых технологий и прогнозирования результатов экспериментов. Однако честные физики признаются, что мы по-настоящему не понимаем квантовую механику. У нас есть метод, которым можно уверенно пользоваться в заданных условиях, и этот метод дает умопомрачительно точные прогнозы, триумфально подтвержденные экспериментальными данными. Но если мы захотим копнуть глубже и разобраться, что же на самом деле происходит, – окажется, что мы этого просто не знаем. Физики привыкли относиться к квантовой механике как к безмозглому роботу, с помощью которого решаются определенные задачи, а не как к любимому другу, интересной личности.

Подобное отношение со стороны профессионалов влияет и на то, как квантовую механику объясняют широкой аудитории. Нам бы хотелось представить полностью сформированную картину Природы, но сделать это мы не в силах, так как среди самих физиков нет согласия в том, что же на самом деле сообщает квантовая механика. Напротив, в научно-популярных трактовках обычно подчеркивается, что квантовая механика таинственная, обескураживающая, непостижимая. Такой посыл противоречит основополагающим принципам науки, в частности идее о том, что мир принципиально познаваем. Подступаясь к квантовой механике, мы натыкаемся на своеобразный ментальный блок, и, чтобы преодолеть его, нужна небольшая «квантовая терапия».

⚪ ⚪ ⚪

На лекциях по квантовой механике для студентов мы начинаем со списка правил. Некоторые из этих правил формулируются узнаваемо: существует математическое описание квантовых систем плюс объяснение того, как такие системы эволюционируют. Однако далее следует набор дополнительных правил, не имеющих аналогов ни в одной другой физической теории. Дополнительные правила описывают, что происходит, когда мы наблюдаем квантовую систему, и в такой ситуации ее поведение полностью отличается от поведения в ситуации, когда никто ее не наблюдает. Что же, черт возьми, это значит?

В принципе, есть два варианта ответа на данный вопрос. Первый – история, которую мы излагаем нашим студентам, удручающе неполна, и для того, чтобы квантовая механика могла считаться разумной теорией, нам необходимо понять, что такое «измерение» или «наблюдение» и почему в ситуации наблюдения и ненаблюдения поведение системы кажется настолько разным. Второй – квантовая механика разительно противоречит всем привычным нам представлениям о физике и требует отказаться от мира, где объект существует объективно и независимо от того, как мы его воспринимаем, приняв вместо этого картину мира, в которой наблюдение каким-то образом вплетено в фундаментальную природу реальности.

Как бы то ни было, есть все основания подробно исследовать в книгах по физике эти варианты и признать, что при всей супер-успешности квантовой механики, мы не можем утверждать, что ее разработка завершена. В книгах этого нет. Как правило, описанная проблема в книгах просто замалчивается, а физики предпочитают оставаться в собственной зоне комфорта, предлагая студентам решать очередные уравнения.

Это никуда не годится. И положение ухудшается.

Можно подумать, что в такой ситуации стремление понять квантовую механику, должно быть, является величайшей из целей в масштабах всей физики. Миллионы долларов грантовых денег поступают в распоряжение научных сотрудников различных квантовых фондов, ярчайшие умы привлекаются ради решения этой задачи, наиболее важные открытия вознаграждаются премиями и приносят славу.

Университеты соперничают за право принять на работу выдающихся представителей данной дисциплины, предлагая им баснословные жалованья и пытаясь переманить их таким образом у конкурентов.

К сожалению, все совсем не так. Мало того что попытки осмыслить квантовую механику не считаются в современной физике «статусной» специализацией; во многих институтах она почти не пользуется уважением, а то и активно принижается. На большинстве физических факультетов нет никого, кто занимался бы этой проблемой, а на тех, кто все-таки за нее берется, смотрят с подозрением. (Недавно, готовя заявку на грант, я получил совет сосредоточиться на описании моих работ по гравитации и космологии – эти дисциплины считаются серьезными – и умолчать о моих трудах над основами квантовой механики, поскольку при их упоминании меня начнут воспринимать менее серьезно.) За последние 90 лет ученые значительно продвинулись вперед. Но, как правило, это были целеустремленные одиночки, вопреки отношению коллег считавшие, что исследуемые проблемы действительно важны. Либо же это были студенты, которые не подозревали о предосудительности этого направления и впоследствии отказывались от него.

В одной из басен Эзопа Лиса нашла сочную виноградную гроздь, но все ее прыжки с целью достать ягоды не увенчались успехом. Тогда она разочарованно заявляет, что виноград, вероятно, кислый и не очень-то его и хотелось. В нашем случае в роли Лисы выступают физики, а в роли винограда – «понимание квантовой механики». Многие исследователи решили, что изначально было не так уж и важно понимать, как именно устроена природа; куда важнее умение делать конкретные прогнозы.

Ученых приучают ценить осязаемые результаты, будь то замечательные экспериментальные находки или количественные теоретические модели. Потратить время на понимание уже имеющейся теории без гарантии получения новых технологий и прогнозов – идея совсем не привлекательная. Похожее напряжение внутри сообщества было показано в одном из эпизодов телесериала «Прослушка», где группа сыщиков несколько месяцев упорно трудилась, собирая доказательства, чтобы выстроить дело против могущественного наркокартеля. Тем временем их начальству не хватало терпения на такой «безответственный» пошаговый подход. Им необходимо было что-то предъявить на ближайшей пресс-конференции, поэтому полицейских вынуждали биться головой о стену и совершать показушные аресты. Научные фонды и кадровые комитеты ведут себя в точности как это начальство. В мире, где любые стимулы полагаются только за конкретные, измеримые результаты, менее срочные проблемы, связанные с «общей картиной», можно отложить, чтобы не отвлекаться от гонки к следующей непосредственной цели.

⚪ ⚪ ⚪

У этой книги три основных посыла. Во-первых, квантовая механика должна быть понятной – даже если до этого пока еще далеко, – и достижение такого понимания должно быть одной из самых приоритетных целей современной науки. Квантовая механика занимает уникальное место среди физических теорий, так как в ней проводится явное отличие между тем, что мы видим, и тем, что есть на самом деле. Здесь возникает особый интеллектуальный вызов для ученых (а также для всех остальных), привыкших относиться к наблюдаемому миру как к очевидной «реальности» и объяснять все феномены в соответствии с этой реальностью. Однако этот вызов не является непреодолимым: если мы освободимся от некоторых устаревших и «интуитивных» способов мышления, то обнаружим, что в квантовой механике нет ничего безнадежно мистического или необъяснимого. Это просто физика.

Второй посыл заключается в том, что мы добились реального прогресса в понимании квантовой механики. Я сосредоточусь на описании подхода, который кажется мне наиболее многообещающим – это эвереттовская, или многомировая, интерпретация квантовой механики. Многомировая (эвереттовская) интерпретация была с энтузиазмом воспринята многими физиками, но пользуется неоднозначной репутацией среди тех, кому не нравится идея пролиферации новых реальностей, копирующих друг друга. Если вы один из таких скептиков, то я хочу по крайней мере убедить вас, что многомировая интерпретация – это самый последовательный способ осмысления квантовой механики. Именно к нему мы придем, если двинемся по пути наименьшего сопротивления, всерьез воспринимая квантовые феномены. В частности, картина с множеством миров прогнозируется на основе уже состоявшегося формализма, а не подгоняется вручную. Однако многомировая интерпретация – не единственный авторитетный подход, и мы поговорим о некоторых из важнейших его альтернатив (в этом я берусь быть честным, хотя и не обещаю соблюдать баланс). В данном случае важно, что каждый из подходов – это хорошо сформулированная научная теория, из которой проистекают потенциально разные экспериментальные следствия, а не просто эфемерные «интерпретации», о которых можно подискутировать за сигарами и коньяком, после того как настоящая работа уже закончилась.

Третий посыл – в том, что все это важно, и не только для целостности науки. Достигнутые к настоящему времени успехи имеющейся (адекватной, но не до конца последовательной) системы квантовой механики не должны затмевать того факта, что в определенных обстоятельствах для решения поставленной задачи подобный подход просто не годится. В частности, для понимания природы пространства-времени как такового, а также происхождения и конечной судьбы Вселенной критически необходимо разбираться в основах квантовой механики. В этой книге я сформулирую несколько новых, захватывающих и, признаться, гипотетических предложений, позволяющих проследить провокационные связи между квантовой запутанностью и тем, как изгибается и искривляется пространство-время, – речь о феномене, известном нам с вами как гравитация.

Поиск полной и убедительной теории квантовой гравитации уже давно признан работой по достижению важной научной цели (престиж, премии, попытка переманить преподавателя и вот это вот все). Возможно, секрет в том, чтобы не начинать с гравитации и не пытаться ее «квантовать», а податься в самые глубины квантовой механики и обнаружить, что именно на этом пути нас и поджидает гравитация.

Мы не можем говорить об этом с уверенностью. В этом и заключается захватывающая и неспокойная сторона ультрасовременных исследований. Однако пришло время всерьез отнестись к фундаментальной природе реальности, то есть встретиться с квантовой механикой лицом к лицу.

Часть I
Жуть

1
Что происходит
Заглянем в квантовый мир

Именно Альберт Эйнштейн, который со словами обращался столь же умело, как с уравнениями, навесил на квантовую механику ярлык, от которого ей не удается избавиться до сих пор: речь о немецком эпитете spukhaft, который обычно переводится на русский язык как «жуткий». Как бы то ни было, именно «жутковатое» впечатление остается от большинства публичных дискуссий, посвященных квантовой механике. Нам говорят, что эта область физики неотделима от чего-то мистического, сверхъестественного, диковинного, непознаваемого, странного, обескураживающего. Жуткого.

Непостижимость бывает привлекательной. Подобно таинственному обворожительному незнакомцу, квантовая механика соблазняет нас наделять ее всевозможными качествами и возможностями, даже если не обладает ими на самом деле. Беглый поиск по книгам со словом «квантовый» в заглавии дает следующий список «возможных» применений квантовой механики:

Квантовый успех

Квантовое лидерство

Квантовое сознание

Квантовое прикосновение

Квантовая йога

Квантовое питание

Квантовая психология

Квантовый разум

Квантовая слава

Квантовое всепрощение

Квантовая теология

Квантовое счастье

Квантовая поэзия

Квантовая педагогика

Квантовая вера

Квантовая любовь


Весьма впечатляющее резюме для физической дисциплины, которую зачастую характеризуют как применимую лишь на уровне микроскопических процессов с участием субатомных частиц.

Честно говоря, квантовая механика – или «квантовая физика», или «квантовая теория» (все эти названия синонимичны) – важна не только в микромире. Она описывает весь мир, от нас с вами до звезд и галактик, от недр черных дыр до истоков Вселенной. Но явная странность квантовых феноменов становится совершенно очевидной, только если рассматривать мир в максимальном приближении.

Одна из идей этой книги посвящена тому, что квантовая механика не заслуживает «пугающей» коннотации и не является каким-то невыразимым таинством, непостижимым для человеческого разума. Квантовая механика поразительна своим новаторским, глубоким, невероятным представлением о реальности, весьма отличающимся от привычного нам. Да, порой наука бывает такой. Однако если тема кажется сложной или вгоняет в ступор, наука в ответ стремится решить проблему, а не притворяться, будто ее нет. Есть все основания полагать, что квантовая механика в этом плане похожа на любую другую физическую теорию: такой подход к ней тоже должен сработать.

Многие описания квантовой механики строятся по типичному шаблону. Сначала указывают на какой-нибудь парадоксальный квантовый феномен. Далее рассказчик недоуменно признает, что мир, вероятно, может быть устроен именно так, и отчаивается найти в этом какой-либо смысл. Наконец (если повезет), вам попытаются дать некое объяснение.

В этой книге мы стремимся к ясности, а не к таинственности, поэтому я не стану брать на вооружение такую стратегию. Я хочу представить квантовую механику максимально понятно с самого начала. То, что я расскажу, покажется странным, но такова уж природа этой дисциплины. Зато, надеюсь, нам удастся избежать неясности и не запутаться еще больше.

Я постараюсь придерживаться исторической хронологии. В этой главе мы рассмотрим базовые экспериментальные факты, которые требует признать квантовая механика, а затем поговорим о многомировой интерпретации, чтобы осмыслить эти наблюдения. В следующей главе мы перейдем к полуисторическому описанию открытий, которые сподвигли ученых размышлять над такой принципиально новой разновидностью физики. И тогда мы по-настоящему поймем, насколько драматичны некоторые следствия квантовой механики.

Закончив с подготовкой, в оставшейся части книги мы возьмемся за решение увлекательной задачи – разберемся, к чему же все это нас ведет, и развеем таинственность, окружающую некоторые наиболее загадочные свойства квантовой реальности.

⚪ ⚪ ⚪

Физика – это одна из базисных естественных наук и одно из основополагающих человеческих начинаний. Мы осматриваемся в мире и видим, что он полон материи. Что это за материя и каковы ее свойства?

Человек стал размышлять над такими вещами с тех самых пор, как у него вообще появились вопросы. В Древней Греции физика считалась общим учением о переменах и движении, касалась как живой, так и неживой материи. Аристотель говорил о физике в терминах причин – материальных, активных и целевых. То, как движется и меняется тело, можно объяснить исходя из его внутренней природы и воздействующих на него внешних сил. Например, типичные тела могут по природе своей тяготеть к нахождению в покое; чтобы они пришли в движение, что-то должно на них подействовать и сообщить им такое движение.

Все изменилось благодаря умному пареньку по имени Исаак Ньютон. В 1687 году он опубликовал книгу «Начала математики», важнейшую работу в истории физики. Именно в ней были изложены основы так называемой классической, или попросту ньютоновской, механики. Ньютон смахнул, словно пыль, все эти древние разговоры о природе и целях, явив то, что скрывалось под ними: ясный и строгий математический аппарат, которым преподаватели и по сей день продолжают пытать студентов.

Какие бы воспоминания у вас ни сохранились о школьных и университетских домашних заданиях про маятники и наклонные плоскости, базовые идеи классической механики в принципе очень просты. Рассмотрим тело – например, камень. Абстрагируемся от всех его свойств, которые могут быть интересны геологу; так, нас не интересует его цвет и состав. Не будем учитывать и того, что базовая структура камня может измениться, например, если разбить его на кусочки молотком. Сведем наше представление об этом камне к максимально абстрактной форме: камень – это тело, занимающее положение в пространстве, причем это положение меняется со временем.

Классическая механика в точности описывает, как именно положение[1] камня изменяется со временем. Такая картина мира для нас абсолютно привычна, поэтому стоит лишний раз поразмыслить над тем, насколько она впечатляющая. Ньютон вручил нам не какие-нибудь зыбкие банальности об общих тенденциях к более или менее активному движению камней тем или иным образом. Он сообщает нам точные и нерушимые правила того, как всё во Вселенной движется в ответ на всевозможные воздействия, – правила, которые применимы и на Марсе, чтобы, например, ловить там бейсбольные мячи или управлять марсоходами.

Вот как это работает. В любой момент камень обладает некоторой координатой и скоростью. Согласно Ньютону, если на камень не воздействуют никакие силы, то он продолжит движение по прямой с постоянной скоростью. (Одно это – серьезное отступление от Аристотеля, который сказал бы, что любые тела необходимо постоянно толкать, чтобы они оставались в движении.) Если сила действительно воздействует на камень, то он будет перемещаться с ускорением. Ускорение – это изменение скорости камня, приводящее к тому, что он начинает двигаться быстрее или медленнее или просто меняет направление движения: прямо пропорционально той силе, которая к нему приложена.



В принципе, вот и все. Чтобы я мог полностью рассчитать траекторию камня, вы должны описать мне его координату, скорость и воздействующие на него силы. Остальное сообщат уравнения Ньютона. В таких взаимодействиях могут участвовать, например, сила тяготения, сила вашей руки (если вы подберете камень и бросите его), а также сила трения, воздействующая на камень в момент приземления. Эта идея в равной степени применима и к бильярдным шарам, и к космическим кораблям, и к планетам. Проект физики, в соответствии с такой классической парадигмой, в сущности, заключается в следующем: выяснить, из каких материалов состоит Вселенная (камни и пр.) и какие силы на них воздействуют.

Классическая физика предлагает стройную картину мира, однако прежде чем ее удалось сформулировать, было пройдено несколько критически важных этапов. Обратите внимание, насколько щепетильно приходится отбирать информацию, на основе которой мы определяем, что произойдет с камнем: его координата, скорость и то, какие силы на него воздействуют. Можно считать эти силы элементами внешнего мира, а существенная информация о самом камне сводится к значениям его собственных координаты и скорости. Напротив, ускорение камня в любой момент времени – это не та величина, которую требуется указать; именно эту информацию позволяют вычислить законы Ньютона, если известны данные о положении и скорости камня.

Вместе координата и скорость характеризуют состояние любого физического тела в классической механике. Если мы имеем дело с системой, в которой находится множество движущихся элементов, то классическое состояние системы – это просто список состояний всех ее отдельных частей. Так, в объеме воздуха, заполняющего обычную комнату, содержится около 1027 молекул различных типов, и состояние этого объема можно представить как список значений координат и скоростей для каждой из этих молекул. (Строго говоря, физики предпочитают оперировать импульсом каждой частицы, а не ее скоростью, однако на уровне классической ньютоновской механики импульс каждой частицы равен всего лишь произведению ее массы и скорости.) Набор всех возможных состояний, которые могут сложиться в системе, называется фазовым пространством системы.

Французский математик Пьер Симон Лаплас отметил важный подтекст, свойственный образу мышления в духе классической механики. Выходит, что бесконечно мощный разум мог бы знать состояние буквально каждого объекта во Вселенной, на основании чего был бы способен логически вывести все, что произойдет в будущем, равно как и все, что происходило в прошлом. Демон Лапласа – это мысленный эксперимент, а не реалистичный проект амбициозного ученого-информатика, но из этого эксперимента проистекают глубочайшие следствия. Ньютоновская механика описывает детерминистскую Вселенную, устроенную как часовой механизм.

Аппарат классической физики так красив и убедителен, что стоит ее усвоить, и она начинает казаться почти безальтернативной. Многие великие мыслители, жившие после Ньютона, были убеждены, что в общем виде суперструктура физики уже разгадана и дальнейшее развитие науки заключается в уточнении того, какое именно воплощение классической физики (на уровне сил, на уровне частиц) подходит для описания Вселенной в целом. Даже теория относительности, которая по-своему преобразила мир, является вариацией на тему классической механики, а не заменой оной.

Но вот появилась квантовая механика, и все изменилось.

⚪ ⚪ ⚪

Изобретение квантовой механики наряду с ньютоновской формулировкой классической механики представляет собой еще одну великую революцию в истории физики. Квантовая теория, в отличие от всего, что было до нее, не предлагает конкретную физическую модель в рамках базового аппарата классической физики; она полностью отказывается от этого аппарата, заменяя его чем-то совершенно иным.

Фундаментально новый элемент квантовой механики, то, что делает ее принципиально отличной от своей предшественницы, классической физики, заключается в вопросе, что значит измерить что-либо, касающееся квантовой системы. Что такое измерение, и что происходит, когда мы что-то измеряем, и что это нам говорит о реально происходящих событиях. Совокупность этих вопросов образует так называемую квантовомеханическую проблему измерения. Несмотря на ряд перспективных идей, ни в физике, ни в философии нет абсолютно никакого согласия по поводу того, как решать проблему измерения.

Попытки подступиться к проблеме измерения привели к появлению так называемой интерпретации квантовой механики, хотя этот термин не совсем точен. «Интерпретации» применимы в работах на темы литературы и искусства, где возможны различные трактовки одного и того же базового объекта. В квантовой механике складывается несколько иная ситуация: здесь конкурируют поистине разные научные теории, не совместимые друг с другом варианты представления физического мира. Именно поэтому современные ученые, работающие в этой дисциплине, предпочитают называть ее «основаниями квантовой механики». Тема квантовых оснований – часть науки, а не ее критика в буквальном смысле.

Никому никогда не приходило в голову рассуждать об «интерпретациях классической механики» – классическая механика совершенно прозрачна. Существует математический аппарат, описывающий координаты, скорости и траектории, и да, смотрите: вот камень, который фактически может двигаться под действием законов, предписываемых этим аппаратом. В классической механике не существует проблемы измерения как таковой. Состояние системы описывается ее координатами и скоростью, и если мы хотим измерить эти показатели – то просто берем и измеряем. Естественно, измерить показатели системы можно небрежно или грубо, и в результате получить неточные результаты либо изменить саму систему. Однако это отнюдь не данность: достаточно проявить аккуратность – и мы точно измерим все, что можно узнать о системе, не изменив ее каким-либо заметным образом. Классическая механика подразумевает ясные и недвусмысленные отношения между тем, что мы видим, и тем, что описывает теория.

Квантовая механика, при всей ее успешности, ничего подобного не предлагает. Загадку, скрытую в самом сердце квантовой реальности, можно резюмировать так: то, что мы видим, наблюдая мир, похоже, фундаментально отличается от реального положения дел.

⚪ ⚪ ⚪

Поговорим об электронах – элементарных частицах, обращающихся вокруг атомного ядра. Именно из их взаимодействий складывается вся химия и, следовательно, практически все интересное, что происходит вокруг вас в настоящий момент. Как и в случае с камнем, можно игнорировать некоторые конкретные свойства электрона, например его спин и тот факт, что у него есть электрическое поле. (В самом деле, мы могли бы даже продолжить пример с камнем – ведь камень является квантовой системой в той же степени, что и электрон, – однако, переходя к примеру с субатомной частицей, проще учитывать, что характерные отличительные черты квантовой механики со всей ясностью просматриваются именно при изучении сверхмалых объектов.)

В отличие от ситуации с классической механикой, где состояние системы можно описать в контексте ее координаты и скорости, природа квантовой системы куда менее конкретна. Рассмотрим электрон в его «естественной среде обитания», то есть когда он обращается вокруг атомного ядра. При слове «обращается» вы, вероятно, вспомните одно из тех наглядных пособий, которые, несомненно, не раз вам попадались, где орбита электрона изображается более или менее похожей на планетарную орбиту в Солнечной системе. У электрона (могли бы подумать вы) есть координата, скорость, и с течением времени он носится вокруг ядра, расположенного в центре атома, по круговой или, может быть, эллиптической орбите.

Квантовая механика подсказывает, что все несколько иначе. Можно измерить значения координаты или скорости электрона (но только по отдельности), и если мы окажемся по-настоящему аккуратными и талантливыми экспериментаторами, то получим ответы. Но то, что предстанет перед нами в результате такого измерения, не есть точное, полное, объективное состояние электрона. Действительно, те конкретные результаты измерений, которые мы получим, нельзя предсказать с полной уверенностью, и в этом отношении квантовая механика разительно отличается от классической. Лучшее, что получится сделать, это предсказать, с какой вероятностью мы увидим электрон в любом конкретном месте или двигающимся с конкретной скоростью.



Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.

Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой, связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x0, будет записываться как Ψ(x0).



Вероятность получить такой результат при измерениях равна квадрату амплитуды.

Вероятность конкретного результата = |Амплитуда данного результата|2

Это простое отношение называется правилом Борна в честь физика Макса Борна[2]. Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.

Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.

⚪ ⚪ ⚪

Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:


Правила классической механики

1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.

2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.

Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.

В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.

Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко[3] эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.


Правила квантовой механики (часть первая)

1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.

2. Далее система эволюционирует согласно уравнению Шрёдингера.

Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.

Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует, превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.

И вот самый сок нашего разбора.


Правила квантовой механики (часть вторая)

3. Существуют определенные наблюдаемые величины, которые по желанию можно измерить, – например координата частицы. По итогам измерения ее координаты мы получим вполне определенный результат.

4. Вероятность получения любого конкретного результата вычисляется исходя из волновой функции. Волновая функция связывает амплитуду с каждым из возможных результатов измерения; вероятность любого результата есть квадрат амплитуды волновой функции.

5. После измерения волновая функция коллапсирует. Как бы ни был широк разброс ее значений изначально, после измерения все ее значения концентрируются в области того результата, который мы получили при измерении.


В рамках современного университетского курса студенты при первом знакомстве с квантовой механикой изучают ту или иную версию пяти этих правил. Идеология, лежащая в основе такой подачи материала, – считать измерение фундаментальным процессом, полагая, что коллапс волновой функции происходит вместе с актом наблюдения, и не задавать вопросов о том, что при этом происходит «за кулисами». Такой подход иногда называют копенгагенской интерпретацией квантовой механики. Но ученые, в том числе копенгагенские физики, предположительно сформулировавшие такую интерпретацию, расходятся во мнениях о том, что же на самом деле должно обозначаться этим термином. Так что мы можем считать копенгагенскую интерпретацию просто «хрестоматийной трактовкой квантовой механики».

Стоит ли говорить, что идея, будто эти правила и отражают истинное устройство реальности, кажется возмутительной.

Что именно понимается под «измерением»? Из чего именно состоит «измеритель»? Тождествен ли такой «измеритель» человеку, то есть обязательно ли наличие сознания, чтобы он сработал, либо достаточно всего лишь способности кодировать информацию? Либо «измеритель» просто должен быть макроскопическим и если так – то насколько? Когда именно происходит акт измерения и насколько быстро? Почему мир устроен так, что волновая функция коллапсирует настолько резко? Если бы волновая функция была распределена в очень большом объеме пространства, то могла бы она сколлапсировать быстрее скорости света? А что происходит со всеми теми возможностями, которые, казалось бы, допускаются волновой функцией, но которых мы не наблюдаем? Они что, вообще не существовали или исчезли, превратившись в ничто?

Сформулирую предельно кратко: почему квантовые системы эволюционируют гладко и детерминированно, по уравнению Шрёдингера, пока мы на них не смотрим, но при взгляде на происходящее со стороны сразу коллапсируют? Как они узнают о наблюдении и почему наблюдение в данном случае так важно? (Не волнуйтесь, на все эти вопросы мы попробуем ответить.)

⚪ ⚪ ⚪

Большинство из нас полагает, что наука стремится понять окружающий мир. Мы наблюдаем, что происходит вокруг нас, а наука пытается дать объяснение происходящему.

Квантовая механика, если понимать ее в современной академической формулировке, в этом не преуспела. Мы не знаем, что происходит; по крайней мере, в сообществе профессиональных физиков согласия по этому вопросу нет. Вместо этого у нас есть готовый рецепт, который мы снова и снова записываем в своих учебниках, предлагая его студентам. Исаак Ньютон, зная координату и скорость камня, подброшенного вверх в гравитационном поле Земли, мог бы сказать вам, по какой траектории полетит этот камень. Аналогично, если у нас есть квантовая система, подготовленная определенным образом, правила квантовой механики подскажут нам, как будет меняться волновая функция с течением времени и какова будет вероятность получить при измерениях те или иные результаты, если мы решим эту функцию наблюдать.

Тот факт, что квантовый подход дает нам лишь вероятности, но не определенности, может кого-то раздражать, но с этим можно научиться жить. По-настоящему нас беспокоит (или должно беспокоить) то, что мы понятия не имеем, что именно происходит.

Представьте себе, что некий коварный гений выяснил все законы физики, но не стал открывать их всему миру, а запрограммировал компьютер, чтобы тот отвечал на вопросы по конкретным физическим задачам, после чего этот гений создал интерфейс для работы с программой через веб-страницу. Каждый заинтересованный пользователь может просто перейти на сайт, ввести хорошо сформулированный вопрос по физике и получить верный ответ.

Естественно, такой программой активно пользовались бы ученые и инженеры. Но доступ к этому сайту не означает, что мы понимаем законы физики. У нас есть оракул, задача которого – давать ответы на конкретные вопросы, но сами мы лишены даже малейшего представления об основополагающих правилах этой игры. Все остальные ученые в мире, у которых в распоряжении оказался бы такой оракул, не спешили бы заявлять о победе: они продолжали бы упорно работать, выясняя, каким именно законам подчиняется природа.

Квантовая механика в той форме, в которой она сегодня дается в учебниках по физике, – это оракул, а не по-настоящему понятая наука. Мы можем ставить конкретные задачи и находить на них ответы, но, честно признаться, не можем объяснить, что происходит «за кулисами». Что у нас действительно есть – так это ряд хороших идей о том, что бы это могло быть, и физическому сообществу давно пора бы начать относиться к ним серьезно.

2
Смелая формулировка
Аскетичная квантовая механика

Отношение к проблеме, которое насаждается на страницах современных учебников по квантовой механике, емко сформулировал физик Н. Дэвид Мермин: «Заткнись и считай!» Сам Мермин не отстаивает такую позицию, чего не скажешь о других. Каждый уважающий себя физик проводит немало времени за математическими расчетами, как бы он ни относился к основам квантовой механики. Так что предыдущее назидание можно сократить до «Заткнись!»[4].

Так было не всегда. На то, чтобы собрать квантовую механику по кусочкам, ушли десятилетия: свою современную форму она обрела примерно в 1927 году. Тогда в Бельгии прошел V Международный Сольвеевский конгресс, на котором собрались ведущие физики мира, чтобы обсудить статус и значение квантовой теории. К тому времени экспериментальные доказательства уже были ясны, и физикам не терпелось дать количественную формулировку правил квантовой механики. Пришло время закатать рукава и выяснить, что же служит причиной именно такого устройства этого безумного нового мира.

Дискуссии, проходившие на этой конференции, помогают понять контекст, но мы здесь не ради исторического экскурса. Мы хотим понять физику. Поэтому наметим логический путь, который приведет нас к полноценной научной теории квантовой механики. Никакого зыбкого мистицизма, никаких, казалось бы, взятых с потолка правил. Лишь простой набор предположений, которые приведут нас к впечатляющим выводам. Если держать в уме такую картину, то многие вещи, которые в иной ситуации показались бы зловеще таинственными, начинают обретать смысл.

⚪ ⚪ ⚪

Сольвеевский конгресс вошел в историю как мероприятие, с которого началась знаменитая серия дебатов между Альбертом Эйнштейном и Нильсом Бором относительно того, как следует воспринимать квантовую механику. Бор – датский физик, обосновавшийся в Копенгагене, по праву считается крестным отцом квантовой теории. Он отстаивал примерно такой подход, который принят в современных учебниках: использовать квантовую механику для расчета вероятностей тех или иных результатов измерений, но не требовать от нее ничего более. В частности, не следует слишком серьезно задумываться о том, что происходит «за кулисами». Бор, заручившись поддержкой более молодых коллег, Вернера Гейзенберга и Вольфганга Паули, настаивал, что в уже имеющемся виде квантовая механика – это совершенно нормальная теория.

Эйнштейн с ним решительно не соглашался. Он был глубоко убежден, что долг физики – досконально во всем разобраться и что состояние квантовой механики в 1927 году и близко не позволяло дать удовлетворительное описание природы. Эйнштейн, у которого также нашлись сочувствующие, например Эрвин Шрёдингер и Луи де Бройль, призывал рассматривать проблему глубже, попытаться расширить и обобщить квантовую механику настолько, чтобы она превратилась в удовлетворительную физическую теорию.


Участники Сольвеевского конгресса 1927 года. Наиболее известные участники обозначены цифрами: 1. Макс Планк, 2. Мария Кюри, 3. Поль Дирак, 4. Эрвин Шрёдингер, 5. Альберт Эйнштейн, 6. Луи де Бройль, 7. Вольфганг Паули, 8. Макс Борн, 9. Вернер Гейзенберг и 10. Нильс Бор (фото из «Википедии»)


Эйнштейн и его единомышленники имели основания для осторожного оптимизма и полагали, что такая «новая улучшенная теория» вот-вот будет открыта. Всего несколькими десятилетиями ранее, в конце XIX века, физики разработали теорию статистической механики, описывавшую принципы движения больших групп атомов и молекул. Ключевым шагом в развитии этих исследований, которые проводились под эгидой классической механики (в то время квантовая механика еще не вышла на сцену), стала идея о том, что можно осмысленно рассуждать о поведении большой совокупности частиц, даже если мы в точности не знаем координаты и скорости каждой из них в отдельности. Все, что требуется знать – распределение вероятностей, описывающее, с какой вероятностью частицы могут повести себя тем или иным образом.

Иными словами, в статистической механике предполагается, что существует некое конкретное классическое состояние всех частиц, но мы этого состояния не знаем. Все, что у нас есть – это распределение вероятностей. К счастью, для описания довольно большого количества полезных физических явлений этой информации достаточно, так как она фиксирует определенные свойства системы, например температуру и давление. Но распределение не является полным описанием системы; это просто отражение того, что мы знаем (или чего не знаем) о ней. Чтобы обозначить это различие с помощью философских терминов, отметим, что распределение вероятностей является эпистемологическим феноменом, описывающим состояние наших знаний, а не онтологическим, который описывал бы некоторое объективное свойство реальности. Эпистемология – это учение о знаниях; онтология – учение о том, что реально существует.

В 1927 году естественно было полагать, что и к квантовой механике разумно подходить с подобных позиций. В конце концов, к тому моменту ученые уже выяснили, что волновые функции используются для расчета вероятности любого конкретного результата измерения. Конечно, разумно было предположить, что сама природа доподлинно знает, каков будет этот результат, но формальный аппарат квантовой теории просто не позволяет получить это знание и, следовательно, нуждается в улучшении. Согласно такой трактовке, волновая функция – это еще не всё; существуют еще какие-то «скрытые переменные», фиксирующие, какими именно должны быть результаты конкретного измерения, даже если мы не знаем (и пожалуй, даже не можем определить до акта измерения), каковы их значения.

Может быть. Но в последующие годы удалось получить ряд результатов, среди которых особого внимания заслуживают те, к которым пришел физик Джон Белл, подразумевающих, что самые простые и прямолинейные попытки следовать этим путем обречены на провал. Попытки были – де Бройль даже выдвинул особую теорию, которая в 1950-х была повторно открыта и расширена Дэвидом Бомом, а Эйнштейн и Шрёдингер спорили, перебрасываясь идеями. Однако по теореме Белла предполагается, что любая такая теория требует наличия «дальнодействия», то есть феномена, при котором акт измерения в одной точке может сразу же повлиять на состояние Вселенной в сколь угодно отдаленной точке. Казалось, что это по духу, если не по букве, противоречит теории относительности, согласно которой объекты не могут перемещаться, а действия – распространяться быстрее скорости света. Подход, предусматривающий существование «скрытых переменных», по-прежнему активно прорабатывается, но все попытки такого рода довольно неуклюжи, и их сложно примирить с современными теориями, например со стандартной моделью физики частиц, не говоря уже о спекулятивных идеях о квантовой гравитации; их мы обсудим позже. Пожалуй, именно поэтому Эйнштейн, основоположник теории относительности, так никогда и не сформулировал собственной удовлетворительной теории.

Принято считать, что Эйнштейн проиграл дебаты с Бором. Нам рассказывают, что Эйнштейн, в молодости отличавшийся творческим и революционным мышлением, состарился и стал консервативен и поэтому не смог ни принять, ни даже понять важности следствий из новой квантовой теории. (Во времена Сольвеевского конгресса Эйнштейну было сорок восемь.) Далее физика развивалась без его участия, и великий человек сошел со сцены, погрузившись в собственные причудливые поиски единой теории поля.

Все эти измышления крайне далеки от истины. Хотя Эйнштейну и не удалось сформулировать полное и убедительное обобщение квантовой механики, его уверенность в том, что физика нуждается в более разумном подходе, чем «заткнись и считай», была более чем справедливой. Полагать, будто он не понимал квантовой теории, – полное безумие. Эйнштейн понимал ее столь же хорошо, как и все остальные, и продолжал вносить фундаментальный вклад в эту тему – в частности, он продемонстрировал важность квантовой запутанности, которая играет центральную роль в наших наилучших современных представлениях о том, как именно устроена Вселенная. Чего ему не удалось, так это убедить коллег-физиков в несостоятельности копенгагенского подхода и в важности поиска самых основ квантовой теории.

⚪ ⚪ ⚪

Если мы хотим продолжить амбициозные стремления Эйнштейна к созданию полной, недвусмысленной и реалистичной теории естественного мира, но нас удручают сложности, связанные с применением новых скрытых переменных к квантовой механике, остается ли в нашем распоряжении еще какая-нибудь стратегия?

Один из вариантов – забыть о новых переменных, отбросить все сомнительные идеи, связанные с измерением, очистить квантовую механику до самых ее основ и задаться вопросом: что происходит? Что собой представляет самая простая, обедненная версия квантовой теории, которую мы могли бы изобрести в надежде, что, опираясь на нее, по-прежнему сможем объяснять экспериментальные результаты?

Любая версия квантовой механики (коих существует множество) использует волновую функцию или некий эквивалентный феномен и постулирует, что волновая функция подчиняется уравнению Шрёдингера, по крайней мере в большинстве случаев. Эти составляющие должна включать любая теория, которую стоит воспринимать всерьез. Давайте посмотрим, удастся ли нам применить подобный упрямый минимализм, и попробуем рассуждать, не добавляя почти ничего к квантовому формализму.

У такого минималистического подхода есть два аспекта. Во-первых, мы серьезно воспринимаем волновую функцию, считая ее непосредственным отражением реальности, а не просто «учетным инструментом», с помощью которого удобно упорядочивать наши знания. Мы считаем ее онтологической, а не эпистемологической. Это самая аскетичная из возможных стратегий, поскольку в любой другой формулировке над волновой функцией будут надстраиваться какие-то вышестоящие структуры. Но такой шаг по-своему рискован, поскольку волновая функция сильно отличается от того, что мы наблюдаем в окружающем мире. Мы видим не волновые функции, а результаты измерений – например, координату частицы. Но теория, по-видимому, требует, чтобы центральная роль в ней отводилась волновой функции. Итак, давайте посмотрим, как далеко можно зайти, предположив, что квантовая волновая функция является точным описанием реальности.

Во-вторых, если волновая функция обычно эволюционирует гладко, в соответствии с уравнением Шрёдингера, то предположим, что именно таковы ее свойства в любой ситуации. Иными словами, давайте полностью избавимся от всех этих дополнительных правил, касающихся измерений по «квантовому рецепту», и вернемся к жесткой простоте классической парадигмы: есть волновая функция, она эволюционирует по детерминистскому правилу, и на этом все. Можем назвать такую версию «аскетичной квантовой механикой», или, для краткости, АКМ. Такая формулировка контрастирует с хрестоматийным описанием квантовой механики, сторонники которого делают отсылку к коллапсу волновых функций, вообще избегая разговоров о фундаментальной природе реальности.

Смелая стратегия. Но с ней сразу же возникает проблема: явно создается впечатление, что волновые функции коллапсируют. Измеряя квантовую систему с распределенной волновой функцией, мы получаем конкретный ответ. Даже если представить, что волновая функция электрона – это диффузное облако, в центре которого находится ядро, в попытках рассмотреть электрон мы увидим вовсе не облако, а точечную частицу в конкретном месте. Если же мы незамедлительно снова посмотрим на электрон, то увидим его практически на том же месте. Поэтому у первопроходцев квантовой механики были весьма серьезные основания полагать, что волновые функции коллапсируют, – ведь именно так все и выглядит.

Но вполне вероятно, что мы просто спешим с выводами. Вместо того чтобы исходить из увиденного и сразу пытаться изобрести теорию, начнем с аскетичной квантовой механики (описывающей лишь гладкую эволюцию волновых функций) и зададимся вопросом: что должны испытывать люди, живущие в мире, описываемом такой теорией?

Подумайте о том, что бы это могло значить. В предыдущей главе мы с осторожностью говорили о волновой функции как о некоем математическом черном ящике, из которого можно извлекать предсказания результатов экспериментов: волновая функция присваивает каждому конкретному результату амплитуду, и вероятность получить данный результат равна квадрату этой амплитуды. Макс Борн, предложивший данное правило, присутствовал на Сольвеевском конгрессе в 1927 году.

Теперь мы говорим о чем-то более глубоком и одновременно простом. Волновая функция – это не инструмент учета, а точное представление квантовой системы, как если бы набор координат и скоростей был бы представлением классической системы. Мир – это и есть волновая функция. Термин «квантовое состояние» можно использовать в качестве синонима «волновой функции», точно так же как набор координат и скоростей можно называть классическим состоянием.

Это очень серьезное утверждение, касающееся природы реальности. В обычной беседе, даже среди седовласых ветеранов квантовой физики, принято обсуждать такие понятия, как «координата электрона». Но предлагаемая точка зрения, при которой «всё есть волновая функция», подразумевает, что подобные разговоры уводят от сущности, причем в одном из основополагающих вопросов. Нет такой вещи, как «координата электрона». Есть только волновая функция электрона. Квантовая механика подразумевает принципиальное отличие между «тем, что мы можем наблюдать» и «тем, что есть на самом деле». Наши наблюдения не открывают ранее существовавшие факты, о которых мы просто не знали; в лучшем случае они дают крошечный срез гораздо более масштабной, фундаментально неизмеримой реальности.

Задумайтесь об идее, которую вам часто озвучивали: «Атомы почти полностью состоят из пустоты». Если взять за основу картину мира АКМ – это вопиюще неверное утверждение. Оно проистекает из упрямого стремления считать электрон крошечным классическим шариком, который носится кругами в волновой функции, а не признавать, что электрон – это и есть волновая функция. В АКМ ничего нигде не носится: есть только квантовое состояние. В атомах нет пустоты; они описываются волновыми функциями, каждая из которых целиком заполняет атом.

Способ вырваться из наших «интуитивных» классических представлений – решительно отвергнуть идею о том, что электрон действительно имеет какую-то конкретную координату. Электрон находится в суперпозиции всех возможных координат, в которых мы можем его увидеть, и не привязан ни к какому конкретному местоположению до того самого момента, пока мы его там не увидим. С помощью термина «суперпозиция» физики подчеркивают, что электрон существует в комбинации всех координат, каждой из которых соответствует конкретная амплитуда. Квантовая реальность – это волновая функция; координаты и скорости, как в классической физике – лишь то, что мы можем наблюдать, когда исследуем эту волновую функцию.

⚪ ⚪ ⚪

Итак, согласно аскетичной квантовой механике, реальность квантовой системы описывается волновой функцией или квантовым состоянием, которое можно считать суперпозицией всех возможных результатов любого возможного наблюдения, которое мы могли бы провести. Как от этого перейти к досадной реальности, где кажется, что волновые функции коллапсируют, когда мы делаем такие измерения?

Для начала давайте немного внимательнее разберемся с утверждением «мы измеряем координату электрона». Что на самом деле включает в себя такой процесс измерения? Предположительно, нам понадобится некоторое лабораторное оборудование и чуточку экспериментаторской сноровки, но частности нас не волнуют. Всё, что нужно знать – есть некоторый измерительный прибор (камера или что-то еще), который каким-то образом взаимодействует с электроном, а затем позволяет считывать, где именно мы увидели электрон.

Вот и все, что позволяет нам узнать эксперимент, описываемый в учебнике по квантовой механике. Некоторые из ученых, первыми испробовавших этот подход, в том числе Нильс Бор и Вернер Гейзенберг, были готовы зайти немного дальше, говоря о том, что измерительный прибор следует считать классическим объектом, пусть даже наблюдаемый с его помощью электрон является квантово-механическим. Такое разграничение между элементами реальности, одни из которых приходится рассматривать с классической, а другие – с квантовой точки зрения, иногда называется «разрез Гейзенберга». Вместо признания, что квантовая механика фундаментальна, а классическая механика в подходящих условиях просто является хорошим приближением квантовой, в учебниках по квантовой механике классический мир ставится во главу угла как наиболее верный подход в рассуждениях о людях, камерах и других макроскопических объектах, взаимодействующих с микроскопическими квантовыми системами.



Не очень-то внушает доверие. В первую очередь следовало бы предположить, что граница между квантовым и классическим миром придумана нами для нашего же удобства, а не является фундаментальным свойством природы. Если атомы подчиняются законам квантовой механики, а камеры состоят из атомов, то следовало бы предположить, что и камеры подчиняются законам квантовой механики. Если уж на то пошло, то и мы с вами должны подчиняться законам квантовой механики. Поскольку мы с вами – громоздкие макроскопические объекты, приближение на уровне классической механики позволяет хорошо описать нашу природу, но тем не менее мы должны в первую очередь предположить, что являемся квантовыми сверху донизу.

Если все действительно так, то волновая функция есть не только у электрона. У камеры должна быть собственная волновая функция. Как и у экспериментатора. Все – квантовое.

Столь простая смена перспективы подсказывает, что на проблему измерения можно взглянуть под новым углом. Позиция АКМ такова, что процесс измерения не должен восприниматься как нечто мистическое или даже описываемое собственным набором правил; камера и электрон просто взаимодействуют друг с другом согласно законам физики, точно так же как камень и Земля.

Квантовое состояние описывает системы как суперпозиции всех возможных результатов измерений. В принципе, исходным состоянием электрона является суперпозиция различных его положений – всех мест, где мы могли бы его увидеть, если бы посмотрели на него. Исходная волновая функция камеры может выглядеть сложно, но в целом сводится к следующему: «Это камера, еще не пронаблюдавшая электрон». Но затем электрон наблюдается через камеру, и между ними происходит физическое взаимодействие, подчиняющееся уравнению Шрёдингера. Причем после такого взаимодействия можно ожидать, что сама камера окажется в суперпозиции со всеми возможными результатами измерений, которые могла наблюдать: она зафиксировала электрон в этой точке или в той и так далее.

Если бы на этом все и заканчивалось, то АКМ была бы ни на что не годной мешаниной. Электроны в суперпозициях, камеры в суперпозициях – и близко не напоминает надежный, близкий к классическому восприятию мир, который мы видим вокруг.

К счастью, можно обратиться к еще одному поразительному свойству квантовой механики: если у нас есть два разных объекта (например, электрон и камера), то они описываются не разными волновыми функциями, а одной общей волновой функцией, характеризующей всю интересующую нас систему, и так вплоть до «волновой функции всей Вселенной», если не мелочиться. В рассматриваемом здесь случае есть волновая функция, описывающая систему, которая состоит из электрона и камеры. Итак, на практике мы имеем суперпозицию всех возможных сочетаний «где мог оказаться электрон» плюс «где его могла пронаблюдать камера».

Хотя такая суперпозиция в принципе учитывает все возможности, большинству из вероятных исходов в квантовом состоянии присваивается нулевой вес. Облако вероятностей обнуляется для большинства возможных комбинаций расположений камеры и электрона. В частности, не может быть такого, чтобы электрон находился в одном месте, а камера зафиксировала его в другом (если, конечно, ваша камера относительно исправна).



Такой квантовый феномен называется запутанностью. Существует единая волновая функция для комбинированной системы «электрон – камера», состоящая из суперпозиции различных возможностей вида «электрон был в данной точке, и камера пронаблюдала его именно в данной точке». Мы говорим не о том, что электрон у нас сам по себе, а камера сама по себе, – между этими системами есть связь.

Теперь заменим в вышеизложенной дискуссии камеру на вас. Мы (позволим себе это) вообразим, что не делаем снимки оптическим устройством, а обладаем настолько острым зрением, что можем рассмотреть отдельные электроны. В остальном ничего не меняется. Согласно уравнению Шрёдингера, исходная ситуация, в которой еще отсутствует запутанность – электрон находится в суперпозиции различных возможных местоположений, и вы на него еще не посмотрели, – гладко преобразуется в запутанное состояние, где есть электрон, находящийся в суперпозиции всех возможных местоположений, и вы, увидевшие его в каждом из этих мест.

Именно это и диктовали бы нам правила квантовой механики, если бы мы не заморачивались насчет всех этих дополнительных досадных деталей, касающихся процесса измерения. Может быть, все эти дополнительные правила были выдуманы напрасно. В АКМ та история, которую мы только что изложили – о постепенном запутывании между вами и электроном в суперпозицию, – это вся история. В измерении нет ничего особенного; оно просто происходит, когда две системы взаимодействуют соответствующим образом. И после этого вы и система, с которой вы взаимодействовали, оказываетесь в состоянии суперпозиции, в каждой части которой вы видели электрон в несколько ином месте.

Но проблема в том, что эта история все еще не совпадает с тем, что вы фактически испытываете, наблюдая квантовую систему. Вы никогда не почувствуете, что в результате развития ситуации превратились в суперпозицию различных возможных результатов эксперимента; вам покажется, что вы просто увидели определенный результат, который можно спрогнозировать с определенной вероятностью. Именно поэтому с самого начала и были добавлены все эти дополнительные правила измерений. В остальном у вас есть, казалось бы, очень симпатичный и аккуратный формализм (квантовые состояния, гладкая эволюция), который просто не согласуется с реальностью.

⚪ ⚪ ⚪

Давайте немного пофилософствуем. Что именно означает «вы» в предыдущем разделе? Чтобы сформулировать научную теорию, недостаточно записать несколько уравнений; нужно также указать, как эти уравнения проецируются на окружающий мир. Когда речь заходит о нас с вами, нам кажется, что соотнести себя с каким-то элементом научного формализма достаточно просто. Определенно, в вышеизложенной истории, где наблюдатель измеряет координату электрона, складывается такое впечатление, будто этот человек переходит в запутанную суперпозицию различных возможных результатов измерения.

Но есть и альтернативная возможность. Перед актом измерения у нас был один электрон и один наблюдатель (или камера, если угодно: неважно, кто или что в этой ситуации взаимодействует с электроном, достаточно, чтобы он(о) был(о) большим, макроскопическим объектом). Однако после того как взаимодействие состоится, мы должны полагать, что в суперпозицию возможных состояний перешел не один наблюдатель, а что появилось множество возможных наблюдателей. Выбирая такую трактовку, мы, описывая состояние системы после измерения, полагаем, что у нас не один наблюдатель с множеством представлений о том, где он мог увидеть электрон, но много миров, в каждом из которых есть человек, совершенно точно представляющий, где он увидел электрон.

Открою большую тайну: концепция, которую мы описали под названием аскетичной квантовой механики, более известна как эвереттовская, или многомировая, интерпретация квантовой механики, впервые предложенная Хью Эвереттом в 1957 году. Эвереттовская интерпретация возникла из-за фундаментальной неудовлетворенности всеми этими специальными правилами о проведении измерений, которыми обставляется рецепт квантового опыта в стандартном учебнике; эвереттовская интерпретация, напротив, предполагает, что есть всего один вариант квантовой эволюции. Цена, которую приходится заплатить за то, что теоретический формализм сразу становится гораздо стройнее, – это предположение, что данная теория одновременно описывает множество копий известной нам «Вселенной», и каждая из этих копий немного отличается от прочих, но в определенном смысле реальна. По поводу того, стоит ли такой порядок заплаченной цены, у ученых нет единого мнения. (Да, стоит.)

Натолкнувшись на многомировую интерпретацию, мы ни в коем случае не берем обычную квантовую механику и не применяем ее ко всему множеству Вселенных. Потенциально эти Вселенные все время «где-то рядом» – у Вселенной есть волновая функция, которая может запросто описывать суперпозиции всевозможных вещей, в том числе суперпозиции целой Вселенной. Здесь мы всего лишь подчеркнули, что этот потенциал естественным образом актуализируется в ходе обычной квантовой эволюции. Признав, что электрон может быть в суперпозиции, находясь при этом в разных местах, мы заключаем, что и человек может быть в суперпозиции, учитывающей, в каких разных точках он мог увидеть электрон. И в самом деле, вся реальность может находиться в суперпозиции, и каждое слагаемое в этой суперпозиции допустимо трактовать как отдельный «мир». Мы ничего не добавили к квантовой механике, а просто признали то, с чем имели дело все это время.

Можно по праву назвать эвереттовский подход смелой формулировкой квантовой механики. Он воплощает философию, согласно которой следует всерьез воспринимать простейшую версию основополагающей реальности, учитывающую именно то, что мы видим, даже если такая реальность радикально отличается от нашего обыденного опыта. Хватит ли нам смелости принять ее?

⚪ ⚪ ⚪

После такого краткого введения в многомировую интерпретацию многие вопросы остаются без ответов. В какой именно момент волновая функция распадается на множество миров? Чем один мир отделен от другого? Сколько всего миров? На самом ли деле «реальны» эти другие миры? Как мы вообще узнаем, доступны ли они для наблюдения? (И можем ли узнать?) Как все это объясняет вероятность того, что мы окажемся в одном мире, а не в другом?

На все эти вопросы есть хорошие ответы – или как минимум правдоподобные, – и значительная часть этой книги посвящена им. Но мы должны быть готовы и к тому, что вся эта картина может оказаться неверной и нам потребуется что-то совершенно иное.

В каждой версии квантовой механики фигурируют две вещи: (1) волновая функция и (2) уравнение Шрёдингера, управляющее эволюцией волновых функций во времени. Эвереттовская формулировка в ее целостном виде постулирует, что, кроме двух этих вещей, больше ничего нет и что этих ингредиентов достаточно, чтобы составить полное, эмпирически адекватное представление мира. («Эмпирически адекватное» – так вычурно философы выражают мысль «согласуется с экспериментальными данными».) В любом другом подходе к квантовой механике приходится или что-то добавлять к этому голому формализму, или как-то его модифицировать.

Самым поразительным следствием чистой эвереттовской квантовой механики является предполагаемое существование множества миров, поэтому целесообразно называть ее многомировой. Однако суть теории в том, что реальность описывается гладко эволюционирующей волновой функцией – и на этом все. С этой философией связаны дополнительные трудности, особенно когда речь заходит о сопоставлении необычайной простоты формализма с богатым разнообразием мира, который мы наблюдаем. Но она выигрывает в ясности и проницательности. Обратившись к квантовой теории поля и квантовой гравитации, мы убедимся, что трактовка волновых функций как подлинных первоэлементов, не обремененных каким-либо балластом, оставшимся от нашего классического восприятия, исключительно полезна при попытках подступиться к глубинным проблемам современной физики.

Учитывая необходимость двух этих элементов (волновой функции и уравнения Шрёдингера), существует несколько альтернатив для многомировой интерпретации, которые стоят рассмотрения. Один из таких подходов – это добавление новых физических сущностей поверх волновой функции. Подобный подход приводит нас к моделям со скрытыми переменными, которые с самого начала были на уме у таких людей, как Эйнштейн. В настоящее время наиболее популярный из таких подходов называется теорией де Бройля – Бома или просто механикой Бома. Альтернативный подход – оставить волновую функцию как есть, но предположить изменения в уравнении Шрёдингера, например ввести в него реальные случайные коллапсы. Наконец, можно предположить, что волновая функция – это вообще не физическое явление, а просто способ описания того, что нам известно о реальности. Такие подходы известны под общим названием «эпистемологические модели», и в настоящее время среди них особенно популярен кьюбизм, он же – квантовое байесианство.

Все эти варианты – в том числе те, что не перечислены выше, – это поистине разные физические теории, а не просто «интерпретации» одной и той же базовой идеи. Существование множества несовместимых теорий, которые все как одна (по крайней мере, пока) выводят нас к наблюдаемым эффектам квантовой механики, – это путаница для любого, кто хотел бы поговорить об истинном смысле квантовой механики. В то время как практикующие ученые и философы пришли к единой трактовке квантового рецепта, нет общего понимания того, какова основополагающая реальность, то есть что именно означает каждый конкретный феномен.

Я отстаиваю конкретную трактовку этой реальности – многомировую интерпретацию квантовой механики, и на протяжении большей части книги я просто буду объяснять вещи в терминах этой интерпретации. Это не означает, что эвереттовская перспектива безусловно правильная. Но я надеюсь, что смогу объяснить суть этой теории и почему с высокой вероятностью разумно полагать, что она – наилучшее из имеющихся у нас представлений о реальности. Выводы делайте сами.

3
Как подобное могло кому-то прийти в голову?
Как возникла квантовая механика

«Иногда я еще до завтрака успевала поверить аж в шесть невозможных вещей», – говорит Белая Королева Алисе в книге «Алиса в Зазеркалье». Подобное умение может оказаться полезным, когда приходится разбираться с квантовой механикой вообще и многомировой интерпретацией в частности. К счастью, те, казалось бы, невозможные вещи, в которые мы должны поверить, – это не причудливые логические конструкции или взрывающие мозг дзеновские коаны; это свойства мира, к признанию которых нас подталкивает опыт. Как бы мы ни сопротивлялись, нас буквально тащат в этом направлении конкретные эксперименты. Мы не выбираем квантовую механику; мы лишь выбираем, признать ее или нет.

Физика стремится выяснить, из чего состоит мир, как его части естественным образом меняются с течением времени и взаимодействуют друг с другом. Я постоянно замечаю множество различных материалов вокруг себя: бумаги и книги на столе, компьютер, чашка с кофе, мусорная корзина, два кота (один из которых крайне заинтересован в содержимом корзины), не говоря уж о более эфемерных материях – воздухе, свете, звуках.

К концу XIX века ученым удалось разложить все подобные вещества до двух основных субстанций: частиц и полей. Частицы – это точечные объекты, находящиеся в определенном месте в пространстве, а поля (например, гравитационное поле) распределены в пространстве и в каждой точке пространства принимают конкретное значение. Когда поле колеблется в пространстве и времени, в нем возникает волна. Таким образом, когда кто-то противопоставляет частицы и волны, речь на самом деле идет о частицах и полях.

Квантовая механика в конечном итоге унифицировала частицы и поля в единую сущность – волновую функцию. И толчком к этому стали два фактора: изначально физики обнаружили, что те вещи, которые казались им волнами, например электрические и магнитные поля, обладают корпускулярными[5] свойствами, а затем выяснилось, что объекты, считающиеся частицами, например электроны, проявляют свойства, присущие полям. Чтобы решить эту головоломку, необходимо было признать, что на фундаментальном уровне мир подобен полю (речь о квантовой волновой функции), но когда мы смотрим на него, выполняя тщательное измерение, мир проявляет свойства частиц. На это потребовалось определенное время.

⚪ ⚪ ⚪

Кажется, что частицы – штуки совершенно незамысловатые; частица – это объект, расположенный в конкретной точке пространства.

Эта идея родилась еще во времена Древней Греции, когда члены небольшого философского кружка предположили, что материя состоит из точечных «атомов»; в переводе с греческого это слово означает «неделимый». По словам Демокрита, автора концепции атомизма, «сладкое только считается таким, горькое только считается таким, теплое только считается таким, холодное только считается таким, цвет только считается таким, в действительности же – атомы и пустота»[6].

На тот момент не было серьезных доказательств в пользу такой гипотезы, поэтому она была отвергнута вплоть до начала XIX века, когда ученые приступили к экспериментам по количественному изучению химических реакций. Ключевую роль при этом сыграл оксид олова – соединение, состоящее из атомов олова и кислорода: выяснилось, что оно существует в двух разных формах. Английский ученый Джон Дальтон отметил, что количество олова в двух этих формах не отличается, зато количество кислорода в одной из них ровно вдвое больше, чем в другой. В 1803 году Дальтон дал возможное объяснение происходящему, предположив, что оба элемента состоят из дискретных частиц, которые он назвал древнегреческим словом «атомы». Необходимо было всего лишь представить, что в молекулах одной формы оксида олова один атом олова соединяется с одним атомом кислорода, а в другой форме на каждый атом олова приходится два атома кислорода. Дальтон предположил, что любой химический элемент состоит из атомов уникального сорта, и склонность атомов образовывать самые разные соединения – это суть всей химии. Обобщение простое, но способное впоследствии перевернуть мир.

Дальтон немного опережал события с такой номенклатурой. С точки зрения древних греков, суть атомов заключалась в их неделимости, в том, что они были фундаментальными первокирпичиками, из которых состоит все на свете. Но атомы Дальтона совсем не были неделимыми – они состояли из компактного ядра, вокруг которого, как планеты по орбитам, вращались электроны. Правда, чтобы осознать это, потребовалось еще более ста лет. Сначала, в 1897 году, английский физик Дж. Дж. Томсон открыл электрон. Оказалось, что эта частица совершенно нового вида в 1800 раз легче водорода, самого легкого атома, обладающая к тому же электрическим зарядом. В 1909 году Эрнест Резерфорд, бывший студент Томсона – новозеландец, перебравшийся в Англию благодаря своим успехам в учебе, – показал, что масса атома сосредоточена в центре, в ядре, тогда как общий размер атома зависит от диаметра орбит гораздо более легких электронов, вращающихся вокруг этого ядра. Предложенная Резерфордом модель атома известна нам по рисункам, где электроны вращаются вокруг ядра почти как планеты вокруг Солнца в нашей Солнечной системе. (Резерфорд ничего не знал о квантовой механике, так что эта картинка серьезно отличается от реальной структуры атома – в этом мы вскоре убедимся.)

Дальнейшая работа, начатая Резерфордом и подхваченная другими физиками, показала, что сами ядра не являются элементарными частицами, а состоят из положительно заряженных протонов и не имеющих заряда нейтронов. Электрические заряды электронов и протонов равны по величине, но противоположны по знаку, поэтому атом, в котором протонов и электронов поровну (а нейтронов может быть сколько угодно) будет электрически нейтрален. Только с наступлением 1960–1970-х физики установили, что протоны и нейтроны, в свою очередь, состоят из более мелких частиц, именуемых кварками, которые удерживаются вместе благодаря глюонам – особым частицам, переносчикам сильного взаимодействия.

Можно сказать, что вся суть химии – в электронах. В ядре содержится основная масса атома, однако само ядро обычно ни в чем не участвует, не считая редких актов радиоактивного распада, реакций деления ядра или термоядерного синтеза. С другой стороны, электроны, вращающиеся вокруг ядра, – легкие и прыгучие, и именно благодаря тому, что им не сидится на месте, жизнь наша получается такой интересной. Два или более атомов могут делиться электронами, что приводит к образованию химических связей. Если правильно подобрать условия, то электрон может «передумать», в каком атоме ему находиться, – и в таких случаях происходят химические реакции. Электрон может даже вообще вырваться из заточения в атоме, пустившись в свободный полет в окружающей среде, – так возникает явление под названием «электричество». Если же встряхнуть электрон, то он инициирует вибрацию в окружающих электрических и магнитных полях, порождая таким образом свет и другие формы электромагнитного излучения.



Чтобы подчеркнуть идею о том, что частица это действительно точечный, а не просто крайне малый объект с ненулевым размером, проводится различие между «элементарными» частицами, находящимися в конкретных точках пространства, и «составными», которые на самом деле образуются из еще более мелких составляющих. Насколько известно в настоящее время, электроны – это подлинно элементарные частицы. Теперь понятно, почему в дискуссиях о квантовой механике постоянно говорят об электронах и приводят их в качестве примеров: это простейшие фундаментальные частицы, которые можно получить, а затем манипулировать ими, и они же играют центральную роль в поведении всей материи, из которой состоим и мы, и все, что нас окружает.

⚪ ⚪ ⚪

К огорчению Демокрита и его друзей, физики XIX века объясняли мир в терминах не одних только частиц. Вместо этого они предположили, что нужны две фундаментальные разновидности материи: частицы и поля.

Можно считать, что поля противоположны частицам, как минимум в контексте классической механики. Определяющее свойство частицы заключается в том, что она расположена в конкретной точке пространства и нигде более. Определяющее свойство поля заключается в том, что оно находится повсюду. Поле – это сущность, обладающая некоторым значением практически в любой точке пространства. Частицам нужно как-то взаимодействовать друг с другом, и это происходит благодаря воздействию полей.

Рассмотрим магнитное поле. Оно является векторным, то есть в любой точке пространства оно подобно маленькой стрелке с некоторой длиной (которая характеризует напряженность поля: она может быть больше или меньше, или даже точно равна нулю), а также направлением (стрелка направлена вдоль некоторой конкретной оси). Можно измерить, в каком направлении ориентировано магнитное поле – для этого достаточно взять обычный компас и посмотреть, куда указывает его стрелка. (В большинстве мест на Земле она будет указывать примерно на север, если, конечно, поблизости нет другого магнита.) В данном случае важнее всего то, что магнитное поле незримо пронизывает все пространство, даже когда мы его не наблюдаем. То же касается и всех прочих полей.

Еще существует электрическое поле, также являющееся векторным и обладающее величиной и направлением в любой точке пространства. Если магнитное поле можно зафиксировать с помощью компаса, то, чтобы обнаружить электрическое поле, нужно взять электрон в состоянии покоя и посмотреть, будет ли он ускоряться. Чем больше будет его ускорение, тем сильнее электрическое поле[7]. Одним из триумфов физики XIX века стало объединение электричества и магнетизма в рамках единой теории, сформулированной Джеймсом Клерком Максвеллом. Он показал, что электрические и магнитные поля – это различные проявления единого электромагнитного поля.

Гравитационное поле – это еще один хорошо известный в XIX веке вид. Как учит нас Исаак Ньютон, гравитация действует даже на астрономических расстояниях. Планеты Солнечной системы испытывают гравитационное притяжение со стороны Солнца. Эта сила прямо пропорциональна массе Солнца и обратно пропорциональна квадрату расстояния до него. В 1783 году Пьер-Симон Лаплас показал, что ньютоновскую гравитацию можно описать как действие потенциального гравитационного поля, которое имеет определенное значение в каждой точке пространства (так же как электрические и магнитные поля).

⚪ ⚪ ⚪

К концу XIX века перед физиками появились четкие очертания теории, полностью описывавшей мир. Материя сделана из атомов, которые состоят из более мелких частиц; эти частицы взаимодействуют благодаря различным силам, передающимся через поля, и все это происходит по законам классической механики.


Из чего состоит мир (версия XIX века)

• Частицы (точечные, из них состоит материя).

• Поля (пронизывающие пространство, порождающие взаимодействия).

В течение XX века были обнаружены новые частицы и поля, но в 1899 году были все основания полагать, что базовая картина мира уже предельно понятна. Прямо за углом таилась квантовая революция, но о ней еще никто не подозревал.

Если вы уже что-то читали о квантовой механике, то, возможно, задавались вопросом: «Электрон – это частица или волна?» Ответ таков: «Это волна, но когда мы смотрим на нее (то есть измеряем эту волну), она выглядит как частица». В этом заключается фундаментальная новизна квантовой механики. Существует всего одна сущность – квантовая волновая функция, но когда мы наблюдаем ее в определенных условиях, она кажется нам частицей.


Из чего состоит мир (версия XX века и далее)

• Квантовая волновая функция.

Чтобы перейти от картины мира в представлении конца XIX века (классические частицы и классические поля) к синтезу, полученному в XX веке (единая квантовая волновая функция), необходимо было совершить несколько концептуальных прорывов. История о том, как частицы и поля оказались разными аспектами одной и той же базовой сущности, – одно из самых недооцененных свершений на пути к унификации физики.

Чтобы прийти к этому, ученые начала XX века должны были осознать две вещи: поля (например, электромагнитное) могут проявлять свойства частиц, а частицы (например, электроны) могут иметь волновые свойства.

Сначала было замечено, что поля могут проявлять свойства частиц. Любая частица, обладающая электрическим зарядом, например электрон, повсюду вокруг себя создает электрическое поле. Напряженность поля постепенно снижается по мере удаления от заряда. Если встряхнуть электрон, например в направлении вверх-вниз, то поле будет колебаться вместе с ним, образую своеобразную рябь, которая будет постепенно распространяться во все стороны. Это и есть электромагнитное излучение – «свет», если коротко. Всякий раз, нагрев вещество до нужной температуры, мы устраиваем в его атомах встряску электронам, и вещество начинает светиться. Такое явление называется излучением абсолютно черного тела, и любой объект, равномерно нагретый до определенной температуры, «испускает» ее в форме излучения абсолютно черного тела.

Красный свет соответствует медленно колеблющимся низкочастотным волнам, а синий – стремительно колеблющимся высокочастотным. Учитывая, что было известно физикам об атомах и электронах на рубеже XIX–XX веков, можно было вычислить, сколько излучения должно выдавать абсолютно черное тело на любой конкретной частоте – в так называемом спектре абсолютно черного тела. Расчеты физиков хорошо подтверждались на низких частотах, но становились все менее точными по мере перехода к более высоким; в конечном итоге прогнозы давали бесконечное количество излучения, которое должно испускать любое материальное тело. Позже такой феномен окрестили ультрафиолетовой катастрофой, имея в виду невидимые частоты электромагнитного излучения, даже более высокие, чем у синего и фиолетового света.

Наконец, в 1900 году немецкому физику Максу Планку удалось вывести формулу, которая точно согласовывалась с данными. Здесь важно отметить, какой прием помог Планку: он выдвинул радикальную идею, предположив, что при излучении свет всегда поступает в виде небольших порций – «квантов» энергии, величина которых определяется частотой света. Чем быстрее колеблется электромагнитное поле, тем больше энергии будет у каждого излученного кванта.

Во время работы над этой теорией Планку пришлось постулировать существование новой фундаментальной естественной константы, которая теперь известна под названием «постоянная Планка» и обозначается буквой h. Количество энергии, содержащейся в кванте света, пропорционально его частоте, и постоянная Планка задает эту пропорциональность: энергия равна частоте, умноженной на h. Зачастую более удобно использовать усовершенствованную разновидность этой константы, ħ, которая называется «приведенная постоянная Планка», – это попросту исходная постоянная Планка h, деленная на 2π. Если в выражении фигурирует постоянная Планка – это верный признак, что в нем задействована квантовая механика.

Открыв свою постоянную, Планк подсказал новый способ понимания таких физических величин, как энергия, масса, длина или время. Например, существуют единицы для измерения энергии – эрги, джоули или киловатт-часы, а частота измеряется в единицах 1/время, поскольку сообщает, сколько раз происходит то или иное событие за единицу времени. Соответственно, чтобы энергия получилась пропорциональной времени, постоянная Планка выражается в единицах, равных произведению энергии на время. Сам Планк осознал, что эту новую величину можно комбинировать с другими фундаментальными константами – G (ньютоновской гравитационной постоянной) и c – скоростью света, получая, таким образом, универсально определяемые единицы длины, времени и так далее. Планковская длина равна приблизительно 10–33 сантиметрам, а планковское время – приблизительно 10–43 секундам. Планковская длина – действительно очень короткое расстояние, но, предположительно, она приобретает физическую важность в тех масштабах, где одновременно действуют квантовая механика (h), гравитация (G) и специальная теория относительности (c).

Забавно, что Планк сразу же усмотрел в этом открытии потенциал для контакта с внеземными цивилизациями. Если мы когда-нибудь начнем общаться с инопланетянами с помощью межзвездных радиосигналов, то они не поймут, что мы имеем в виду, если скажем, что рост человека – около 2 метров. Но если инопланетяне ориентируются в физике не хуже нас с вами, то они должны знать планковские единицы. Данное предположение пока не довелось опробовать на практике, но в остальном постоянная Планка оказала на науку неизмеримое влияние.

Если задуматься, то идея о том, что свет излучается дискретными квантами, энергия которых зависит от их частоты, озадачивает. Учитывая, что мы знаем о свете, логичнее было бы предположить, что энергия света зависит от его яркости, а не от цвета. Но благодаря своей идее Планк вывел верную формулу, поэтому в каком-то отношении эта идея точно работала.

Альберту Эйнштейну оставалось лишь в присущей ему манере отбросить устоявшиеся взгляды и совершить драматический переход к новой парадигме мышления. В 1905 году Эйнштейн предположил, что свет излучается только с конкретными значениями энергии, так как в буквальном смысле состоит из дискретных «порций», а не является непрерывной волной. Свет состоит из частиц, иными словами фотонов, как мы называем их сегодня. Именно эта идея – что свет распространяется дискретными частицеподобными квантами энергии – ознаменовала истинное рождение квантовой механики, и именно за это открытие Эйнштейн был удостоен Нобелевской премии в 1921 году. (Он заслужил еще как минимум одну Нобелевскую премию – за предложенную им теорию относительности, но так ее и не получил.) Эйнштейн был умен и понимал, что квантовая механика – это серьезно; как он сказал своему другу Конраду Хабихту, гипотеза о квантах света была «очень революционной».

Обратите внимание на тонкую разницу между предположениями Планка и Эйнштейна. Планк считал, что свет с фиксированной частотой излучается порциями с определенной энергией, тогда как Эйнштейн полагал, что так происходит именно потому, что свет – это и есть дискретные частицы. Есть разница в двух следующих утверждениях: 1) сказать, что эта кофемашина готовит ровно одну чашечку кофе за прогон, и 2) сказать, что весь кофе существует только в виде одночашечных порций. Это может иметь смысл, если мы рассуждаем о частицах материи, например об электронах и протонах, но всего несколькими десятилетиями ранее Максвелл триумфально объяснил, что свет – это волна, а не частица. Утверждение Эйнштейна грозило свести этот триумф на нет. Сам Планк не хотел принимать эту безумную идею, но она объясняла полученные экспериментальные данные. А это все-таки серьезное преимущество для безумной идеи, ищущей признания.

⚪ ⚪ ⚪

Тем временем в «частичном» отделе всей этой бухгалтерии появилась новая проблема, связанная с устройством атома в модели Резерфорда, а именно: атом состоит из электронов, вращающихся вокруг ядра, расположенного в его центре.

Как вы помните, если встряхнуть электрон, он излучает свет. Под «встряхнуть» мы в данном случае имеем в виду «ускорить каким-либо образом». Электрон должен излучать свет, если с ним происходит что-то, кроме движения по прямой с постоянной скоростью.

Исходя из резерфордовского представления об атоме, где электроны вращаются вокруг ядра, очевидно, что траектории этих электронов – не прямые линии. Электроны должны двигаться по окружностям или эллипсам. В классическом мире это безусловно означает, что электроны движутся с ускорением и, что не менее очевидно, при этом они должны испускать свет. Каждый атом в вашем теле и все атомы в окружающем мире должны светиться, если классическая механика не врет. Таким образом, электроны должны терять энергию, отдаваемую в виде излучения, и по спирали сваливаться на ядро. В классической физике орбита электрона не может быть стабильной.



Возможно, все ваши атомы действительно излучают свет, просто не такой яркий, чтобы его можно было увидеть. В конце концов, ровно такая же логика применима к планетам Солнечной системы. Они должны испускать гравитационные волны – ускоряющийся массивный объект должен создавать рябь в гравитационном поле, по аналогии с тем как ускоряющийся заряд порождает колебания в электромагнитном поле. Так оно и есть. Если в этом и были какие-то сомнения, то их не осталось в 2016 году, когда исследователи, работающие в обсерваториях LIGO и Virgo, объявили, что гравитационные волны удалось зафиксировать[8] – они образовались от столкновения двух сближавшихся по спирали черных дыр в миллиарде световых лет от нас.

Однако планеты Солнечной системы гораздо легче черных дыр и движутся медленнее, тогда как каждая из тех двух черных дыр была примерно в тридцать раз тяжелее Солнца. Поэтому гравитационные волны, испускаемые соседствующими с нами планетами, действительно очень слабые. Мощность, генерируемая в виде гравитационных волн при вращении Земли, составляет около 200 Ватт, что равно потреблению энергии нескольких лампочек и абсолютно несущественно по сравнению с другими воздействиями, например с солнечной радиацией и приливными силами. Если бы излучение гравитационных волн было единственной силой, влияющей на орбиту Земли, то потребовалось бы более 1023 лет, чтобы она врезалась в Солнце. Так что, возможно, то же самое верно и для атомов: может быть, орбиты электронов не совсем стабильны, но их стабильность достаточна.

Это количественный вопрос, поэтому в уравнения классической электродинамики легко подставить конкретные числа и посмотреть, что получится. Ответ получается катастрофическим, потому как электроны должны двигаться гораздо быстрее планет, а электромагнетизм оказывается сильнее гравитации. Количество времени, которое потребовалось бы электрону, чтобы врезаться в ядро атома, получается равным примерно десяти пикосекундам. Это одна стомиллиардная доля секунды. Если бы обычная материя, состоящая из атомов, была столь недолговечна, кто-нибудь уже наверняка обратил бы на это внимание.

Эта проблема обеспокоила многих людей. Среди них особого упоминания заслуживает Нильс Бор, который в 1912 году какое-то время работал под руководством Резерфорда. В 1913 году Бор опубликовал серию из трех статей, позже названных просто «трилогия»: в них выдвинул одну из тех отважных, «взятых с потолка» идей, характерных для первых лет развития квантовой теории. Он задал вопрос: что, если электроны не могут по спирали упасть на атомное ядро, так как не имеют возможности находиться на любой «желаемой» орбите, а вместо этого закреплены на конкретных, вполне определенных орбитах? В атоме будет одна орбита с минимальным уровнем энергии, следующая – с чуть более высоким уровнем энергии, и так далее. Но электроны не могут подойти к ядру ближе, чем спустившись на самую нижнюю орбиту, и между орбитами они также находиться не могут. Оказалось, что допустимые орбиты квантуются.



Предположение Бора было не столь экзотическим, каким может показаться на первый взгляд. Физики изучали, как свет взаимодействует с различными газообразными элементами – водородом, азотом, кислородом и так далее. Они обнаружили, что свет, пропущенный через холодный газ, частично поглощается; аналогично, если пропустить электрический ток через трубку с газом, то газ начинает светиться (именно этот принцип лежит в основе работы флуоресцентных ламп, используемых по сей день). Но газы поглощали и излучали свет лишь с определенными частотами, свободно пропуская лучи других цветов. В частности, водород, простейший элемент, в атоме которого всего один протон и один электрон, демонстрировал очень упорядоченную картину частот излучения и поглощения.

В классическом атоме Резерфорда подобное было бы нонсенсом. Но в модели Бора, где электроны могут двигаться лишь по определенным орбитам, такому феномену сразу же нашлось объяснение. Хотя электроны и не могут зависать между разрешенными орбитами, они могут перепрыгивать с одной орбиты на другую. Электрон может упасть с высокоэнергетической орбиты на орбиту с меньшей энергией, испустив свет, обладающий энергией, равной разности энергий этих орбит, либо может перепрыгнуть на более высокоэнергетическую орбиту, поглотив необходимое количество энергии из падающего на него света. Поскольку сами орбиты оказались квантованными, то есть дискретными, мы должны наблюдать взаимодействие электронов и тех квантов света, которые обладают строго определенными энергиями. Вместе с идеей Планка о том, что частота света связана с его энергией, это позволяло объяснить, почему наблюдается излучение и поглощение света лишь определенных частот.

Сравнив свои прогнозы с эмиссией света, наблюдаемой в атоме водорода, Бор смог не просто постулировать, что для электронов допустимы лишь определенные орбиты, но и вычислить, что это за орбиты. Любой вращающейся частице свойственна величина под названием момент импульса, которую легко рассчитать: момент импульса равен произведению массы частицы, ее скорости и расстояния от центра до орбиты. Бор предположил, что орбита, которую может занимать электрон, должна обладать моментом импульса, кратным конкретной фундаментальной константе. А когда он сравнил ту энергию, которую электроны должны излучать при прыжке с орбиты на орбиту, с наблюдаемыми свойствами света, излучаемого атомом водорода, он понял, какая постоянная нужна для согласования данных. Это была постоянная Планка, h. Точнее ее модифицированная версия – приведенная постоянная Планка, ħ = h/2π.

Когда сталкиваешься с чем-то подобным, сразу появляется ощущение, что ты на верном пути. Бор пытался учесть поведение электронов в атоме и постулировал импровизированное правило, согласно которому они могут двигаться лишь по определенным квантованным орбитам. Чтобы это правило стало согласовываться с экспериментальными данными, к нему пришлось добавить новую естественную константу – и она оказалась равна той, которую был вынужден изобрести Планк, пытаясь объяснить поведение фотонов. Вся эта конструкция могла показаться шаткой и довольно небрежной, но вместе эти находки наводили на мысль, что в мире атомов и частиц происходит кое-что действительно важное, не желающее вписываться в священные правила классической механики. Сегодня идеи того периода иногда описываются в категориях «старой квантовой теории», которая противопоставляется «новой квантовой теории», сформулированной Шрёдингером и Гейзенбергом в конце 1920-х.

⚪ ⚪ ⚪

Какой бы провокационной и относительно успешной ни была старая квантовая теория, полностью она никого не устраивала. Идея Планка и Эйнштейна о квантах света помогла сориентироваться в некоторых экспериментальных данных, однако ее сложно было примирить с невероятно успешной теорией Максвелла, в рамках которой свет считался электромагнитной волной. Идея Бора о квантованных стационарных орбитах электронов помогла осмыслить принципы поглощения и излучения света атомами водорода, но казалась взятой с потолка, причем, в сущности, не работала с иными элементами, кроме водорода. Еще до того, как «старая квантовая теория» получила такое название, казалось очевидным, что она лишь намекает на нечто гораздо более глубокое.

Одним из наименее удовлетворительных аспектов модели Бора было предположение, будто электрон может «прыгать» с одной орбиты на другую. Если низкоэнергетический электрон поглощает свет, обладающий определенным количеством энергии, то логично предположить, что он перепрыгнет на другую орбиту, только если получит ровно столько энергии, сколько для этого требуется. Но когда электрон с высокоэнергетической орбиты испустил свет, чтобы спрыгнуть вниз, у него, казалось бы, должны быть варианты, на какой из нижележащих орбит очутиться. От чего зависит этот выбор? Резерфорд сам беспокоился по этому поводу и писал Бору следующее:

В связи с Вашей гипотезой я обнаружил серьезное затруднение, в котором Вы, без сомнения, полностью отдаете себе отчет; оно состоит в следующем: как решает электрон, с какой частотой он должен колебаться при переходе из одного стационарного состоянии в другое? Мне кажется, Вы вынуждены будете предположить, что электрон знает заблаговременно, где он собирается остановиться.

Эта обеспокоенность электронами, «решающими», куда им податься, предвосхитила другой разрыв с парадигмой классической физики – куда более радикальный, чем могли представить ученые в 1913 году. В ньютоновской механике можно представить себе демона Лапласа, который теоретически может спрогнозировать всю дальнейшую историю мира исходя из его текущего состояния. На том этапе развития квантовой механики, о котором мы сейчас говорим, никто не мог даже помыслить, что эта модель будет полностью упразднена.

Потребовалось более десяти лет, чтобы наконец-то оформилась более полная система, «новая квантовая теория». На самом деле в то время выдвигались две конкурирующие идеи – матричная механика и волновая механика, – пока не было доказано, что с математической точки зрения это два эквивалентных представления одной и той же науки, которая сегодня называется просто «квантовая механика».

Изначально матричную механику сформулировал Вернер Гейзенберг, работавший вместе с Нильсом Бором в Копенгагене. Двое этих ученых, а также сотрудничавший с ними Вольфганг Паули дали миру копенгагенскую интерпретацию квантовой механики, однако вопросы о том, кто из них какого мнения придерживался, – предмет продолжающихся исторических и философских споров.

Предложенный Гейзенбергом в 1926 году подход демонстрирует смелость нового поколения ученых. Он заключался в следующем: отложить в сторону вопросы о том, что именно происходит в квантовой системе, и целиком сосредоточиться на объяснении того, что наблюдают экспериментаторы. Бор постулировал существование квантованных стационарных орбит электронов, не объясняя, почему одни орбиты допустимы, а другие – нет. Гейзенберг вообще избавился от орбит. Забудьте о том, что творится с электроном: нас интересует лишь то, какие его свойства мы можем наблюдать. В классической механике электрон характеризовался бы координатой и импульсом.

Гейзенберг сохранил эти термины, но не стал трактовать их как объективные свойства, существующие независимо от того, смотрим мы на электрон или нет, а решил считать их возможными результатами измерений. С точки зрения Гейзенберга, непредсказуемые скачки электрона, волновавшие Резерфорда и других, стали центральным феноменом, лучше всего иллюстрирующим природу квантового мира.

Гейзенбергу было всего двадцать четыре года, когда он представил первую формулировку матричной механики. Он, несомненно, был юным гением, но далеко не маститым представителем этой дисциплины и даже постоянный академический пост получил лишь годом позже. В письме к Максу Борну, еще одному своему наставнику, Гейзенберг сетовал, что «написал безумную статью и не решается подать ее для публикации». Однако совместно с Борном и Паскуалем Йорданом, тогда еще совсем молодым физиком, они смогли изложить матричную механику на базе четких и математически разумных оснований.

Было бы логично, если бы Гейзенберг, Борн и Йордан совместно получили Нобелевскую премию за разработку матричной механики – и действительно, Эйнштейн выдвинул на эту награду всех троих. Но в 1932 году Нобелевский комитет присудил премию единолично именно Гейзенбергу. Говорили, что включить Йордана в число лауреатов было проблематично, так как он прославился своей агрессивной ультраправой риторикой и в конечном итоге вступил в нацистскую партию, присоединившись к штурмовикам. Однако собратья-нацисты считали его ненадежным элементом, поскольку Йордан поддерживал Эйнштейна и других ученых-евреев. В итоге Йордан так и не получил Нобелевской премии. Борн также остался не у дел, но это упущение было исправлено в 1954 году, когда он был удостоен Нобелевской премии за статистическую интерпретацию волновой функции (правило Борна). Это был последний случай присуждения Нобелевской премии за работу над основами квантовой механики.

Когда началась Вторая мировая война, Гейзенберг возглавил немецкую государственную программу по разработке ядерного оружия. Как Гейзенберг на самом деле относился к нацистам и действительно ли прилагал все возможные усилия к созданию этих вооружений – предмет некоторых исторических споров. Представляется, что Гейзенберг, как и многие другие немцы, был не в восторге от нацистской партии, но предпочитал победу Германии советской оккупации. Нет доказательств того, чтобы Гейзенберг активно саботировал разработку ядерной программы, но очевидно, что успехи его команды оказались весьма скромными. Отчасти такой итог можно объяснить тем, что очень многие блестящие физики еврейского происхождения бежали из Германии, когда к власти в стране пришли нацисты.

⚪ ⚪ ⚪

Какой бы впечатляющей ни была матричная механика, у нее был серьезнейший «маркетинговый» изъян: ее математический аппарат был исключительно абстрактным и сложным для понимания. Эйнштейн отреагировал на эту теорию в характерном для него стиле:

«Настоящее колдовское исчисление. Довольно остроумно и к тому же защищено от опровержения собственной сложностью». И это слова человека, предложившего описывать пространство-время в терминах неевклидовой геометрии. Волновая механика, разработанная Эрвином Шрёдингером вскоре после этого, оказалась другой формулировкой квантовой теории и оперировала концепциями, с которыми физики были уже знакомы. Это значительно ускорило темпы восприятия новой парадигмы.

К тому времени физики уже давно изучали волны, а когда Максвелл описал электромагнетизм на основе теории поля, они уже поднаторели в этом направлении. Самые ранние размышления о квантовой механике, высказанные Планком и Эйнштейном, были далеки от волн и уводили к частицам. Но модель атома Бора подсказывала, что и частицы не то, чем кажутся.

В 1924 году молодой французский физик Луи де Бройль размышлял об эйнштейновских квантах света. На тот момент соотношение между фотонами и классическими электромагнитными волнами все еще оставалось неясным. Напрашивалось предположение, что в состав света входят как частицы, так и волны: частицеподобные фотоны могли переноситься хорошо известными электромагнитными волнами. Причем, если так и было, то ничто не мешало предположить, что в подобном процессе участвуют и электроны: может быть, существует некая волноподобная материя, переносящая и их тоже. Именно эту гипотезу и выдвинул в 1924 году де Бройль в своей докторской диссертации, предложив отношение между импульсом и длиной этих «материальных волн», аналогичное планковской формуле света, где большие по величине импульсы соответствовали более коротким волнам.



Как и многие предположения того времени, гипотеза де Бройля могла показаться несколько случайной, но у нее были далеко идущие следствия. В частности, логично было спросить, какое влияние могут оказывать материальные волны на электроны, вращающиеся вокруг ядра. Напрашивался замечательный ответ: чтобы волна закрепилась в стационарной конфигурации, ее длина должна быть в точности кратна длине окружности соответствующей орбиты. Таким образом, можно было вывести квантованные орбиты Бора, а не просто заявлять о их существовании: для этого было достаточно ассоциировать волны с электронами, окружающими ядро.

Представьте себе натянутую струну с закрепленными концами, например гитарную или скрипичную. Хотя она подвижна в любой точке и может колебаться вверх и вниз, общая динамика струны ограничена, так как она закреплена с обоих концов. В результате при вибрации струна создает волны лишь с конкретными длинами либо их комбинациями: вот почему струнные инструменты издают чистые музыкальные звуки, а не беспорядочный шум. Эти особые колебания называются модами струны. По сути, «квантовая» природа субатомного мира в этой картине возникает не потому, что реальность на самом деле разделена на дискретные части, а потому, что существуют естественные колебательные моды для волн, из которых состоят физические системы.



Слово «квант», означающее некоторое определенное количество чего бы то ни было, может создать впечатление, что квантовая механика описывает мир дискретным и мозаичным, как экран телевизора или компьютерный монитор, если посмотреть на него вплотную. На самом деле все наоборот: квантовая механика описывает мир как гладкую волновую функцию. Однако в подходящих условиях, когда отдельные части волновой функции имеют четкую «привязку», волна выглядит как комбинация отдельных колебательных мод. Когда мы наблюдаем такую систему, то видим те самые дискретные возможности. Это верно и для орбит электронов, и это же объясняет, почему квантовые поля выглядят как наборы отдельных частиц. В квантовой механике мир принципиально волнообразен; его явная квантовая дискретность обусловлена тем, как именно способны вибрировать эти волны.

Идеи де Бройля были интригующими, однако совершенно не тянули на полноценную теорию. Сформулировал такую теорию Эрвин Шрёдингер, в 1926 году выдвинувший динамическую трактовку волновых функций: в частности, он сформулировал описывающее их уравнение, позже названное в его честь. Революции в физике, в том числе и в квантовой механике, как правило, дело молодых, но Шрёдингер явно стал исключением. Тон дискуссиям на Сольвеевском конгрессе 1927 года задавали Эйнштейн (сорок два года) и Бор (сорок четыре) – они казались величественными старцами. Гейзенбергу, как и Дираку, было двадцать пять, Паули – двадцать семь. На Шрёдингера в его зрелом возрасте тридцати восьми лет смотрели как на человека не первой молодости, который едва ли способен выдвинуть радикальную идею, подобную этой.

Обратите внимание на переход от де бройлевских «материальных волн» к шрёдингеровской «волновой функции». Хотя работы де Бройля сильно повлияли на Шрёдингера, его концепция оказалась гораздо более проработанной и заслуживает отдельного упоминания. Очевидно, что величина волны материи в любой точке выражалась некоторым вещественным числом, в то время как амплитуды, описываемые волновыми функциями, являются комплексными числами – суммой действительного и мнимого чисел.

Что еще более важно, первоначальная идея состояла в том, что каждый вид частиц будет ассоциирован с некоторой материальной волной. Но шрёдингеровская волновая функция устроена иначе: в его трактовке существует всего одна функция, описывающая все частицы во Вселенной. Столь простой переход привел науку к революционному понятию о квантовой запутанности.

⚪ ⚪ ⚪

Идеям Шрёдингера сильно добавило очков уравнение, описывающее изменение волновых функций с течением времени. Хорошее уравнение – все, что нужно физику. Из красивой идеи («у частиц есть волновые свойства») оно делает строгий, бескомпромиссный инструмент. Для человека «бескомпромиссный» – не самое лучшее качество, но для научной теории – то, что нужно. Это характеристика, обеспечивающая точные прогнозы. Когда мы говорим, что в учебниках по квантовой механике много времени уделяется решению уравнений, мы в основном имеем в виду уравнение Шрёдингера.

Именно уравнение Шрёдингера решала бы квантовая версия демона Лапласа, предсказывая будущее Вселенной. И хотя исходная форма уравнения предназначалась для работы с системами, состоящими из единичных частиц, на практике оно отражает гораздо более общую идею, в равной степени применимую к спинам, полям, суперструнам или любой другой системе, которую вы можете описать с помощью квантовой механики.

В отличие от матричной механики, пользующейся языком математических концепций, с которыми не имели дел большинство физиков того времени, уравнение Шрёдингера не слишком отличалось от уравнений Максвелла, описывавших электромагнетизм и по сей день красующихся на поношенных футболках студентов физфака. Волновую функцию можно визуализировать – как минимум убедить себя в том, что вам это удалось. Физическое сообщество не вполне понимало, что делать с Гейзенбергом, но к приходу Шрёдингера физики были готовы. Копенгагенская компания – в особенности юнцы Гейзенберг и Паули – не слишком тепло восприняла конкурирующие идеи, выдвинутые непримечательным стариканом из Цюриха. Но прошло совсем немного времени, и они стали мыслить в категориях волновых функций, как и все прочие.

В уравнении Шрёдингера присутствуют незнакомые символы, но понять его основной посыл несложно. Де Бройль предположил, что импульс волны увеличивается по мере того, как уменьшается ее длина. Шрёдингер предложил схожую вещь, но для энергии и времени: скорость изменения волновой функции пропорциональна имеющемуся у нее количеству энергии. Вот его знаменитое уравнение в самой общей форме:



Не будем углубляться в детали, но интересно посмотреть, как физики обращаются с подобными уравнениями. Здесь не обошлось без математики, однако в конечном итоге это всего лишь символьное выражение той идеи, которую мы уже изложили словами.

Ψ (греческая буква «пси») – это волновая функция. В левой части уравнения указана скорость, с которой волновая функция изменяется во времени. В правой части – константа пропорциональности, в которой учтена, в частности, приведенная постоянная Планка ħ, фундаментальная константа квантовой механики, а также i – квадратный корень из –1. На волновую функцию Ψ воздействует так называемый гамильтониан, или H. Гамильтониан можно сравнить с инквизитором, который спрашивает: «Сколько у тебя энергии?» Эту концепцию в 1833 году изобрел ирландский математик Уильям Роуэн Гамильтон, пытаясь переформулировать законы движения классической системы задолго до того, как гамильтониан стал играть центральную роль в квантовой механике.

Когда ученые начинают моделировать различные физические системы, первым делом они пытаются вывести математическое выражение для гамильтониана данной системы. Стандартный способ вывода гамильтониана примерно таков: суммируем энергии всех частиц по отдельности, а затем плюсуем сюда дополнительные члены, описывающие то, как частицы взаимодействуют друг с другом. Может быть, они отталкиваются друг от друга как бильярдные шары или оказывают друг на друга взаимное гравитационное воздействие. Для любого подобного взаимодействия существует свой особый гамильтониан. А зная гамильтониан, вы знаете и все остальное: это компактный способ выражения всей динамики физической системы.

Если квантовая волновая функция описывает систему с некоторым заданным значением энергии, гамильтониан просто равен этому значению, и тогда, следуя логике уравнения Шрёдингера, система продолжает делать одно и то же, поддерживая энергию на одном уровне. Но чаще, поскольку волновые функции описывают суперпозиции различных возможностей, система представляет собой комбинацию множества энергий. В данном случае гамильтониан захватывает по чуть-чуть от каждой из них. Из этого следует, что в правой части уравнения Шрёдингера содержится информация о том, сколько энергии несет каждая из составляющих волновой функции в квантовой суперпозиции: высокоэнергетические компоненты эволюционируют быстрее, низкоэнергетические – медленнее.

В данном случае действительно важен сам факт, что существует уравнение, четко определяющее динамику системы. Когда оно у нас есть, весь мир превращается в игровую площадку.

⚪ ⚪ ⚪

Волновая механика сильно всколыхнула науку, и в скором времени Шрёдингер, английский физик Поль Дирак и другие ученые продемонстрировали, что она, в сущности, эквивалентна матричной механике, подарив нам единую теорию квантового мира. Но почивать на лаврах было рано. Физики остались один на один с вопросом, над разрешением которого мы бьемся по сей день: что такое волновая функция на самом деле? Какой физический феномен она описывает, если вообще описывает?

С точки зрения де Бройля, его волны материи были нужны, чтобы направлять движение частиц, а не заменить их вообще. (Позже он развил эту идею, предложив теорию волны-пилота, которая и сегодня остается жизнеспособным подходом к объяснению основ квантовой механики, хотя и не популярна среди практикующих физиков.) Напротив, Шрёдингер стремился полностью избавиться от фундаментальных частиц. Изначально он надеялся, что его уравнение будет описывать локализованные пучки вибраций, каждый из которых локализован в относительно небольшой области пространства и поэтому кажется частицеподобным макроскопическому наблюдателю. Тогда можно было бы считать, что волновая функция представляет распределение массы в пространстве.

Увы, стремления Шрёдингера были сведены на нет его же собственным уравнением. Если взять волновую функцию, описывающую единственную частицу, приблизительно локализованную в некоторой области пустого пространства, то уравнение Шрёдингера ясно показывает, что будет с этой частицей дальше: она быстро распространится повсюду. Предоставленные сами себе волновые функции Шрёдингера совсем не похожи на частицы[9].

Недостающее звено оставалось за Максом Борном, коллегой Гейзенберга по матричной механике: волновую функцию следует трактовать как инструмент для расчета вероятности встретить искомую частицу в любой конкретной точке. В частности, мы должны взять как вещественную, так и мнимую часть комплексной амплитуды, возвести обе эти части в квадрат по отдельности и сложить два полученных числа. Так мы получаем вероятность наблюдения соответствующего результата. (Предположение, что речь идет именно о квадрате амплитуды, а не об амплитуде как таковой, содержится в сноске, которая была добавлена к статье Борна 1926 года в последний момент.) После того как мы пронаблюдаем волновую функцию, она коллапсирует и локализуется в той точке, где мы обнаружили частицу.

Знаете, кому не понравилась вероятностная интерпретация уравнения Шрёдингера? Самому Шрёдингеру. Он, как и Эйнштейн, ставил своей целью предоставить конкретное механистическое обоснование квантовых феноменов, а не просто создать инструмент, которым можно было бы пользоваться для расчета вероятностей. «Мне это не нравится, и я сожалею, что когда-либо имел к этому отношение», – ворчал он впоследствии. Смысл знаменитого мысленного эксперимента с котом Шрёдингера, где волновая функция кота эволюционирует (в соответствии с уравнением Шрёдингера) в суперпозицию «живого» и «мертвого», заключался не в том, чтобы заставить людей говорить: «Ух ты, какая таинственная эта квантовая механика». Эксперимент был призван подтолкнуть людей к мысли: «Позвольте, но ведь так не бывает». Но, насколько нам известно, так оно и есть.

⚪ ⚪ ⚪

Обширная интеллектуальная работа была проделана за первые три десятилетия двадцатого века. В течение XIX века физики собрали многообещающую картину, отражавшую природу материи и сил. Материя состоит из частиц, а силы передаются через поля, и все они подчиняются законам классической механики. Однако, столкнувшись с экспериментальными данными, они были вынуждены выйти за рамки этой парадигмы. Стремясь объяснить исходящее от объектов излучение, Планк предположил, что свет состоит из дискретных порций энергии, а Эйнштейн развил эту идею, допустив, что свет существует в форме частицеподобных квантов. Тем временем факт стабильности атомов и наблюдение за тем, как газы излучают свет, позволили Бору предположить, что электроны могут двигаться лишь по определенным разрешенным орбитам, иногда перескакивая с одной на другую. Гейзенберг, Борн и Йордан оформили эту историю о вероятностных прыжках в полноценную теорию – матричную механику. Взглянув на нее под другим углом, де Бройль указал, что если мы будем трактовать материальные частицы, например электроны, как волны, то сумеем вывести квантованные орбиты Бора, а не просто постулировать их существование. На основании этого утверждения Шрёдингер разработал собственную полноценную квантовую теорию, в конечном итоге продемонстрировав эквивалентность матричной и квантовой механики. Несмотря на все чаяния, что волновая механика позволит избавиться от вероятностей как фундаментальной части теории, Борн показал, что правильное понимание волновой функции Шрёдингера таково: эта функция возводится в квадрат и получается вероятность наблюдать тот или иной результат измерения.

Уф! Неблизкий путь, проделанный за удивительно короткий период – от наблюдений Планка, сделанных в 1900 году, до Сольвеевского конгресса в 1927 году, когда новая квантовая механика была конкретизирована раз и навсегда. Колоссальная заслуга физиков начала XX века заключается в том, что они были готовы работать, опираясь на экспериментальные данные, и, пойдя таким путем, полностью отбросили фантастически успешные ньютоновские представления о классическом мире.

Однако их успехи в осознании последствий собственных открытий впечатляют гораздо меньше.

4
Что не может быть познано, поскольку не существует
Неопределенность и дополнительность

Как-то раз останавливает постовой Вернера Гейзенберга за превышение скорости.

«Вы знаете, с какой скоростью ехали?» – спрашивает офицер.

«Нет, – отвечает Гейзенберг, – но я точно знаю, где нахожусь!»

Думаю, все согласятся, что шутки физиков – самые смешные. Но физическую суть они передают не слишком точно. Этот бородатый анекдот предполагает знакомство со знаменитым принципом неопределенности Гейзенберга, который обычно объясняется так: невозможно одновременно с точностью определить и скорость объекта, и его положение в пространстве. Но реальность гораздо глубже.

Дело не в том, что мы не можем знать координату и импульс, а в том, что одновременно они даже не существуют. Лишь в крайне специфических обстоятельствах можно утверждать, что у объекта есть конкретное местоположение – когда его волновая функция полностью сконцентрирована в одной точке пространства и является нулевой где бы то ни было еще, и ровно то же самое со скоростью. А когда одна из этих величин определена, другая, если мы ее измерим, может быть абсолютно любой. Чаще волновая функция описывает разброс обеих величин – так что ни у одной из них нет одного конкретного значения.

Тогда, в 1920-х, все это было далеко не столь очевидно. Тогда было естественно полагать, что вероятностная природа квантовой механики просто указывает на неполноту теории и что более детерминистическую, напоминающую классическую картину еще только предстоит разработать. Иными словами, считалось, что волновая функция характеризует степень нашего неведения о происходящем, а не является, как мы здесь утверждаем, его истинным отражением. Узнав о принципе неопределенности, многие первым делом пытаются найти в нем лазейки. Все эти попытки провалились, но при этом мы узнали много нового о том, в чем квантовая реальность принципиально отличается от привычного нам классического мира.

Отсутствие конкретных значений физических величин в самом сердце реальности, таких, которые более или менее прямо соотносятся с тем, что мы можем наблюдать, – одна из глубинных особенностей квантовой механики, которую непросто принять при первом знакомстве. Есть физические величины, которые не просто неизвестны, но даже не существуют, хотя нам кажется, что мы можем их измерить.

Квантовая механика вплотную подводит нас к зияющей пропасти между тем, что мы видим, и тем, что есть на самом деле. В этой главе мы рассмотрим, как этот разрыв проявляется в принципе неопределенности, а в следующей еще более ярко увидим его в феномене квантовой запутанности.

⚪ ⚪ ⚪

Принцип неопределенности обязан своему существованию тому факту, что отношение между координатой и импульсом (который равен произведению массы на скорость) в квантовой механике фундаментально отличается от такого же отношения в классической.

В классической механике можно представить, что мы измерим импульс частицы, отследив ее координату во времени и пронаблюдав, как быстро она движется. Но если мы имеем доступ только к одной из характеристик, то координата и импульс в данный момент времени полностью независимы друг от друга. Если я скажу вам, что в конкретный момент времени частица имеет определенную координату и более ничего, вы не будете знать, какова ее скорость, и наоборот.

Числа, которые необходимы для описания системы, физики называют степенями свободы данной системы. В ньютоновской механике, чтобы сообщить мне полную информацию о состоянии набора частиц, вы должны указать мне координату и импульс каждой из них; в данном случае степени свободы – это координаты и импульсы. Ускорение не является степенью свободы, поскольку оно может быть вычислено, когда известны все силы, воздействующие на систему. Суть степени свободы в том, что сама она не зависит ни от чего другого.

Когда мы переходим к квантовой механике и размышляем о шрёдингеровских волновых функциях, ситуация несколько меняется. Чтобы получить волновую функцию для единственной частицы, необходимо учесть все точки, в которых потенциально может находиться эта частица, когда мы ее наблюдаем. Затем каждому из этих местоположений присвоим амплитуду, комплексное число с таким свойством: квадрат каждого такого числа равен вероятности обнаружить частицу в данной точке. Существует ограничение: сумма квадратов всех этих чисел в точности равна единице, поскольку общая вероятность найти частицу в любом конкретном месте равна единице. (Иногда вероятности выражаются в процентах, каждый процент составляет одну сотую от общей вероятности; вероятность 20 % эквивалентна вероятности 0,2.)

Обратите внимание: здесь мы не упоминаем ни скорость, ни импульс. Дело в том, что в квантовой механике нам не приходится отдельно указывать импульс, как это делалось в классической механике. Вероятность получить при измерении определенную скорость полностью определяется волновой функцией, заданной для всех возможных координат. Скорость не является отдельной степенью свободы, не зависимой от координаты. Основная причина кроется в том, что волновая функция – это, как известно, волна. В отличие от классической частицы, здесь у нас нет единственной координаты и единственного импульса, а есть функция всех возможных координат, и эта функция обычно колеблется вверх-вниз. От темпа этих колебаний зависит, что мы увидим, если попробуем измерить скорость или импульс.

Рассмотрим простую волну-синусоиду, колеблющуюся вверх и вниз регулярным образом и распространяющуюся в пространстве. Подставим такую волновую функцию в уравнение Шрёдингера и зададимся вопросом, как она будет изменяться со временем. Мы увидим, что у синусоиды есть четко определенный импульс и что чем меньше длина волны – тем выше ее скорость. Но синусоидальная волна не имеет определенного положения; напротив, она находится повсюду. Более типичная форма волны представляет собой некую смесь волнового пакета, локализованного в одной точке, и идеальной синусоиды с четкой длиной волны, распределенной по всему пространству, и не будет соответствовать конкретной координате или конкретному импульсу, а будет представлять некую смесь обеих величин.

В этом и заключается суть дилеммы. Если мы попытаемся локализовать волновую функцию в пространстве, то ее импульс станет все более и более неопределен, а если захотим ограничить ее определенной длиной волны (и соответственно, импульсом), ее местоположение будет становиться все более размытым. Это и есть принцип неопределенности. Дело не в том, что мы не можем знать обе величины одновременно; это просто факт устройства волновых функций: если координата частицы сосредоточена вблизи конкретного значения, то ее импульс оказывается совершенно неопределен, и наоборот. Старые добрые классические свойства под названием «координата» и «импульс» – это не величины с реальными значениями, а возможные результаты измерений.



Иногда люди ссылаются на принцип неопределенности за пределами нашпигованных уравнениями книг по физике. Поэтому здесь важно подчеркнуть, о чем не говорит этот принцип. Речь не идет о том, что «вообще все неопределенно». В конкретном квантовом состоянии определенной может быть либо координата, либо импульс; а вот быть определенными одновременно они не могут.

Кроме того, принцип неопределенности не говорит, что мы непременно нарушим систему, когда проведем измерение. Если у частицы есть определенный импульс, то мы вполне можем измерить его и ничего не изменится. Суть в том, что не бывает состояний, в которых и координата, и импульс одновременно были бы определенными. Принцип неопределенности – это утверждение о природе квантовых состояний и их связи с наблюдаемыми величинами, а не о физическом акте измерения.

Наконец, этот принцип никак не характеризует ограниченность наших знаний о системе. Мы можем точно знать квантовое состояние, и это будет все, что нам нужно знать о нем, и все равно мы не сможем с абсолютной точностью предсказать результаты всех возможных будущих наблюдений. Идея о том, что «мы чего-то не знаем» при рассмотрении конкретной волновой функции, – пережиток нашей интуитивной привычки считать, что реальность действительно такова, какой мы ее наблюдаем. Квантовая механика приучает нас к иному.

⚪ ⚪ ⚪

Иногда высказывается следующая идея, навеянная принципом неопределенности: якобы квантовая механика противоречит логике. Это глупо. Логика выводит теоремы из аксиом, и полученные теоремы просто истинны. Аксиомы могут быть применимы или неприменимы в конкретной физической ситуации. Теорема Пифагора – квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов – корректна как формальный вывод из аксиом евклидовой геометрии, хотя эти аксиомы и не соблюдаются, если говорить об искривленной поверхности, а не о плоской поверхности стола.

Идея о том, что квантовая механика противоречит логике – из того же разряда, что и мысль, будто атомы состоят в основном из пустоты (плохое соседство). Оба этих тезиса проистекают из внутреннего убеждения, что, несмотря на все, что нам удалось узнать, частицы – это все-таки точечные объекты, каждый из которых обладает некоторыми координатой и импульсом, а не распределенные волновые функции.

Рассмотрим частицу в коробке, в которой мы провели линию, разделяющую коробку на правую и левую части. У частицы есть волновая функция, распределенная по этой коробке. Сделаем предположение P – «частица находится в левой части коробки» и предположение Q – «частица находится в правой части коробки». Соблазнительно сразу признать оба этих предположения ложными, поскольку волновая функция распределена по всей коробке, от края до края. Но предположение «P или Q» обязательно будет верным, так как частица находится в коробке. Классическая логика не допускает, чтобы при одновременной ложности P и Q предположение «P или Q» оказалось верным. А значит, здесь что-то нечисто.

Проблема здесь не в логике и не в квантовой механике, а в нашем обычном невнимании к природе квантовых состояний при присвоении значений истинности утверждениям P и Q. Эти утверждения ни истинны, ни ложны; они просто плохо сформулированы. Нет такой вещи, как «та сторона коробки, в которой находится частица». Если бы волновая функция была полностью сконцентрирована с одной стороны коробки, а с другой стороны полностью исчезала, мы могли бы определить истинность P и Q. В таком случае одно из этих значений было бы истинно, а второе ложно и классическая логика работала бы на ура.

Несмотря на то что классическая логика совершенно справедлива во всех случаях, когда она правильно применяется, квантовая механика заложила основы более общих подходов, известных под названием «квантовая логика». Пионерами квантовой логики стали Джон фон Нейман и его коллега Гаррет Биркгоф. Исходя из логических аксиом, немного отличающихся от стандартных, можно вывести систему правил, которым подчиняются вероятности; эти правила подразумеваются квантовомеханическим правилом Борна. В этом смысле квантовая логика интересна и полезна, но ее существование не отменяет верности традиционной логики в соответствующих обстоятельствах.

⚪ ⚪ ⚪

Нильс Бор, в попытке подчеркнуть уникальность квантовой теории, предложил концепцию дополнительности. Идея заключается в том, что может быть более двух способов рассмотрения квантовой системы, и все эти способы в равной степени правомерны, но с оговоркой, что их нельзя применять одновременно. Волновую функцию частицы можно описать в терминах координаты или импульса, но не координаты и импульса одновременно. Аналогично можно считать, что электроны проявляют либо корпускулярные, либо волновые свойства, но не те и другие одновременно.

Нигде это свойство не проявляется столь ярко, как в знаменитом эксперименте с двумя щелями. На практике этот эксперимент был осуществлен лишь в 1970-е, но предложен гораздо раньше. Изначально это был не один из тех поразительных экспериментальных результатов, для понимания которых теоретикам приходится изобретать новые методы мышления, а просто мысленный эксперимент (в исходном виде сформулированный Эйнштейном во время дебатов с Бором, а позже популяризованный Ричардом Фейнманом в его курсе лекций для студентов Калифорнийского технологического института), призванный проиллюстрировать поразительные следствия квантовой теории.

Смысл эксперимента в том, чтобы указать на разницу между частицами и волнами. Начнем с источника классических частиц – здесь подойдет обычный дробовик, дробь из которого разлетается в несколько непредсказуемом направлении. Выстрелим из дробовика сквозь узкую щель и отметим попадания дроби на экране, расположенном за щелью. Большинство частиц пролетит сквозь щель, за исключением тех немногих, которые слегка изменят направление, ударившись о края. Таким образом на экране-детекторе мы увидим узор из отдельных точек, более или менее соответствующий очертаниям щели.

То же самое можно проделать и с волнами, например поместив мембрану с щелью в ванну с водой и создав волны, проходящие сквозь нее. Пройдя через щель, волны распространяются полукругом, прежде чем достичь экрана. Конечно, мы не увидим точек, подобных частицам, когда волна попадает на экран, но давайте представим, что у нас есть специальный экран, который загорается с яркостью, зависящей от амплитуды, которой волны достигают в любой конкретной точке. Подсветка будет наиболее яркой в той точке на экране, которая расположена ближе всего к щели, и постепенно угаснет при удалении в стороны.

Теперь давайте проделаем похожий эксперимент, но уже с двумя щелями, а не с одной. Случай с частицей здесь будет почти как в первом опыте: если наш источник частиц дает достаточный разброс, а частицы пролетают через обе щели, то на экране мы увидим две линии точек, по одной напротив каждой из щелей (или одну толстую линию, если щели расположены достаточно близко друг к другу). Но случай с волнами интересным образом изменится. Волны могут колебаться как вверх, так и вниз, и две волны, колеблющиеся в противоположных направлениях, будут гасить друг друга – этот феномен называется «интерференция». Итак, волны проходят через обе щели сразу, расходятся в стороны полукругами, но затем образуют интерференционную картину за мембраной. Таким образом, наблюдая на экране за щелями амплитуду результирующей волны, мы увидим не просто две линии, а яркую линию по центру (ровно посередине между щелями) с перемежающимися темными и светлыми участками, расходящимися в обе стороны и постепенно тускнеющими.

Пока речь идет о старом любимом классическом мире, где частицы и волны – это разные объекты, то и отличить их не составляет труда. А теперь давайте заменим наш дробовик или волновую машину источником электронов во всей их квантовомеханической красе. В этой установке есть несколько любопытных «наворотов», каждый из которых имеет провокационные последствия.

Сначала рассмотрим случай с единственной щелью. В данном случае электроны ведут себя в точности как классические частицы. Они пролетают через щель, затем фиксируются на экране с другой стороны: каждый электрон оставляет одну частицеподобную точку. Если пропустить через щель множество электронов, то они образуют на экране рассеянный узор напротив щели. Пока ничего интересного.



Теперь перейдем к случаю с двумя щелями (щели должны располагаться очень близко друг к другу – и это одна из причин, почему прошло так много времени, прежде чем эксперимент был проведен на практике). И снова электроны проходят сквозь щели и оставляют отдельные метки на экране с другой стороны. Но при этом они не образуют двух линий, как в случае с классической дробью. Вместо этого появляется ряд линий: одна жирная в середине, а в стороны от нее расходятся параллельные линии с постепенно уменьшающимся количеством отметин. Между этими линиями остаются темные области, в которых отметин почти нет.

Иными словами, проходя через две щели, электроны оставляют безошибочно узнаваемый интерференционный узор, подобно волнам, и одновременно отдельные метки, подобно частицам. Этот феномен породил массу бесплодных дискуссий о том, чем же «на самом деле» являются электроны – частицами или волнами или же иногда они подобны частицам, а в другое время – волнам. Так или иначе, что-то, бесспорно, проходило через обе щели, когда электроны летели к экрану.



В данный момент нас это уже не удивляет. Электроны, проходящие сквозь щели, описываются волновой функцией, которая очень похожа на классическую волну, проходящую через обе щели и колеблющуюся вверх и вниз. Поэтому логично, что мы наблюдаем интерференционную картину. Затем, когда электроны достигают экрана, мы можем наблюдать их в виде точечных частиц.

Теперь добавим еще один нюанс. Допустим, что рядом с каждой из щелей мы установили маленькие детекторы, с помощью которых сумеем определить, прошел ли электрон через щель. Так мы разберемся с безумной идеей, будто электрон может пройти через обе щели сразу.

Должно быть, вы догадываетесь, что мы увидим. Детекторы не покажут, что половина электрона прошла через одну щель, а вторая половина – через другую; каждый раз детектор у одной из щелей зафиксирует целый электрон, а детектор у второй не зафиксирует ничего. Дело в том, что детектор действует как измерительный прибор, а при измерении электронов мы наблюдаем их как частицы.



Но это не единственное следствие наблюдения за тем, как электрон проходит через щели. Интерференционный узор на экране исчезнет, и мы вновь увидим две полосы отметок, оставленных обнаруженными электронами, – по одной напротив каждой из щелей. Когда детектор работает, волновая функция коллапсирует в момент прохода электрона сквозь щели, и поэтому мы не видим интерференционной картины от волны, проходящей через обе щели сразу. Когда на электроны смотрят, они ведут себя как частицы.

Эксперимент с двумя щелями мешает цепляться за убеждение, что электрон подобен отдельной классической точке, а волновая функция просто отражает наше незнание о том, где эта точка находится. Из-за незнания не возникает интерференционных картин. Волновая функция реальна.


⚪ ⚪ ⚪

Возможно, волновые функции и реальны, но весьма абстрактны, и как только мы пытаемся рассмотреть более одной частицы одномоментно, визуализировать их становится сложно. По мере того как мы будем продвигаться вперед, рассматривая на практике все более тонкие квантовые явления, нам очень пригодится простой, легко усваиваемый пример, к которому мы сможем обращаться снова и снова. Спин частицы – еще одна степень свободы наряду с ее координатой и импульсом – именно то, что нам надо. Давайте ненадолго поломаем голову над тем, что означает спин в квантовой механике, но, когда мы с ним разберемся, станет гораздо проще.

Сам феномен спина понять не сложно – это всего лишь вращение вокруг оси, подобно вращению Земли или балерины, выполняющей пируэт. Но как и в случае с энергиями электрона, вращающегося вокруг атомного ядра, в квантовой механике при измерении спина частицы мы можем получить лишь определенные дискретные значения.

Например, для электрона существует всего два возможных результата измерения спина. Сначала выберем ось, вдоль которой будем измерять спин. При взгляде вдоль этой оси мы в любом случае обнаружим, что электрон вращается либо по часовой стрелке, либо против нее, причем всегда с одинаковой скоростью. Такие спины принято называть «верхним» и «нижним». Помните о «правиле правой руки» (правиле буравчика): если сжать четыре пальца правой руки в направлении вращения, то отставленный большой палец будет направлен вдоль соответствующей вращению вертикальной оси.



Вращающийся электрон подобен крошечному магниту, у которого, как и у Земли, есть северный и южный магнитные полюса; ось спина указывает на северный полюс. Один из способов измерить спин конкретного электрона – пропустить его через магнитное поле, которое немного отклонит электрон в зависимости от того, как ориентирован его спин. (Техническая деталь: чтобы это сработало, магнитное поле должно быть правильным образом сфокусировано: в одних местах напряженность поля должна быть более высокой, а в других – более низкой[10].)

Если я скажу вам, что электрон имеет определенный суммарный спин, то для данного эксперимента вы можете сделать следующий прогноз: электрон будет отклоняться вверх, если ось его спина ориентирована строго по внешнему полю, и отклоняться вниз, если ось спина ориентирована строго в противоположном направлении, а также отклоняться на некоторый промежуточный угол, если его спин будет ориентирован как-то иначе. Но в реальности мы наблюдаем другое.

Такой эксперимент был впервые проведен в 1922 году немецкими физиками Отто Штерном (ассистентом Макса Борна) и Вальтером Герлахом еще до того как идея спина была четко сформулирована. То, что они увидели, было поразительно. Электроны действительно отклоняются, проходя через магнитное поле, но либо строго вверх, либо строго вниз, без всяких промежуточных вариантов. Если вращать магнитное поле, то электроны по-прежнему отклоняются в направлении того поля, через которое проходят, либо против него, но по-прежнему никаких промежуточных значений. Как и энергия электрона, вращающегося вокруг атомного ядра, измеренный спин оказывается квантованным[11].



Это кажется удивительным. Даже если мы привыкли к мысли, что энергия электрона, вращающегося вокруг ядра, может иметь лишь определенные дискретные значения, по крайней мере эта энергия кажется объективным свойством электрона. Но то, что мы называем спином электрона, дает нам разные ответы в зависимости от того, как мы его измеряем. И независимо от того, в каком именно направлении мы измеряем спин, мы можем получить лишь один из двух возможных результатов.

Чтобы убедиться, что мы не сошли с ума, давайте сумничаем и пропустим электрон мимо двух магнитов подряд. Как вы помните, правила учебника квантовой механики говорят нам, что если мы получим определенный результат измерения и немедленно измерим ту же самую систему снова, то снова получим точно такой же результат. Действительно, так и происходит: если электрон отклоняется вверх одним магнитом (и следовательно, имеет верхний спин), он всегда будет отклоняться вверх и следующим магнитом, ориентированным таким же образом.

А что если повернуть один из магнитов на 90 градусов? Так мы расщепим исходный пучок электронов на два, один с верхним спином, другой – с нижним (если взять за отправную точку для измерения вертикально ориентированный магнит), затем возьмем электроны с верхним спином и пропустим их сквозь магнитное поле, которое ориентировано горизонтально. Что произойдет тогда? Может, они затаят дыхание и откажутся лететь, поскольку они вертикально ориентированные электроны с верхним спином, а мы пытаемся измерять их спин в направлении горизонтальной оси?



Нет. На самом деле второй магнит разделит электроны с верхним спином на два пучка. Половина из них будет отклоняться вправо (по направлению, заданному вторым магнитом), а половина – влево.



Чистой воды безумие. Наша интуиция, основанная на классической картине мира, подсказывает, что существует некая «ось, вокруг которой вращается электрон», и кажется логичным, что спин, характеризующий вращение вокруг именно этой оси, и будет квантован. Но эксперименты наглядно показывают, что ось, вокруг которой квантован спин, не зависит от самой частицы: можно выбрать любую ось, какую вам заблагорассудится, повернув магнит соответствующим образом, и спин будет квантоваться относительно этой оси.

В данном случае мы сталкиваемся с еще одним проявлением принципа неопределенности. Как мы уже знаем, «координата» и «импульс» не являются свойствами электрона – это просто связанные с ним феномены, которые мы можем измерить. В частности, ни одна частица не может одновременно обладать определенными значениями координаты и импульса. Как только мы определяем точную волновую функцию для координаты, вероятность наблюдения любого конкретного значения импульса полностью фиксируется, и наоборот.

То же касается «вертикального спина» и «горизонтального спина»[12]. Это не отдельные свойства, которыми может обладать электрон: это просто разные величины, которые мы можем измерить. Если выразить квантовое состояние в терминах вертикального спина, то вероятность наблюдения левого или правого горизонтального спина будет полностью фиксированной. Результаты измерений, которые мы можем получить, зависят от базового квантового состояния, которое можно выразить различными, но эквивалентными способами. Принцип неопределенности отражает тот факт, что в любом квантовом состоянии мы можем провести различные измерения, не совместимые друг с другом.

⚪ ⚪ ⚪

Системы с двумя возможными результатами измерений настолько распространены и полезны в квантовой механике, что для них придумали милое название: кубиты. Идея в том, что классический «бит» может иметь всего одно из двух значений: 0 или 1. Кубит (квантовый бит) – это система, которая допускает два возможных результата измерения, скажем верхний и нижний спины вдоль некоторой оси. Состояние типичного кубита – это суперпозиция обеих возможностей, каждая из которых характеризуется некоторым комплексным числом, амплитудой вероятности каждой из альтернатив.

Квантовые компьютеры оперируют кубитами по такому же принципу, по которому обычные компьютеры работают с классическими битами.

Волновую функцию кубита можно записать так:



Символы a и b обозначают комплексные числа, представляющие, соответственно, амплитуды вероятности верхнего и нижнего спинов. Отдельные слагаемые волновой функции, представляющие различные возможные результаты измерения, в данном случае – верхний и нижний спины, называются «компоненты». В этом состоянии вероятность наблюдать частицу с верхним спином будет равна |a|2, а вероятность наблюдать частицу с нижним спином – |b|2. Если, например, и a, и b были бы равны квадратному корню из 1/2, то вероятность наблюдать верхний или нижний спин составила бы 1/2.

Кубиты помогают понять критически важное свойство волновых функций: каждая из них подобна гипотенузе прямоугольного треугольника, а катеты этого треугольника соответствуют амплитудам каждого возможного результата измерения. Иными словами, волновая функция похожа на вектор, то есть на стрелку, обладающую длиной и направлением.

Вектор, о котором мы говорим, не указывает направление в реальном физическом пространстве, например «вверх» или «на север». Нет, скорее он направлен в пространстве всех возможных результатов измерений. Если речь идет о кубите одного спина, то это будет верхний или нижний спин (если мы выберем какую-либо ось, вдоль которой будем его измерять). Когда мы говорим, что «кубит находится в суперпозиции верхнего и нижнего спинов», мы фактически имеем в виду: «вектор, представляющий квантовое состояние, имеет одну компоненту, описывающую верхний спин, и другую компоненту, описывающую нижний спин».



Естественно полагать, что верхний и нижний спины указывают на противоположные направления: просто посмотрите на стрелки. Однако как квантовые состояния они перпендикулярны друг другу: кубит, полностью соответствующий верхнему спину, не имеет компоненты, которая соответствовала бы нижнему спину, и наоборот. Даже волновая функция для координаты частицы является вектором, хотя обычно мы представляем ее как гладкую функцию, распределенную в пространстве. Фокус в том, чтобы считать каждую точку пространства определяющей отдельную компоненту, а волновую функцию – суперпозицией всех этих компонент. Существует бесконечное количество таких векторов, поэтому пространство всех возможных квантовых состояний, именуемое гильбертовым пространством, является бесконечномерным для координаты любой отдельной частицы. Вот почему гораздо удобнее рассуждать о кубитах. Два измерения представить проще, чем бесконечное количество измерений.

Когда в нашем квантовом состоянии всего две компоненты, а не бесконечное множество, непросто представить состояние как «волновую функцию». Она не слишком волнистая и не похожа на гладкую функцию в пространстве. Но на самом деле думать об этом нужно совершенно иначе. Квантовое состояние – это не функция в обычном пространстве, а функция в абстрактном «пространстве результатов измерений», которое в случае кубита предусматривает всего две возможности. Если наблюдаемый нами феномен – это координата отдельной частицы, то квантовое состояние присваивает амплитуду каждой возможной координате, и это напоминает волну в обычном пространстве. Однако это необычный случай; по своей природе волновая функция более абстрактна, и, когда в ней участвует более одной частицы, ее становится трудно визуализировать. И тогда терминология «волновой функции» нам уже мешает. Кубиты – отличная вещь хотя бы потому, что у такой волновой функции всего две компоненты.

⚪ ⚪ ⚪

Может показаться, что данное математическое отступление было излишним, но есть непосредственная польза в том, что мы стали мыслить о волновых функциях как о векторах. Во-первых, становится понятно правило Борна, согласно которому вероятность получить любой конкретный результат измерения равна квадрату его амплитуды. Подробнее мы обсудим этот момент позже, однако легко увидеть, какой смысл заключен в этой идее. Если волновая функция – это вектор, то у нее есть длина. Логично предположить, что со временем длина этого вектора может уменьшаться или увеличиваться, но это не так; согласно уравнению Шрёдингера, меняется лишь «направление» волновой функции, а длина ее остается постоянной. Длину волновой функции можно вычислить по теореме Пифагора, для этого достаточно знать геометрию на уровне старших классов.

Числовое значение длины вектора несущественно, мы просто можем выбрать удобное число, зная, что оно останется постоянным. Пусть это будет единица, то есть будем считать, что любая волновая функция это вектор, длина которого равна единице. Сам этот вектор подобен гипотенузе прямоугольного треугольника, а его компоненты – катетам. Тогда теорема Пифагора подсказывает нам простое отношение: сумма квадратов амплитуд дает единицу, |a|2 + |b|2 = 1.

На этом простом геометрическом факте основано правило Борна для расчета квантовых вероятностей. Сами амплитуды в сумме не дают единицу, а их квадраты – дают. Все это напоминает важную особенность теории вероятности: сумма вероятностей различных исходов должна быть строго равна единице. (Что-то должно произойти, и общая вероятность всех возможных исходов в сумме дает единицу.) Еще одно правило заключается в том, что вероятности обязательно выражаются неотрицательными числами. Опять же, амплитуды в квадрате соответствуют этому требованию: амплитуды могут быть отрицательными (или комплексными), но их квадраты являются неотрицательными вещественными числами.

Не успев как следует задуматься, мы уже видим, что «амплитуды в квадрате» обладают подходящими свойствами, чтобы описывать вероятности исходов: это множество неотрицательных чисел, в сумме всегда дающих единицу, поскольку длина волновой функции равна единице. В этом вся суть: правило Борна сводится к теореме Пифагора, применяемой к амплитудам вероятностей различных исходов. Вот почему речь идет об амплитудах в квадрате, а не о самих амплитудах, не о квадратных корнях из амплитуд или о чем-нибудь столь же безумном.

Векторная картина позволяет красиво объяснить и принцип неопределенности. Как вы помните, электроны с верхним спином распределяются в соотношении пятьдесят на пятьдесят, превращаясь в электроны с левым и правым спинами, когда их пропускают через «следующий», горизонтально ориентированный магнит. Это говорит о том, что электрон в состоянии верхнего спина находится в суперпозиции правого и левого спинов, как и электрон с нижним спином.



Так, идея левого или правого спина определенным образом связана с идеей верхнего или нижнего спина; каждую из этих возможностей можно рассматривать как суперпозицию двух других. Мы уже говорили, что чистые состояния с верхним и нижним спинами образуют базис для определения произвольного состояния кубита – любое квантовое состояние можно записать как суперпозицию двух этих чистых состояний. Однако чистые состояния с левым и правым спинами образуют другой, но тоже вполне хороший базис. Так что любое состояние кубита можно также разложить и по этому базису.

Рассмотрим эту картину с точки зрения векторов. Если изобразить плоскость и отложить верхний спин по оси абсцисс, а нижний спин – по оси ординат, то из приведенных выше соотношений мы увидим, что направления правого и левого спинов окажутся под углом в сорок пять градусов к этим осям. Любую волновую фу

Скачать книгу

Отзывы

Захватывающее повествование о величайшем интеллектуальном достижении человечества – квантовой механике. Со смелой ясностью Кэрролл разоблачает квантовую таинственность, чтобы показать нам странную, но совершенно удивительную реальность.

Брайан Грин, профессор физики и математики, директор Центра теоретической физики при Колумбийском университете, автор книги «Элегантная Вселенная»

Бесконечно приятная книга Шона Кэрролла «Квантовые миры и возникновение пространства-времени» позволяет читателю лицом к лицу встретиться с фундаментальной квантовой запутанностью Вселенной – или, правильнее сказать, «вселенных»? Дочитав книгу, вы, возможно, поймаете себя на мысли, что квантовые странности не такие уж странные.

Джордан Элленберг, профессор математики в Мэдисоновском университете Висконсина, автор книги «Как не ошибаться»

Шон Кэрролл всегда пишет доходчиво и интересно, для читателя – одно удовольствие; при этом сам текст у него необычайно глубокий. Он выступает за принятие квантовой механики в ее самой минимальной, чистой, можно сказать, первозданной (и именно этим привлекательной) формулировке. Таким образом, он полностью отбрасывает привычные представления о реальности, выводя им на смену крайне сюрреалистическую многомировую интерпретацию. Шон приглашает нас вступить в битву между простой реальностью и множеством реальностей, хотя человеческого разума хватает лишь на самое приблизительное постижение такой многомировой картины. Он приобщает нас и к философским идеям, на основе которых зарождается революция. Это увлекательная и важная книга.

Ханна Левин, профессор физики и астрономии в колледже Барнарда, автор книги «Блюз черных дыр»

Шон Кэрролл прекрасно разъясняет суть споров, касающихся основ квантовой механики, отстаивая при этом самый элегантный и смелый подход: поразительную многомировую интерпретацию. Его комментарии о достоинствах и недостатках этой концепции – ясные, беспристрастные и потрясающие с философской точки зрения.

Стивен Строгац, профессор математики в Корнельском университете, автор книги Infinite Powers

Кэрролл позволяет, словно из первых рядов партера, познакомиться с развитием новых представлений о физике: это картина, объединяющая наш повседневный опыт с головокружительно устроенной Вселенной, напоминающей лабиринт отражений, где приходится усомниться даже в привычных представлениях о собственном «я». Эта увлекательная идея – как раз такая, в которой могут таиться ключи к гораздо более глубокой реальности.

Кэти Мак, астрофизик-теоретик из Университета Северной Каролины, автор готовящейся книги The End of Everything

Я не смог сдержать слез радости, убедившись, что множество фундаментальных проблем объяснены в этой книге лучше, чем когда-либо ранее. «Квантовые миры» – это шедевр, стоящий в одном ряду с книгой Фейнмана «КЭД» как одна из двух лучших научно-популярных книг по квантовой механике, какие я когда-либо видел. Если же считать, что «КЭД» писалась с другой целью, то перед нами попросту лучшая книга по популяризации квантовой механики – и точка.

Скотт Ааронсон, профессор информатики в Техасском университете, город Остин, и директор Центра квантовой информации при Техасском университете

Не оторваться, читать – одно удовольствие. Хотя эта книга и посвящена одной из глубочайших тайн современной физики, она также рассказывает и о метафизике. Кэрролл помогает нам не только задуматься об истинной, скрытой природе реальности, но и найти в ней смысл. Мне эта книга очень понравилась.

Приямвада Натараян, астрофизик-теоретик из Йельского университета, автор книги Mapping the Heavens

Пролог

Не бойтесь

Посвящается мыслителям всех времен, не напрасно державшим порох сухим

Квантовая механика выглядит пугающе даже для тех, кто ничего не понимает в теоретической физике. Но все не так страшно.

Это может показаться странным. Квантовая механика – это лучшая из имеющихся у нас теорий об устройстве микромира. Она описывает, как на уровне фундаментальных сил природы взаимодействуют атомы и частицы, с невероятной точностью прогнозируя исход любого эксперимента. Следует признать, что за квантовой механикой закрепилось своеобразное реноме чего-то сложного, таинственного, сравнимого чуть ли не с магией. Однако из всех людей именно физики должны быть удовлетворены подобной теорией: они постоянно заняты нетривиальными вычислениями, в которых учитываются квантовые феномены, и сооружают огромные приборы, предназначенные строго для проверки результатов этих вычислений. Надеюсь, никто всерьез не считает, что все это время они просто «создают видимость»?

Нет, о «создании видимости» речь не идет, но и друг с другом физики в данном случае не вполне честны. С одной стороны, квантовая механика – это сердце и душа современной физики. Астрофизики, специалисты по физике частиц, физики-атомщики, физики-ядерщики – все они постоянно пользуются квантовой механикой, причем пользуются мастерски. Таким образом, это не какие-нибудь элитарные исследования: квантовая механика применяется в современных технологиях повсеместно. Полупроводники, транзисторы, микрочипы, лазеры, компьютерная память – все это работает на основе квантовой механики. Если уж на то пошло, то квантовая механика необходима для понимания основополагающих свойств окружающего мира. В принципе, вся химия – это прикладная квантовая механика. Чтобы понять, как светит солнце или почему столы твердые, нужна квантовая механика.

Представьте, что вы закрыли глаза. Становится довольно темно, не так ли? Это кажется логичным, ведь свет не проникает сквозь веки. Однако все не совсем так: инфракрасный свет с длиной волны чуть больше, чем у видимого света, постоянно излучается любыми теплыми объектами, в том числе человеческим телом. Если бы наши глаза были столь же восприимчивы к инфракрасному спектру, как и к видимому свету, то инфракрасный свет слепил бы нас даже при закрытых веках – ведь инфракрасное излучение исходит и от глазных яблок. Однако палочки и колбочки – светочувствительные рецепторы у нас в глазах – воспринимают только видимый свет, но не инфракрасный. Как это удается? В конечном итоге ответ на этот вопрос лежит в области квантовой механики.

Квантовая механика – это не магия. Это глубочайшее и наиболее исчерпывающее из имеющихся у нас представление о реальности. Насколько нам сегодня известно, квантовая механика – это не аппроксимация истины, а истина в чистом виде. Это мнение может измениться, если появятся неожиданные экспериментальные результаты, но до сих пор не наблюдается даже намека на подобные сюрпризы. Разработка квантовой механики пришлась на начало XX века и проходила с участием таких великих ученых, как Планк, Эйнштейн, Бор, Гейзенберг, Шрёдингер и Дирак. В результате к 1927 году было вполне понятно, что квантовая механика – одно из величайших интеллектуальных достижений в истории человечества. У нас есть все основания ею гордиться.

С другой стороны, вспомним знаменитую цитату Ричарда Фейнмана: «Думаю, я смело могу сказать, что квантовую механику никто не понимает». Квантовая механика используется для проектирования новых технологий и прогнозирования результатов экспериментов. Однако честные физики признаются, что мы по-настоящему не понимаем квантовую механику. У нас есть метод, которым можно уверенно пользоваться в заданных условиях, и этот метод дает умопомрачительно точные прогнозы, триумфально подтвержденные экспериментальными данными. Но если мы захотим копнуть глубже и разобраться, что же на самом деле происходит, – окажется, что мы этого просто не знаем. Физики привыкли относиться к квантовой механике как к безмозглому роботу, с помощью которого решаются определенные задачи, а не как к любимому другу, интересной личности.

Подобное отношение со стороны профессионалов влияет и на то, как квантовую механику объясняют широкой аудитории. Нам бы хотелось представить полностью сформированную картину Природы, но сделать это мы не в силах, так как среди самих физиков нет согласия в том, что же на самом деле сообщает квантовая механика. Напротив, в научно-популярных трактовках обычно подчеркивается, что квантовая механика таинственная, обескураживающая, непостижимая. Такой посыл противоречит основополагающим принципам науки, в частности идее о том, что мир принципиально познаваем. Подступаясь к квантовой механике, мы натыкаемся на своеобразный ментальный блок, и, чтобы преодолеть его, нужна небольшая «квантовая терапия».

⚪ ⚪ ⚪

На лекциях по квантовой механике для студентов мы начинаем со списка правил. Некоторые из этих правил формулируются узнаваемо: существует математическое описание квантовых систем плюс объяснение того, как такие системы эволюционируют. Однако далее следует набор дополнительных правил, не имеющих аналогов ни в одной другой физической теории. Дополнительные правила описывают, что происходит, когда мы наблюдаем квантовую систему, и в такой ситуации ее поведение полностью отличается от поведения в ситуации, когда никто ее не наблюдает. Что же, черт возьми, это значит?

В принципе, есть два варианта ответа на данный вопрос. Первый – история, которую мы излагаем нашим студентам, удручающе неполна, и для того, чтобы квантовая механика могла считаться разумной теорией, нам необходимо понять, что такое «измерение» или «наблюдение» и почему в ситуации наблюдения и ненаблюдения поведение системы кажется настолько разным. Второй – квантовая механика разительно противоречит всем привычным нам представлениям о физике и требует отказаться от мира, где объект существует объективно и независимо от того, как мы его воспринимаем, приняв вместо этого картину мира, в которой наблюдение каким-то образом вплетено в фундаментальную природу реальности.

Как бы то ни было, есть все основания подробно исследовать в книгах по физике эти варианты и признать, что при всей супер-успешности квантовой механики, мы не можем утверждать, что ее разработка завершена. В книгах этого нет. Как правило, описанная проблема в книгах просто замалчивается, а физики предпочитают оставаться в собственной зоне комфорта, предлагая студентам решать очередные уравнения.

Это никуда не годится. И положение ухудшается.

Можно подумать, что в такой ситуации стремление понять квантовую механику, должно быть, является величайшей из целей в масштабах всей физики. Миллионы долларов грантовых денег поступают в распоряжение научных сотрудников различных квантовых фондов, ярчайшие умы привлекаются ради решения этой задачи, наиболее важные открытия вознаграждаются премиями и приносят славу.

Университеты соперничают за право принять на работу выдающихся представителей данной дисциплины, предлагая им баснословные жалованья и пытаясь переманить их таким образом у конкурентов.

К сожалению, все совсем не так. Мало того что попытки осмыслить квантовую механику не считаются в современной физике «статусной» специализацией; во многих институтах она почти не пользуется уважением, а то и активно принижается. На большинстве физических факультетов нет никого, кто занимался бы этой проблемой, а на тех, кто все-таки за нее берется, смотрят с подозрением. (Недавно, готовя заявку на грант, я получил совет сосредоточиться на описании моих работ по гравитации и космологии – эти дисциплины считаются серьезными – и умолчать о моих трудах над основами квантовой механики, поскольку при их упоминании меня начнут воспринимать менее серьезно.) За последние 90 лет ученые значительно продвинулись вперед. Но, как правило, это были целеустремленные одиночки, вопреки отношению коллег считавшие, что исследуемые проблемы действительно важны. Либо же это были студенты, которые не подозревали о предосудительности этого направления и впоследствии отказывались от него.

В одной из басен Эзопа Лиса нашла сочную виноградную гроздь, но все ее прыжки с целью достать ягоды не увенчались успехом. Тогда она разочарованно заявляет, что виноград, вероятно, кислый и не очень-то его и хотелось. В нашем случае в роли Лисы выступают физики, а в роли винограда – «понимание квантовой механики». Многие исследователи решили, что изначально было не так уж и важно понимать, как именно устроена природа; куда важнее умение делать конкретные прогнозы.

Ученых приучают ценить осязаемые результаты, будь то замечательные экспериментальные находки или количественные теоретические модели. Потратить время на понимание уже имеющейся теории без гарантии получения новых технологий и прогнозов – идея совсем не привлекательная. Похожее напряжение внутри сообщества было показано в одном из эпизодов телесериала «Прослушка», где группа сыщиков несколько месяцев упорно трудилась, собирая доказательства, чтобы выстроить дело против могущественного наркокартеля. Тем временем их начальству не хватало терпения на такой «безответственный» пошаговый подход. Им необходимо было что-то предъявить на ближайшей пресс-конференции, поэтому полицейских вынуждали биться головой о стену и совершать показушные аресты. Научные фонды и кадровые комитеты ведут себя в точности как это начальство. В мире, где любые стимулы полагаются только за конкретные, измеримые результаты, менее срочные проблемы, связанные с «общей картиной», можно отложить, чтобы не отвлекаться от гонки к следующей непосредственной цели.

⚪ ⚪ ⚪

У этой книги три основных посыла. Во-первых, квантовая механика должна быть понятной – даже если до этого пока еще далеко, – и достижение такого понимания должно быть одной из самых приоритетных целей современной науки. Квантовая механика занимает уникальное место среди физических теорий, так как в ней проводится явное отличие между тем, что мы видим, и тем, что есть на самом деле. Здесь возникает особый интеллектуальный вызов для ученых (а также для всех остальных), привыкших относиться к наблюдаемому миру как к очевидной «реальности» и объяснять все феномены в соответствии с этой реальностью. Однако этот вызов не является непреодолимым: если мы освободимся от некоторых устаревших и «интуитивных» способов мышления, то обнаружим, что в квантовой механике нет ничего безнадежно мистического или необъяснимого. Это просто физика.

Второй посыл заключается в том, что мы добились реального прогресса в понимании квантовой механики. Я сосредоточусь на описании подхода, который кажется мне наиболее многообещающим – это эвереттовская, или многомировая, интерпретация квантовой механики. Многомировая (эвереттовская) интерпретация была с энтузиазмом воспринята многими физиками, но пользуется неоднозначной репутацией среди тех, кому не нравится идея пролиферации новых реальностей, копирующих друг друга. Если вы один из таких скептиков, то я хочу по крайней мере убедить вас, что многомировая интерпретация – это самый последовательный способ осмысления квантовой механики. Именно к нему мы придем, если двинемся по пути наименьшего сопротивления, всерьез воспринимая квантовые феномены. В частности, картина с множеством миров прогнозируется на основе уже состоявшегося формализма, а не подгоняется вручную. Однако многомировая интерпретация – не единственный авторитетный подход, и мы поговорим о некоторых из важнейших его альтернатив (в этом я берусь быть честным, хотя и не обещаю соблюдать баланс). В данном случае важно, что каждый из подходов – это хорошо сформулированная научная теория, из которой проистекают потенциально разные экспериментальные следствия, а не просто эфемерные «интерпретации», о которых можно подискутировать за сигарами и коньяком, после того как настоящая работа уже закончилась.

Третий посыл – в том, что все это важно, и не только для целостности науки. Достигнутые к настоящему времени успехи имеющейся (адекватной, но не до конца последовательной) системы квантовой механики не должны затмевать того факта, что в определенных обстоятельствах для решения поставленной задачи подобный подход просто не годится. В частности, для понимания природы пространства-времени как такового, а также происхождения и конечной судьбы Вселенной критически необходимо разбираться в основах квантовой механики. В этой книге я сформулирую несколько новых, захватывающих и, признаться, гипотетических предложений, позволяющих проследить провокационные связи между квантовой запутанностью и тем, как изгибается и искривляется пространство-время, – речь о феномене, известном нам с вами как гравитация.

Поиск полной и убедительной теории квантовой гравитации уже давно признан работой по достижению важной научной цели (престиж, премии, попытка переманить преподавателя и вот это вот все). Возможно, секрет в том, чтобы не начинать с гравитации и не пытаться ее «квантовать», а податься в самые глубины квантовой механики и обнаружить, что именно на этом пути нас и поджидает гравитация.

Мы не можем говорить об этом с уверенностью. В этом и заключается захватывающая и неспокойная сторона ультрасовременных исследований. Однако пришло время всерьез отнестись к фундаментальной природе реальности, то есть встретиться с квантовой механикой лицом к лицу.

Часть I

Жуть

1

Что происходит

Заглянем в квантовый мир

Именно Альберт Эйнштейн, который со словами обращался столь же умело, как с уравнениями, навесил на квантовую механику ярлык, от которого ей не удается избавиться до сих пор: речь о немецком эпитете spukhaft, который обычно переводится на русский язык как «жуткий». Как бы то ни было, именно «жутковатое» впечатление остается от большинства публичных дискуссий, посвященных квантовой механике. Нам говорят, что эта область физики неотделима от чего-то мистического, сверхъестественного, диковинного, непознаваемого, странного, обескураживающего. Жуткого.

Непостижимость бывает привлекательной. Подобно таинственному обворожительному незнакомцу, квантовая механика соблазняет нас наделять ее всевозможными качествами и возможностями, даже если не обладает ими на самом деле. Беглый поиск по книгам со словом «квантовый» в заглавии дает следующий список «возможных» применений квантовой механики:

Квантовый успех

Квантовое лидерство

Квантовое сознание

Квантовое прикосновение

Квантовая йога

Квантовое питание

Квантовая психология

Квантовый разум

Квантовая слава

Квантовое всепрощение

Квантовая теология

Квантовое счастье

Квантовая поэзия

Квантовая педагогика

Квантовая вера

Квантовая любовь

Весьма впечатляющее резюме для физической дисциплины, которую зачастую характеризуют как применимую лишь на уровне микроскопических процессов с участием субатомных частиц.

Честно говоря, квантовая механика – или «квантовая физика», или «квантовая теория» (все эти названия синонимичны) – важна не только в микромире. Она описывает весь мир, от нас с вами до звезд и галактик, от недр черных дыр до истоков Вселенной. Но явная странность квантовых феноменов становится совершенно очевидной, только если рассматривать мир в максимальном приближении.

Одна из идей этой книги посвящена тому, что квантовая механика не заслуживает «пугающей» коннотации и не является каким-то невыразимым таинством, непостижимым для человеческого разума. Квантовая механика поразительна своим новаторским, глубоким, невероятным представлением о реальности, весьма отличающимся от привычного нам. Да, порой наука бывает такой. Однако если тема кажется сложной или вгоняет в ступор, наука в ответ стремится решить проблему, а не притворяться, будто ее нет. Есть все основания полагать, что квантовая механика в этом плане похожа на любую другую физическую теорию: такой подход к ней тоже должен сработать.

Многие описания квантовой механики строятся по типичному шаблону. Сначала указывают на какой-нибудь парадоксальный квантовый феномен. Далее рассказчик недоуменно признает, что мир, вероятно, может быть устроен именно так, и отчаивается найти в этом какой-либо смысл. Наконец (если повезет), вам попытаются дать некое объяснение.

В этой книге мы стремимся к ясности, а не к таинственности, поэтому я не стану брать на вооружение такую стратегию. Я хочу представить квантовую механику максимально понятно с самого начала. То, что я расскажу, покажется странным, но такова уж природа этой дисциплины. Зато, надеюсь, нам удастся избежать неясности и не запутаться еще больше.

Я постараюсь придерживаться исторической хронологии. В этой главе мы рассмотрим базовые экспериментальные факты, которые требует признать квантовая механика, а затем поговорим о многомировой интерпретации, чтобы осмыслить эти наблюдения. В следующей главе мы перейдем к полуисторическому описанию открытий, которые сподвигли ученых размышлять над такой принципиально новой разновидностью физики. И тогда мы по-настоящему поймем, насколько драматичны некоторые следствия квантовой механики.

Закончив с подготовкой, в оставшейся части книги мы возьмемся за решение увлекательной задачи – разберемся, к чему же все это нас ведет, и развеем таинственность, окружающую некоторые наиболее загадочные свойства квантовой реальности.

⚪ ⚪ ⚪

Физика – это одна из базисных естественных наук и одно из основополагающих человеческих начинаний. Мы осматриваемся в мире и видим, что он полон материи. Что это за материя и каковы ее свойства?

Человек стал размышлять над такими вещами с тех самых пор, как у него вообще появились вопросы. В Древней Греции физика считалась общим учением о переменах и движении, касалась как живой, так и неживой материи. Аристотель говорил о физике в терминах причин – материальных, активных и целевых. То, как движется и меняется тело, можно объяснить исходя из его внутренней природы и воздействующих на него внешних сил. Например, типичные тела могут по природе своей тяготеть к нахождению в покое; чтобы они пришли в движение, что-то должно на них подействовать и сообщить им такое движение.

Все изменилось благодаря умному пареньку по имени Исаак Ньютон. В 1687 году он опубликовал книгу «Начала математики», важнейшую работу в истории физики. Именно в ней были изложены основы так называемой классической, или попросту ньютоновской, механики. Ньютон смахнул, словно пыль, все эти древние разговоры о природе и целях, явив то, что скрывалось под ними: ясный и строгий математический аппарат, которым преподаватели и по сей день продолжают пытать студентов.

Какие бы воспоминания у вас ни сохранились о школьных и университетских домашних заданиях про маятники и наклонные плоскости, базовые идеи классической механики в принципе очень просты. Рассмотрим тело – например, камень. Абстрагируемся от всех его свойств, которые могут быть интересны геологу; так, нас не интересует его цвет и состав. Не будем учитывать и того, что базовая структура камня может измениться, например, если разбить его на кусочки молотком. Сведем наше представление об этом камне к максимально абстрактной форме: камень – это тело, занимающее положение в пространстве, причем это положение меняется со временем.

Классическая механика в точности описывает, как именно положение[1] камня изменяется со временем. Такая картина мира для нас абсолютно привычна, поэтому стоит лишний раз поразмыслить над тем, насколько она впечатляющая. Ньютон вручил нам не какие-нибудь зыбкие банальности об общих тенденциях к более или менее активному движению камней тем или иным образом. Он сообщает нам точные и нерушимые правила того, как всё во Вселенной движется в ответ на всевозможные воздействия, – правила, которые применимы и на Марсе, чтобы, например, ловить там бейсбольные мячи или управлять марсоходами.

Вот как это работает. В любой момент камень обладает некоторой координатой и скоростью. Согласно Ньютону, если на камень не воздействуют никакие силы, то он продолжит движение по прямой с постоянной скоростью. (Одно это – серьезное отступление от Аристотеля, который сказал бы, что любые тела необходимо постоянно толкать, чтобы они оставались в движении.) Если сила действительно воздействует на камень, то он будет перемещаться с ускорением. Ускорение – это изменение скорости камня, приводящее к тому, что он начинает двигаться быстрее или медленнее или просто меняет направление движения: прямо пропорционально той силе, которая к нему приложена.

В принципе, вот и все. Чтобы я мог полностью рассчитать траекторию камня, вы должны описать мне его координату, скорость и воздействующие на него силы. Остальное сообщат уравнения Ньютона. В таких взаимодействиях могут участвовать, например, сила тяготения, сила вашей руки (если вы подберете камень и бросите его), а также сила трения, воздействующая на камень в момент приземления. Эта идея в равной степени применима и к бильярдным шарам, и к космическим кораблям, и к планетам. Проект физики, в соответствии с такой классической парадигмой, в сущности, заключается в следующем: выяснить, из каких материалов состоит Вселенная (камни и пр.) и какие силы на них воздействуют.

Классическая физика предлагает стройную картину мира, однако прежде чем ее удалось сформулировать, было пройдено несколько критически важных этапов. Обратите внимание, насколько щепетильно приходится отбирать информацию, на основе которой мы определяем, что произойдет с камнем: его координата, скорость и то, какие силы на него воздействуют. Можно считать эти силы элементами внешнего мира, а существенная информация о самом камне сводится к значениям его собственных координаты и скорости. Напротив, ускорение камня в любой момент времени – это не та величина, которую требуется указать; именно эту информацию позволяют вычислить законы Ньютона, если известны данные о положении и скорости камня.

Вместе координата и скорость характеризуют состояние любого физического тела в классической механике. Если мы имеем дело с системой, в которой находится множество движущихся элементов, то классическое состояние системы – это просто список состояний всех ее отдельных частей. Так, в объеме воздуха, заполняющего обычную комнату, содержится около 1027 молекул различных типов, и состояние этого объема можно представить как список значений координат и скоростей для каждой из этих молекул. (Строго говоря, физики предпочитают оперировать импульсом каждой частицы, а не ее скоростью, однако на уровне классической ньютоновской механики импульс каждой частицы равен всего лишь произведению ее массы и скорости.) Набор всех возможных состояний, которые могут сложиться в системе, называется фазовым пространством системы.

Французский математик Пьер Симон Лаплас отметил важный подтекст, свойственный образу мышления в духе классической механики. Выходит, что бесконечно мощный разум мог бы знать состояние буквально каждого объекта во Вселенной, на основании чего был бы способен логически вывести все, что произойдет в будущем, равно как и все, что происходило в прошлом. Демон Лапласа – это мысленный эксперимент, а не реалистичный проект амбициозного ученого-информатика, но из этого эксперимента проистекают глубочайшие следствия. Ньютоновская механика описывает детерминистскую Вселенную, устроенную как часовой механизм.

Аппарат классической физики так красив и убедителен, что стоит ее усвоить, и она начинает казаться почти безальтернативной. Многие великие мыслители, жившие после Ньютона, были убеждены, что в общем виде суперструктура физики уже разгадана и дальнейшее развитие науки заключается в уточнении того, какое именно воплощение классической физики (на уровне сил, на уровне частиц) подходит для описания Вселенной в целом. Даже теория относительности, которая по-своему преобразила мир, является вариацией на тему классической механики, а не заменой оной.

Но вот появилась квантовая механика, и все изменилось.

⚪ ⚪ ⚪

Изобретение квантовой механики наряду с ньютоновской формулировкой классической механики представляет собой еще одну великую революцию в истории физики. Квантовая теория, в отличие от всего, что было до нее, не предлагает конкретную физическую модель в рамках базового аппарата классической физики; она полностью отказывается от этого аппарата, заменяя его чем-то совершенно иным.

Фундаментально новый элемент квантовой механики, то, что делает ее принципиально отличной от своей предшественницы, классической физики, заключается в вопросе, что значит измерить что-либо, касающееся квантовой системы. Что такое измерение, и что происходит, когда мы что-то измеряем, и что это нам говорит о реально происходящих событиях. Совокупность этих вопросов образует так называемую квантовомеханическую проблему измерения. Несмотря на ряд перспективных идей, ни в физике, ни в философии нет абсолютно никакого согласия по поводу того, как решать проблему измерения.

Попытки подступиться к проблеме измерения привели к появлению так называемой интерпретации квантовой механики, хотя этот термин не совсем точен. «Интерпретации» применимы в работах на темы литературы и искусства, где возможны различные трактовки одного и того же базового объекта. В квантовой механике складывается несколько иная ситуация: здесь конкурируют поистине разные научные теории, не совместимые друг с другом варианты представления физического мира. Именно поэтому современные ученые, работающие в этой дисциплине, предпочитают называть ее «основаниями квантовой механики». Тема квантовых оснований – часть науки, а не ее критика в буквальном смысле.

Никому никогда не приходило в голову рассуждать об «интерпретациях классической механики» – классическая механика совершенно прозрачна. Существует математический аппарат, описывающий координаты, скорости и траектории, и да, смотрите: вот камень, который фактически может двигаться под действием законов, предписываемых этим аппаратом. В классической механике не существует проблемы измерения как таковой. Состояние системы описывается ее координатами и скоростью, и если мы хотим измерить эти показатели – то просто берем и измеряем. Естественно, измерить показатели системы можно небрежно или грубо, и в результате получить неточные результаты либо изменить саму систему. Однако это отнюдь не данность: достаточно проявить аккуратность – и мы точно измерим все, что можно узнать о системе, не изменив ее каким-либо заметным образом. Классическая механика подразумевает ясные и недвусмысленные отношения между тем, что мы видим, и тем, что описывает теория.

Квантовая механика, при всей ее успешности, ничего подобного не предлагает. Загадку, скрытую в самом сердце квантовой реальности, можно резюмировать так: то, что мы видим, наблюдая мир, похоже, фундаментально отличается от реального положения дел.

⚪ ⚪ ⚪

Поговорим об электронах – элементарных частицах, обращающихся вокруг атомного ядра. Именно из их взаимодействий складывается вся химия и, следовательно, практически все интересное, что происходит вокруг вас в настоящий момент. Как и в случае с камнем, можно игнорировать некоторые конкретные свойства электрона, например его спин и тот факт, что у него есть электрическое поле. (В самом деле, мы могли бы даже продолжить пример с камнем – ведь камень является квантовой системой в той же степени, что и электрон, – однако, переходя к примеру с субатомной частицей, проще учитывать, что характерные отличительные черты квантовой механики со всей ясностью просматриваются именно при изучении сверхмалых объектов.)

В отличие от ситуации с классической механикой, где состояние системы можно описать в контексте ее координаты и скорости, природа квантовой системы куда менее конкретна. Рассмотрим электрон в его «естественной среде обитания», то есть когда он обращается вокруг атомного ядра. При слове «обращается» вы, вероятно, вспомните одно из тех наглядных пособий, которые, несомненно, не раз вам попадались, где орбита электрона изображается более или менее похожей на планетарную орбиту в Солнечной системе. У электрона (могли бы подумать вы) есть координата, скорость, и с течением времени он носится вокруг ядра, расположенного в центре атома, по круговой или, может быть, эллиптической орбите.

Квантовая механика подсказывает, что все несколько иначе. Можно измерить значения координаты или скорости электрона (но только по отдельности), и если мы окажемся по-настоящему аккуратными и талантливыми экспериментаторами, то получим ответы. Но то, что предстанет перед нами в результате такого измерения, не есть точное, полное, объективное состояние электрона. Действительно, те конкретные результаты измерений, которые мы получим, нельзя предсказать с полной уверенностью, и в этом отношении квантовая механика разительно отличается от классической. Лучшее, что получится сделать, это предсказать, с какой вероятностью мы увидим электрон в любом конкретном месте или двигающимся с конкретной скоростью.

Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.

Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой, связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x0, будет записываться как Ψ(x0).

Вероятность получить такой результат при измерениях равна квадрату амплитуды.

Вероятность конкретного результата = |Амплитуда данного результата|2

Это простое отношение называется правилом Борна в честь физика Макса Борна[2]. Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.

Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.

⚪ ⚪ ⚪

Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:

Правила классической механики

1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.

2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.

Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.

В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.

Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко[3] эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.

Правила квантовой механики (часть первая)

1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.

2. Далее система эволюционирует согласно уравнению Шрёдингера.

Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.

Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует, превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.

И вот самый сок нашего разбора.

Правила квантовой механики (часть вторая)

3. Существуют определенные наблюдаемые величины, которые по желанию можно измерить, – например координата частицы. По итогам измерения ее координаты мы получим вполне определенный результат.

4. Вероятность получения любого конкретного результата вычисляется исходя из волновой функции. Волновая функция связывает амплитуду с каждым из возможных результатов измерения; вероятность любого результата есть квадрат амплитуды волновой функции.

5. После измерения волновая функция коллапсирует. Как бы ни был широк разброс ее значений изначально, после измерения все ее значения концентрируются в области того результата, который мы получили при измерении.

В рамках современного университетского курса студенты при первом знакомстве с квантовой механикой изучают ту или иную версию пяти этих правил. Идеология, лежащая в основе такой подачи материала, – считать измерение фундаментальным процессом, полагая, что коллапс волновой функции происходит вместе с актом наблюдения, и не задавать вопросов о том, что при этом происходит «за кулисами». Такой подход иногда называют копенгагенской интерпретацией квантовой механики. Но ученые, в том числе копенгагенские физики, предположительно сформулировавшие такую интерпретацию, расходятся во мнениях о том, что же на самом деле должно обозначаться этим термином. Так что мы можем считать копенгагенскую интерпретацию просто «хрестоматийной трактовкой квантовой механики».

Стоит ли говорить, что идея, будто эти правила и отражают истинное устройство реальности, кажется возмутительной.

Что именно понимается под «измерением»? Из чего именно состоит «измеритель»? Тождествен ли такой «измеритель» человеку, то есть обязательно ли наличие сознания, чтобы он сработал, либо достаточно всего лишь способности кодировать информацию? Либо «измеритель» просто должен быть макроскопическим и если так – то насколько? Когда именно происходит акт измерения и насколько быстро? Почему мир устроен так, что волновая функция коллапсирует настолько резко? Если бы волновая функция была распределена в очень большом объеме пространства, то могла бы она сколлапсировать быстрее скорости света? А что происходит со всеми теми возможностями, которые, казалось бы, допускаются волновой функцией, но которых мы не наблюдаем? Они что, вообще не существовали или исчезли, превратившись в ничто?

Сформулирую предельно кратко: почему квантовые системы эволюционируют гладко и детерминированно, по уравнению Шрёдингера, пока мы на них не смотрим, но при взгляде на происходящее со стороны сразу коллапсируют? Как они узнают о наблюдении и почему наблюдение в данном случае так важно? (Не волнуйтесь, на все эти вопросы мы попробуем ответить.)

⚪ ⚪ ⚪

Большинство из нас полагает, что наука стремится понять окружающий мир. Мы наблюдаем, что происходит вокруг нас, а наука пытается дать объяснение происходящему.

Квантовая механика, если понимать ее в современной академической формулировке, в этом не преуспела. Мы не знаем, что происходит; по крайней мере, в сообществе профессиональных физиков согласия по этому вопросу нет. Вместо этого у нас есть готовый рецепт, который мы снова и снова записываем в своих учебниках, предлагая его студентам. Исаак Ньютон, зная координату и скорость камня, подброшенного вверх в гравитационном поле Земли, мог бы сказать вам, по какой траектории полетит этот камень. Аналогично, если у нас есть квантовая система, подготовленная определенным образом, правила квантовой механики подскажут нам, как будет меняться волновая функция с течением времени и какова будет вероятность получить при измерениях те или иные результаты, если мы решим эту функцию наблюдать.

Тот факт, что квантовый подход дает нам лишь вероятности, но не определенности, может кого-то раздражать, но с этим можно научиться жить. По-настоящему нас беспокоит (или должно беспокоить) то, что мы понятия не имеем, что именно происходит.

Представьте себе, что некий коварный гений выяснил все законы физики, но не стал открывать их всему миру, а запрограммировал компьютер, чтобы тот отвечал на вопросы по конкретным физическим задачам, после чего этот гений создал интерфейс для работы с программой через веб-страницу. Каждый заинтересованный пользователь может просто перейти на сайт, ввести хорошо сформулированный вопрос по физике и получить верный ответ.

Естественно, такой программой активно пользовались бы ученые и инженеры. Но доступ к этому сайту не означает, что мы понимаем законы физики. У нас есть оракул, задача которого – давать ответы на конкретные вопросы, но сами мы лишены даже малейшего представления об основополагающих правилах этой игры. Все остальные ученые в мире, у которых в распоряжении оказался бы такой оракул, не спешили бы заявлять о победе: они продолжали бы упорно работать, выясняя, каким именно законам подчиняется природа.

Квантовая механика в той форме, в которой она сегодня дается в учебниках по физике, – это оракул, а не по-настоящему понятая наука. Мы можем ставить конкретные задачи и находить на них ответы, но, честно признаться, не можем объяснить, что происходит «за кулисами». Что у нас действительно есть – так это ряд хороших идей о том, что бы это могло быть, и физическому сообществу давно пора бы начать относиться к ним серьезно.

2

Смелая формулировка

Аскетичная квантовая механика

Отношение к проблеме, которое насаждается на страницах современных учебников по квантовой механике, емко сформулировал физик Н. Дэвид Мермин: «Заткнись и считай!» Сам Мермин не отстаивает такую позицию, чего не скажешь о других. Каждый уважающий себя физик проводит немало времени за математическими расчетами, как бы он ни относился к основам квантовой механики. Так что предыдущее назидание можно сократить до «Заткнись!»[4].

Так было не всегда. На то, чтобы собрать квантовую механику по кусочкам, ушли десятилетия: свою современную форму она обрела примерно в 1927 году. Тогда в Бельгии прошел V Международный Сольвеевский конгресс, на котором собрались ведущие физики мира, чтобы обсудить статус и значение квантовой теории. К тому времени экспериментальные доказательства уже были ясны, и физикам не терпелось дать количественную формулировку правил квантовой механики. Пришло время закатать рукава и выяснить, что же служит причиной именно такого устройства этого безумного нового мира.

Дискуссии, проходившие на этой конференции, помогают понять контекст, но мы здесь не ради исторического экскурса. Мы хотим понять физику. Поэтому наметим логический путь, который приведет нас к полноценной научной теории квантовой механики. Никакого зыбкого мистицизма, никаких, казалось бы, взятых с потолка правил. Лишь простой набор предположений, которые приведут нас к впечатляющим выводам. Если держать в уме такую картину, то многие вещи, которые в иной ситуации показались бы зловеще таинственными, начинают обретать смысл.

⚪ ⚪ ⚪

Сольвеевский конгресс вошел в историю как мероприятие, с которого началась знаменитая серия дебатов между Альбертом Эйнштейном и Нильсом Бором относительно того, как следует воспринимать квантовую механику. Бор – датский физик, обосновавшийся в Копенгагене, по праву считается крестным отцом квантовой теории. Он отстаивал примерно такой подход, который принят в современных учебниках: использовать квантовую механику для расчета вероятностей тех или иных результатов измерений, но не требовать от нее ничего более. В частности, не следует слишком серьезно задумываться о том, что происходит «за кулисами». Бор, заручившись поддержкой более молодых коллег, Вернера Гейзенберга и Вольфганга Паули, настаивал, что в уже имеющемся виде квантовая механика – это совершенно нормальная теория.

Эйнштейн с ним решительно не соглашался. Он был глубоко убежден, что долг физики – досконально во всем разобраться и что состояние квантовой механики в 1927 году и близко не позволяло дать удовлетворительное описание природы. Эйнштейн, у которого также нашлись сочувствующие, например Эрвин Шрёдингер и Луи де Бройль, призывал рассматривать проблему глубже, попытаться расширить и обобщить квантовую механику настолько, чтобы она превратилась в удовлетворительную физическую теорию.

Участники Сольвеевского конгресса 1927 года. Наиболее известные участники обозначены цифрами: 1. Макс Планк, 2. Мария Кюри, 3. Поль Дирак, 4. Эрвин Шрёдингер, 5. Альберт Эйнштейн, 6. Луи де Бройль, 7. Вольфганг Паули, 8. Макс Борн, 9. Вернер Гейзенберг и 10. Нильс Бор (фото из «Википедии»)

Эйнштейн и его единомышленники имели основания для осторожного оптимизма и полагали, что такая «новая улучшенная теория» вот-вот будет открыта. Всего несколькими десятилетиями ранее, в конце XIX века, физики разработали теорию статистической механики, описывавшую принципы движения больших групп атомов и молекул. Ключевым шагом в развитии этих исследований, которые проводились под эгидой классической механики (в то время квантовая механика еще не вышла на сцену), стала идея о том, что можно осмысленно рассуждать о поведении большой совокупности частиц, даже если мы в точности не знаем координаты и скорости каждой из них в отдельности. Все, что требуется знать – распределение вероятностей, описывающее, с какой вероятностью частицы могут повести себя тем или иным образом.

Иными словами, в статистической механике предполагается, что существует некое конкретное классическое состояние всех частиц, но мы этого состояния не знаем. Все, что у нас есть – это распределение вероятностей. К счастью, для описания довольно большого количества полезных физических явлений этой информации достаточно, так как она фиксирует определенные свойства системы, например температуру и давление. Но распределение не является полным описанием системы; это просто отражение того, что мы знаем (или чего не знаем) о ней. Чтобы обозначить это различие с помощью философских терминов, отметим, что распределение вероятностей является эпистемологическим феноменом, описывающим состояние наших знаний, а не онтологическим, который описывал бы некоторое объективное свойство реальности. Эпистемология – это учение о знаниях; онтология – учение о том, что реально существует.

В 1927 году естественно было полагать, что и к квантовой механике разумно подходить с подобных позиций. В конце концов, к тому моменту ученые уже выяснили, что волновые функции используются для расчета вероятности любого конкретного результата измерения. Конечно, разумно было предположить, что сама природа доподлинно знает, каков будет этот результат, но формальный аппарат квантовой теории просто не позволяет получить это знание и, следовательно, нуждается в улучшении. Согласно такой трактовке, волновая функция – это еще не всё; существуют еще какие-то «скрытые переменные», фиксирующие, какими именно должны быть результаты конкретного измерения, даже если мы не знаем (и пожалуй, даже не можем определить до акта измерения), каковы их значения.

Может быть. Но в последующие годы удалось получить ряд результатов, среди которых особого внимания заслуживают те, к которым пришел физик Джон Белл, подразумевающих, что самые простые и прямолинейные попытки следовать этим путем обречены на провал. Попытки были – де Бройль даже выдвинул особую теорию, которая в 1950-х была повторно открыта и расширена Дэвидом Бомом, а Эйнштейн и Шрёдингер спорили, перебрасываясь идеями. Однако по теореме Белла предполагается, что любая такая теория требует наличия «дальнодействия», то есть феномена, при котором акт измерения в одной точке может сразу же повлиять на состояние Вселенной в сколь угодно отдаленной точке. Казалось, что это по духу, если не по букве, противоречит теории относительности, согласно которой объекты не могут перемещаться, а действия – распространяться быстрее скорости света. Подход, предусматривающий существование «скрытых переменных», по-прежнему активно прорабатывается, но все попытки такого рода довольно неуклюжи, и их сложно примирить с современными теориями, например со стандартной моделью физики частиц, не говоря уже о спекулятивных идеях о квантовой гравитации; их мы обсудим позже. Пожалуй, именно поэтому Эйнштейн, основоположник теории относительности, так никогда и не сформулировал собственной удовлетворительной теории.

Принято считать, что Эйнштейн проиграл дебаты с Бором. Нам рассказывают, что Эйнштейн, в молодости отличавшийся творческим и революционным мышлением, состарился и стал консервативен и поэтому не смог ни принять, ни даже понять важности следствий из новой квантовой теории. (Во времена Сольвеевского конгресса Эйнштейну было сорок восемь.) Далее физика развивалась без его участия, и великий человек сошел со сцены, погрузившись в собственные причудливые поиски единой теории поля.

Все эти измышления крайне далеки от истины. Хотя Эйнштейну и не удалось сформулировать полное и убедительное обобщение квантовой механики, его уверенность в том, что физика нуждается в более разумном подходе, чем «заткнись и считай», была более чем справедливой. Полагать, будто он не понимал квантовой теории, – полное безумие. Эйнштейн понимал ее столь же хорошо, как и все остальные, и продолжал вносить фундаментальный вклад в эту тему – в частности, он продемонстрировал важность квантовой запутанности, которая играет центральную роль в наших наилучших современных представлениях о том, как именно устроена Вселенная. Чего ему не удалось, так это убедить коллег-физиков в несостоятельности копенгагенского подхода и в важности поиска самых основ квантовой теории.

⚪ ⚪ ⚪

Если мы хотим продолжить амбициозные стремления Эйнштейна к созданию полной, недвусмысленной и реалистичной теории естественного мира, но нас удручают сложности, связанные с применением новых скрытых переменных к квантовой механике, остается ли в нашем распоряжении еще какая-нибудь стратегия?

Один из вариантов – забыть о новых переменных, отбросить все сомнительные идеи, связанные с измерением, очистить квантовую механику до самых ее основ и задаться вопросом: что происходит? Что собой представляет самая простая, обедненная версия квантовой теории, которую мы могли бы изобрести в надежде, что, опираясь на нее, по-прежнему сможем объяснять экспериментальные результаты?

Любая версия квантовой механики (коих существует множество) использует волновую функцию или некий эквивалентный феномен и постулирует, что волновая функция подчиняется уравнению Шрёдингера, по крайней мере в большинстве случаев. Эти составляющие должна включать любая теория, которую стоит воспринимать всерьез. Давайте посмотрим, удастся ли нам применить подобный упрямый минимализм, и попробуем рассуждать, не добавляя почти ничего к квантовому формализму.

У такого минималистического подхода есть два аспекта. Во-первых, мы серьезно воспринимаем волновую функцию, считая ее непосредственным отражением реальности, а не просто «учетным инструментом», с помощью которого удобно упорядочивать наши знания. Мы считаем ее онтологической, а не эпистемологической. Это самая аскетичная из возможных стратегий, поскольку в любой другой формулировке над волновой функцией будут надстраиваться какие-то вышестоящие структуры. Но такой шаг по-своему рискован, поскольку волновая функция сильно отличается от того, что мы наблюдаем в окружающем мире. Мы видим не волновые функции, а результаты измерений – например, координату частицы. Но теория, по-видимому, требует, чтобы центральная роль в ней отводилась волновой функции. Итак, давайте посмотрим, как далеко можно зайти, предположив, что квантовая волновая функция является точным описанием реальности.

Во-вторых, если волновая функция обычно эволюционирует гладко, в соответствии с уравнением Шрёдингера, то предположим, что именно таковы ее свойства в любой ситуации. Иными словами, давайте полностью избавимся от всех этих дополнительных правил, касающихся измерений по «квантовому рецепту», и вернемся к жесткой простоте классической парадигмы: есть волновая функция, она эволюционирует по детерминистскому правилу, и на этом все. Можем назвать такую версию «аскетичной квантовой механикой», или, для краткости, АКМ. Такая формулировка контрастирует с хрестоматийным описанием квантовой механики, сторонники которого делают отсылку к коллапсу волновых функций, вообще избегая разговоров о фундаментальной природе реальности.

Смелая стратегия. Но с ней сразу же возникает проблема: явно создается впечатление, что волновые функции коллапсируют. Измеряя квантовую систему с распределенной волновой функцией, мы получаем конкретный ответ. Даже если представить, что волновая функция электрона – это диффузное облако, в центре которого находится ядро, в попытках рассмотреть электрон мы увидим вовсе не облако, а точечную частицу в конкретном месте. Если же мы незамедлительно снова посмотрим на электрон, то увидим его практически на том же месте. Поэтому у первопроходцев квантовой механики были весьма серьезные основания полагать, что волновые функции коллапсируют, – ведь именно так все и выглядит.

Но вполне вероятно, что мы просто спешим с выводами. Вместо того чтобы исходить из увиденного и сразу пытаться изобрести теорию, начнем с аскетичной квантовой механики (описывающей лишь гладкую эволюцию волновых функций) и зададимся вопросом: что должны испытывать люди, живущие в мире, описываемом такой теорией?

Подумайте о том, что бы это могло значить. В предыдущей главе мы с осторожностью говорили о волновой функции как о некоем математическом черном ящике, из которого можно извлекать предсказания результатов экспериментов: волновая функция присваивает каждому конкретному результату амплитуду, и вероятность получить данный результат равна квадрату этой амплитуды. Макс Борн, предложивший данное правило, присутствовал на Сольвеевском конгрессе в 1927 году.

Теперь мы говорим о чем-то более глубоком и одновременно простом. Волновая функция – это не инструмент учета, а точное представление квантовой системы, как если бы набор координат и скоростей был бы представлением классической системы. Мир – это и есть волновая функция. Термин «квантовое состояние» можно использовать в качестве синонима «волновой функции», точно так же как набор координат и скоростей можно называть классическим состоянием.

Это очень серьезное утверждение, касающееся природы реальности. В обычной беседе, даже среди седовласых ветеранов квантовой физики, принято обсуждать такие понятия, как «координата электрона». Но предлагаемая точка зрения, при которой «всё есть волновая функция», подразумевает, что подобные разговоры уводят от сущности, причем в одном из основополагающих вопросов. Нет такой вещи, как «координата электрона». Есть только волновая функция электрона. Квантовая механика подразумевает принципиальное отличие между «тем, что мы можем наблюдать» и «тем, что есть на самом деле». Наши наблюдения не открывают ранее существовавшие факты, о которых мы просто не знали; в лучшем случае они дают крошечный срез гораздо более масштабной, фундаментально неизмеримой реальности.

Задумайтесь об идее, которую вам часто озвучивали: «Атомы почти полностью состоят из пустоты». Если взять за основу картину мира АКМ – это вопиюще неверное утверждение. Оно проистекает из упрямого стремления считать электрон крошечным классическим шариком, который носится кругами в волновой функции, а не признавать, что электрон – это и есть волновая функция. В АКМ ничего нигде не носится: есть только квантовое состояние. В атомах нет пустоты; они описываются волновыми функциями, каждая из которых целиком заполняет атом.

Способ вырваться из наших «интуитивных» классических представлений – решительно отвергнуть идею о том, что электрон действительно имеет какую-то конкретную координату. Электрон находится в суперпозиции всех возможных координат, в которых мы можем его увидеть, и не привязан ни к какому конкретному местоположению до того самого момента, пока мы его там не увидим. С помощью термина «суперпозиция» физики подчеркивают, что электрон существует в комбинации всех координат, каждой из которых соответствует конкретная амплитуда. Квантовая реальность – это волновая функция; координаты и скорости, как в классической физике – лишь то, что мы можем наблюдать, когда исследуем эту волновую функцию.

⚪ ⚪ ⚪

Итак, согласно аскетичной квантовой механике, реальность квантовой системы описывается волновой функцией или квантовым состоянием, которое можно считать суперпозицией всех возможных результатов любого возможного наблюдения, которое мы могли бы провести. Как от этого перейти к досадной реальности, где кажется, что волновые функции коллапсируют, когда мы делаем такие измерения?

Для начала давайте немного внимательнее разберемся с утверждением «мы измеряем координату электрона». Что на самом деле включает в себя такой процесс измерения? Предположительно, нам понадобится некоторое лабораторное оборудование и чуточку экспериментаторской сноровки, но частности нас не волнуют. Всё, что нужно знать – есть некоторый измерительный прибор (камера или что-то еще), который каким-то образом взаимодействует с электроном, а затем позволяет считывать, где именно мы увидели электрон.

Вот и все, что позволяет нам узнать эксперимент, описываемый в учебнике по квантовой механике. Некоторые из ученых, первыми испробовавших этот подход, в том числе Нильс Бор и Вернер Гейзенберг, были готовы зайти немного дальше, говоря о том, что измерительный прибор следует считать классическим объектом, пусть даже наблюдаемый с его помощью электрон является квантово-механическим. Такое разграничение между элементами реальности, одни из которых приходится рассматривать с классической, а другие – с квантовой точки зрения, иногда называется «разрез Гейзенберга». Вместо признания, что квантовая механика фундаментальна, а классическая механика в подходящих условиях просто является хорошим приближением квантовой, в учебниках по квантовой механике классический мир ставится во главу угла как наиболее верный подход в рассуждениях о людях, камерах и других макроскопических объектах, взаимодействующих с микроскопическими квантовыми системами.

1 В физике принято положение объектов описывать с помощью координаты. Поэтому в дальнейшем, говоря о положении объекта в пространстве, мы будем употреблять именно этот термин. – Примеч. науч. ред.
2 Есть одна небольшая техническая деталь, которую хотелось бы здесь упомянуть; затем смело забудем о ней. Амплитуда любого конкретного результата фактически является комплексным, а не вещественным числом. Вещественные числа входят в ряд всех чисел, расположенных между минус бесконечностью и бесконечностью. Возводя в квадрат вещественное число, мы всякий раз получаем другое вещественное число, которое больше или равно нулю. Поэтому если говорить строго о вещественных числах, то квадратного корня из отрицательного числа просто не существует. Математики давным-давно осознали, что квадратные корни из отрицательных чисел были бы очень удобны, поэтому и ввели такое понятие, как мнимая единица – комплексное число, являющееся квадратным корнем из –1. Мнимое число – это просто вещественное число, называемое мнимой частью, умноженное на i. В таком случае комплексное число состоит из двух частей: вещественной и мнимой. Вертикальные черточки у члена |Амплитуда|2 в формуле правила Борна означают, что мы фактически складываем квадраты вещественной и мнимой частей. Все это я написал только для самых въедливых читателей: далее я буду говорить просто «вероятность – это амплитуда в квадрате» и этим удовлетворюсь.
3 Здесь и далее в книге под гладкостью эволюции волновой функции подразумевается ее непрерывное и плавное изменение с течением времени, без скачков или коллапса. – Примеч. науч. ред.
4 В интернете можно найти множество источников, где фраза «Заткнись и считай!» приписывается Ричарду Фейнману, физику, справлявшемуся со сложными вычислениями лучше, чем кто-либо и когда-либо. На самом деле он никогда не говорил ничего подобного, равно как и не разделял такой точки зрения; Фейнман тщательно размышлял о квантовой механике, и никто никогда не обвинял его в подобных манерах. Часто случается, что та или иная цитата приписывается вероятным людям, которые более знамениты, чем истинный автор цитаты. Социолог Роберт Мертон назвал этот феномен «эффектом Матфея», ссылаясь на следующую строку из Евангелия от Матфея: «ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет».
Скачать книгу