Стивен Хокинг. Жизнь среди звезд бесплатное чтение

Майкл Уайт
Стивен Хокинг. Жизнь среди звезд

Michael White, John Gribbin

STEPHEN HAWKING. A LIFE IN SCIENCE


© Michael White, John Gribbin, 2002

© ООО «Издательство АСТ», 2018 (перевод на русский язык)

Предисловие

В начале 1991 года Стивен Хокинг попал в Кембридже в незначительную аварию, но не прошло и половины суток, как все американские телеканалы уже названивали его издателю в «Bantam» и требовали полной информации. И неважно, что ученый отделался легкими ушибами и через несколько дней вернулся к работе. Все, что касается Стивена Хокинга, сразу попадает в новостные сводки. Такого внимания не удостаивался ни один ученый в мире. В глазах общественности ученые словно бы и не совсем люди, чуждые перипетиям обычной жизни, но ни один из живущих ныне ученых не может сравниться со Стивеном Хокингом в известности.

Но ведь Стивен Хокинг – не просто ученый. Его книга «Краткая история времени» разошлась по всему миру миллионными тиражами, и в статистике продаж его имя обычно упоминается в одном ряду со Стивеном Кингом и Джеффри Арчером. И вот что удивительно: книга Хокинга посвящена предмету, который настолько далек от привычного легкого чтения на ночь, что перспектива вдумываться в подобный текст теоретически должна заставить среднего читателя корчиться от комплекса неполноценности. Однако, как известно всей планете, книга профессора Хокинга – настоящий хит, сделавший его знаменитостью мирового масштаба. Хокингу удивительным образом удалось обойти преграды предрассудков и донести свои теории, понятные лишь посвященным, до рядового читателя.

Однако история Стивена Хокинга началась не с «Краткой истории времени» и ею не заканчивается. В первую очередь он выдающийся ученый. И в самом деле, он занял прочное место на переднем крае теоретической физики задолго до того, как стал кумиром миллионов. Его научная карьера началась более тридцати лет назад, когда он занялся космологическими исследованиями в Кембриджском университете.

За эти тридцать лет Хокинг, пожалуй, больше любого другого ученого поспособствовал тому, чтобы раздвинуть границы нашего понимания Вселенной. Его теоретические работы о черных дырах и открытия в области происхождения и природы Вселенной фундаментальны, а зачастую и революционны.

Научная карьера Хокинга шла в гору, однако жил он замкнуто – такой же далекий от широкой публики, как и его сугубо научные труды. Когда Хокингу был двадцать один, ему поставили страшный диагноз – болезнь моторных нейронов, она же боковой амиотрофический склероз, – и ученый почти всю жизнь провел в инвалидном кресле. Однако он раз и навсегда запретил болезни мешать его научным изысканиям. Хокинг стяжал всемирную славу популяризатора науки сначала благодаря своему бестселлеру, а затем – сериалу ВВС «Вселенная Стивена Хокинга», и все это время был известен как выдающийся физик. Он старается не распространяться ни о своей инвалидности, ни – в особенности – о личной жизни. Пусть его считают в первую очередь ученым, во вторую – писателем, автором научно-популярных книг, и уже затем – во всех отношениях обычным человеком с теми же желаниями, порывами, мечтами и устремлениями, что и у каждого из нас. В этой книге мы постарались уважать его пожелания и написать портрет человека, наделенного многочисленными талантами, но в остальном совершенно такого же, как все.

Когда мы описывали и научную деятельность профессора Хокинга, и его обыденную жизнь, скрытую от посторонних глаз, мы намеревались показать читателю и то, и другое с разных точек зрения. Повествование не обошлось без повторов, однако мы надеемся, что это поможет понять, как вписывается наука в контекст человеческой личности, – а точнее, показать, насколько неразделимы наука и жизнь в биографии Стивена Хокинга.

Майкл Уайт, Перт
Джон Гриббин, Льюис
Сентябрь 2002 года

Глава 1
День смерти Галилея

В дорогом ресторане неподалеку от центра Кембриджа за столом, накрытым льняной скатертью, роскошно сервированным и уставленным всевозможными блюдами, сидят двенадцать молодых людей и девушек. Сбоку от них – человек в инвалидном кресле. Он старше остальных. Невероятно хрупкий на вид, такой изможденный, что, кажется, вот-вот исчезнет, он неподвижно и чуть ли не безжизненно обмяк в кресле с черной обивкой. Худые бледные руки с тонкими пальцами вяло лежат на коленях. В худую шею под самым расстегнутым воротником рубашки вживлено пластмассовое устройство примерно двух дюймов в поперечнике – без него он не может дышать.

Но несмотря на немощь, лицо у него живое, мальчишеское, на лоб падает аккуратная каштановая челка, и только морщинки под глазами выдают, что перед нами ровесник Дональда Трампа и Кита Ричардса. Голова у него поникла, но ясные голубые глаза за стеклами очков в стальной оправе разглядывают собравшихся с живым интересом. Рядом сиделка – она сидит бочком и кормит его с ложечки. И иногда вытирает ему губы салфеткой.

Атмосфера в ресторане оживленная. Молодые люди вокруг шутят, смеются, иногда обращаются к сидящему в кресле и даже подтрунивают над ним. Вскоре веселую болтовню прерывает сиплый металлический голос, живо напоминающий персонажей «Звездных войн»: человек в кресле отпускает замечание, вызывающее взрыв хохота. Глаза человека в кресле загораются, все его лицо озаряется знаменитой улыбкой – «самой замечательной улыбкой в мире». И вдруг становится понятно, что этот человек полон жизни.

Обедающие приступают к горячему, и тут у входа в ресторан поднимается какая-то суета. Миг – и метрдотель подводит к столу улыбающуюся рыжеволосую красавицу в шубке из искусственного меха. Все за столом не сводят с нее глаз, умолкли и ждут, что будет, а она с улыбкой здоровается. Эта женщина выглядит гораздо моложе своих лет и к тому же роскошно одета, что особенно заметно на фоне собравшихся: никто здесь не придает особого значения внешнему виду, кроме человека постарше, сидящего в кресле – на нем аккуратный строгий пиджак и крахмальная рубашка, – и его безупречно элегантной сиделки.

– Извините за опоздание, – говорит красавица. – На мою машину в Лондоне надели башмак за неправильную парковку. Наверное, звезды так встали! – со смехом добавляет она, и все улыбаются, а человек в кресле весь сияет. Красавица обходит стол, останавливается в двух шагах перед креслом, за которым стоит сиделка, и говорит, чуть пригнувшись:

– Профессор Хокинг, я счастлива с вами познакомиться. Я Ширли Маклейн.

Он смотрит на нее снизу вверх и улыбается, а металлический голос произносит: «Здравствуйте».

Весь вечер Ширли Маклейн сидит рядом с человеком в кресле и бомбардирует его вопросами на важные для нее темы. Она очень интересуется метафизикой и сверхъестественным. Ширли объехала весь мир, говорила со множеством духовных наставников и просветленных и сформулировала собственную теорию смысла жизни. Она убеждена, что все взаимосвязано и что мы пришли в мир не просто так, верит в Бога и в сотворение Вселенной. Но это лишь вера. А человек в кресле рядом с ней, – вероятно, величайший физик современности, и его научные теории описывают происхождение Вселенной, вопросы ее существования и дальнейшую судьбу всего тварного мира, в том числе нашу, вашу и мисс Ширли Маклейн. Он очень знаменит, его имя известно миллионам жителей планеты. Ширли спрашивает профессора, верит ли он, что существует Бог, создавший Вселенную и руководящий своим творением. Профессор коротко улыбается, механический голос отвечает:

– Нет.

Это отнюдь не грубость и не высокомерие – профессору свойственна лаконичность. Ведь каждое слово ему приходится набирать на компьютере, подсоединенном к креслу, медленно и старательно, легчайшими движениями двух пальцев одной руки – это практически последние остатки телесной свободы в его распоряжении. Гостья серьезно кивает. Она не это хотела от него услышать и не согласна с ним, но может лишь слушать и принимать во внимание его слова, поскольку, помимо всего прочего, его мнение следует уважать.

Потом, отобедав, компания покидает ресторан и возвращается в университет, на кафедру прикладной математики и теоретической физики, и там две знаменитости остаются наедине в кабинете профессора Хокинга – в неизменном присутствии сиделки. И голливудская актриса осыпает кембриджского профессора вопросами еще два часа, пока в общей гостиной не подадут чай.

До встречи с Хокингом в декабре 1988 года Ширли Маклейн говорила с огромным множеством разных людей – и великих, и безвестных. Она несколько раз номинировалась на премию «Оскар» и получила ее за роль в фильме «Язык нежности», так что в то время, пожалуй, была даже более знаменита, чем ее кембриджский собеседник. Однако нет никаких сомнений, что встреча со Стивеном Хокингом стала для нее одним из самых ярких событий всей жизни. Этот человек, весом не больше девяноста фунтов, полностью парализованный, лишенный речи, не способный даже поднять голову, если она случайно свесится на грудь, провозглашен «наследником Эйнштейна», «величайшим гением конца ХХ века», «острейшим умом современности», а один журналист даже окрестил его «властителем Вселенной». Хокингу принадлежат фундаментальные открытия в космологии, он больше всех других ученых способствовал расширению наших представлений о мироздании. Вдобавок он лауреат десятков научных премий. Королева Елизавета II наградила его орденом Британской империи (степень командора), а затем и орденом Кавалеров Почета. Он автор научно-популярной книги «Краткая история времени», входившей в список бестселлеров на протяжении пяти лет, с 1988 про 1993 год; ее суммарные тиражи по всему миру превысили десять миллионов экземпляров.

Как ему это удалось? Как человек, страдающий прогрессирующей тяжелой болезнью, превозмог немощь и преодолел все препятствия на своем пути, полном побед? Как он сумел достичь того, о чем подавляющее большинство крепких здоровых людей не смеют даже мечтать?

* * *

На поверхностный взгляд стороннего наблюдателя, оказавшегося в Оксфорде в январе 1942 года, Вторая мировая война за два с половиной года не особенно повлияла на местную жизнь. Лишь присмотревшись, можно было заметить расставленные по городу пулеметные установки, свежую камуфляжную краску – тускло-серый и хаки, – высокие башни автомобильных заводов в Коули, к востоку от дремлющих шпилей, военные грузовики и армейские транспортеры, которые нет-нет да и гремели по мосту Магдалины и по Хай-стрит, мимо тронутых изморозью каменных горгулий.

Между тем война была в самом разгаре. Месяц назад, 7 декабря, Япония напала на Перл-Харбор, и в войну вступили США. На востоке советская армия громила гитлеровские войска в Крыму, что стало первым шагом к полному поражению Германии и Японии.

В Британии все приемники были настроены на волну, где Дж.-Б. Пристли вел еженедельную программу «Постскриптум к новостям», доктор Джоуд и Джулиан Хаксли обсуждали наивные вопросы слушателей на научные темы в «Мозговом тресте», а Вера Линн, «любовь каждого солдата», клялась войскам и дома, и за границей: «Мы встретимся снова!» Уинстон Черчилль только что вернулся из рождественской поездки в Америку, где выступил с обращением к обеим палатам Конгресса, воодушевив слушателей цитатами из Линкольна и Вашингтона, и показал знак «V» – «победа». Телевизор пока что оставался диковинкой, не выходивший за пределы лабораторий.

Пожалуй, то, что восьмого января 1942 года одновременно исполнилось триста лет со дня смерти одного из величайших умов в истории, итальянского ученого Галилео Галилея, и пришел в мир, охваченный кровопролитной войной, Стивен Уильям Хокинг, что-то да значит. Однако, как подчеркивает сам Хокинг, в тот же день родилось еще примерно две тысячи младенцев, так что, возможно, это просто любопытное совпадение.

Изабель, мать Стивена, приехала в Оксфорд уже на последних сроках беременности. Они с мужем Фрэнком жили в Хайгейте, северном пригороде Лондона, но решили, что рожать лучше в Оксфорде. Причина была проста. Хайгейт, как и весь остальной Лондон и почти весь юг Англии, каждую ночь подвергался налетам «люфтваффе». Однако воюющие страны, проявив поразительное взаимопонимание, заключили договоренность, что если Германия воздержится от бомбардировок Оксфорда и Кембриджа, Королевские ВВС сохранят мирное небо над Гейдельбергом и Геттингеном. Говорили даже, что Гитлер намерен сделать Оксфорд столицей мирового правительства, когда захватит всю планету, и поэтому хотел сохранить оксфордскую архитектуру во всем великолепии.

И Фрэнк, и Изабель Хокинг уже бывали в Оксфорде: они здесь учились. И он, и она родились в семьях среднего класса. Дедушка Фрэнка Хокинга был вполне преуспевающим йоркширским фермером, но во время кризиса сельского хозяйства сразу после Первой мировой быстро обнищал. Изабель была второй по старшинству из семерых детей в семье врача из Глазго. Ни та, ни другая семья не смогли бы позволить себе платить за университет без серьезных жертв, к тому же в эпоху, когда женщины получали высшее образование гораздо реже, чем мы привыкли, со стороны родителей Изабель было недюжинным либерализмом в принципе рассматривать вариант, что их дочь пойдет в университет. В Оксфорде пути молодых людей не пересекались, поскольку Фрэнк Хокинг поступил туда на несколько лет раньше своей будущей жены. Он изучал медицину и специализировался по тропическим болезням. Первый год войны застал его в Восточной Африке, где он изучал местные недуги. Услышав о войне, он решил вернуться в Европу – по суше через Африку, а затем морем в Англию, – и пойти добровольцем на фронт. Однако дома ему сообщили, что как профессиональный медик-исследователь он принесет родине гораздо больше пользы.

А Изабель после Оксфорда сменила несколько должностей, одинаково ей ненавистных, в том числе некоторое время проработав налоговым инспектором. Всего через несколько месяцев она уволилась и решила занять место, которое до нелепого не соответствовало ее квалификации: секретарша в научно-исследовательском медицинском институте. Именно там веселая и приветливая Изабель, слегка посмеиваясь над своей нынешней работой и надеясь в будущем заняться чем-то более осмысленным, познакомилась с высоким застенчивым молодым ученым, только-только вернувшимся из увлекательного путешествия по экзотическим странам.

Когда Стивену было всего две недели, Изабель Хокинг увезла его обратно в Лондон, под обстрелы. Два года спустя мать с сыном едва не погибли, когда в соседний дом попала «фау-два». К счастью, Хокинги куда-то отлучились, но само здание сильно пострадало.

После войны Фрэнк Хокинг был назначен главой отделения паразитологии Национального института медицинских исследований. Его семья жила в том же самом хайгейтском доме до 1950 года, а потом переехала на двадцать миль к северу, в Хартфордшир, в город Сент-Олбанс, и поселилась в большом нелепом доме по адресу Хиллсайд-роуд, 14.

Сент-Олбанс – небольшой городок, выстроенный вокруг собора. Основан он был в 303 году, когда Св. Альбан принял мученическую смерть, и на этом месте возвели церковь. Однако римляне задолго до того оценили стратегическое положение региона. Они выстроили здесь город Веруламий, так что первая христианская церковь, вероятно, стояла на римских развалинах, оставшихся после краха империи, когда солдаты вернулись домой. В 1950-е годы ХХ века Сент-Олбанс был типичным процветающим английским городком среднего класса. По словам одного из школьных приятелей Хокинга, «жутко помпезное было местечко, все так стремились продвинуться вверх по социальной лестнице, что даже душно становилось».

Когда семья Хокингов переехала туда, Стивену было восемь. Фрэнк очень хотел отправить сына в частную школу. Он всегда считал, что хорошая частная школа – залог профессионального успеха. Подтверждений этому было предостаточно: в 1950-е подавляющее большинство членов парламента были выпускники привилегированных учебных заведений, в престижных частных школах учились и почти все руководители различных учреждений вроде радиостанции ВВС, вооруженных сил и университетов по всей стране. Сам доктор Хокинг тоже был из небольшой частной школы, однако считал, что такое полуэлитарное образование принижает его в глазах власть имущих. Он был убежден, что не сумел достичь большего в профессии именно потому, что окончил не самую престижную школу и происходил из небогатой семьи, а другие, не такие способные, зато из аристократических кругов, обошли его в продвижении по служебной лестнице. Фрэнк не хотел той же участи для своего первенца. Он решил, что Стивен будет учиться в Вестминстере, одной из лучших школ в стране.

В десять лет мальчика записали на экзамен на стипендию, чтобы попасть в Вестминстерскую школу. Хокинг-старший был прекрасным медиком-исследователем, но его заработка, конечно, не хватило бы, чтобы платить за обучение в Вестминстере: подобными привилегиями пользовались дети адмиралов, политиков и крупнейших промышленников. А Стивен мог поступить в школу, лишь продемонстрировав свои способности; тогда плата за обучение хотя бы отчасти покрывалась бы стипендией. Настал день экзамена – и Стивен заболел. Он не писал вступительную работу и поэтому так и не получил место в одной из лучших школ Англии.

Огорченный доктор Хокинг отдал сына в местную частную школу – школу Св. Альбана, известную и безупречную с академической точки зрения монастырскую школу, имевшую давние тесные связи с собором: по некоторым источникам, она была основана в 948 году. Школа находилась в самом центре города, у собора, и в 1952 году, когда Стивен пошел туда учиться, в ней было 600 учеников. В каждой параллели были классы А, В и С – в зависимости от успеваемости. Каждый ученик – в школу принимали только мальчиков – пять лет проводил в средней школе, с первого по пятый класс, а затем сдавал экзамены первого уровня сложности по самым разным предметам; самые способные мальчики сдавали восемь-девять экзаменов. Успешно сдавшие экзамены первого уровня сдавали затем экзамены второго уровня сложности, что позволяло через два года поступить в университет.

В 1952 году конкурс в школу Св. Альбана составлял три человека на место, и каждый абитуриент должен был написать вступительную работу, как в Вестминстер. Стивен был прекрасно подготовлен, сдал экзамен без труда и 23 сентября был зачислен в школу в числе 90 мальчиков. Плата за обучение составляла 51 гинею (53,55 фунта) за семестр.

В то время Стивен был типичный знайка-отличник в серой форме и фуражке, точь-в-точь Билли Бантер из книг Фрэнка Ричардса или Том Браун из «Школьных дней Тома Брауна» Томаса Хьюза. Неуклюжий и чудаковатый, маленький и тощий. Школьная форма сидела на нем мешком, и, по воспоминаниям друзей, он так тараторил, что его было трудно понять, и к тому же слегка шепелявил – это он унаследовал от отца. Друзья даже говорили, что он говорит «на хокингском». Все это не имело отношения к первым симптомам болезни, просто таким уж он был, этот мальчик – мишень для шуток, насмешек, а иногда и жестокой травли, предмет тайного восхищения для некоторых одноклассников и пустое место для всех прочих. Видимо, в школе его таланты признавали не все: когда ему было двенадцать, один из приятелей поспорил на кулек конфет, что из Стивена толку не будет. Как скромно замечает сейчас сам Хокинг: «Даже и не знаю, кто в результате выиграл в этом споре».[1] Впрочем, к третьему классу учителя стали считать Стивена способным учеником, однако в рейтинге учеников сильного класса он оказался чуть выше середины. Он входил в небольшую компанию приятелей, отличавшихся одинаковым интересом к учению и целям в жизни. В их числе был высокий красавец Бэзил Кинг, видимо, самый умный и яркий в компании – он уже в десять лет читал Мопассана и еще дошкольником обожал оперу. Был там и Джон Маккленахан, низенький, черноволосый и круглолицый, – вероятно, лучший друг Стивена в ту пору. Кроме них в компанию входил блондин Билл Клегхорн, а еще пылкий и артистичный Роджер Фернейхау и Майкл Черч, новенький, пришедший в школу в третьем классе. Вместе они составляли компанию лучших из лучших учеников 3А класса. И правда, это были самые талантливые дети в параллели. Все они слушали по радио Третью программу ВВС (теперь это «Радио-3»), где передавали исключительно классическую музыку. Вместо того чтобы украдкой слушать первые образчики рок-н-ролла или американский кул-джаз, дети в последний раз листали конспекты по физике перед завтрашней контрольной или рисовали контурные карты по географии под звуки Моцарта, Малера и Бетховена, лившиеся из радиоприемников. Они читали Кингсли Эмиса, Олдоса Хаксли, Джона Уиндема, Клайва Льюиса, Уильяма Голдинга – «умные книжки». Поп-музыка была по ту сторону «великого разлома» в обществе: считалось, что слушать ее недостойно и даже вульгарно. Вся компания ходила на концерты в Альберт-холл. Некоторые мальчики и сами музицировали, но Стивен от природы был не слишком ловким и так и не освоил никакой музыкальный инструмент. Он очень интересовался музыкой, но не сумел преодолеть даже азы исполнительства, о чем сожалел всю жизнь. А общим героем мальчиков был Бертран Рассел – одновременно и гениальный мыслитель, и борец за права человека.

Школа Св. Альбана по праву гордилась очень высокими интеллектуальными стандартами, и Хокинги поняли и оценили это, как только Стивен приступил к учению. Вскоре всякие сожаления о том, что он не смог попасть в Вестминстер, были забыты. Школа Св. Альбана создавала идеальную среду для развития природного таланта.

Особенно живо мальчики вспоминали учителя по фамилии Финли, вчерашнего студента, который записывал радиопередачи на магнитофон – тогда это была техническая новинка, так что он намного опережал свое время, – и обсуждал их на своих уроках в 3А классе. Темы для дискуссий были самые разные: от ядерного разоружения до контроля над рождаемостью – и все, что в промежутке. Этот учитель оказал колоссальное воздействие на интеллектуальное развитие своих подопечных тринадцатилеток. Они выросли и стали журналистами и писателями, врачами и учеными, но до сих пор с теплотой вспоминают его уроки.

Домашними заданиями мальчиков нагружали основательно: по три часа каждый вечер и гораздо больше по выходным, причем по субботам утром в школе были уроки, а вечером – обязательные спортивные игры. Несмотря на такую нагрузку, мальчики все же выкраивали время, чтобы повидаться вне школы. Образ жизни у них был, можно сказать, монашеский. У английских мальчиков, учившихся в частных школах в 1950-е, из-за напряженного учебного плана не оставалось времени на девочек, поэтому дружеские вечеринки до пятнадцати-шестнадцати лет были сугубо однополыми. Только тогда при желании (и с дозволения родителей) они начинали устраивать дома вечеринки с хересом и тренировать танцевальные па, разученные после субботних школьных игр в танцевальной студии в городском культурном центре Сент-Олбанса.

А пока мальчики еще не доросли до подобных радостей, они часто ездили на долгие велосипедные прогулки по полям и лесам Хартфордшира в окрестностях Сент-Олбанса и иногда добирались даже в Уипшейд, миль за пятнадцать от дома. Еще они обожали придумывать настольные игры и играть в них. Тут заводилами были Стивен и Роджер Фернейхау. У Хокинга уже тогда проклюнулись задатки ученого и логика, поэтому именно он составлял общие правила игры, а Фернейхау придумывал доску, фишки и карточки. На выходных или в каникулы компания собиралась у кого-нибудь дома и устраивалась на полу в спальне или на ковре в гостиной с очередной игрой и стаканами апельсинового сквоша.

Первой была «Война», основанная на Второй мировой войне. Затем – «Феодал», построенная на социальных, военных и политических коллизиях средневековой Англии, с тщательно, во всех тонкостях, продуманной инфраструктурой. Однако вскоре все поняли, что у этих игр есть один большой недостаток: Стивен придумывал такие головоломно-хитроумные правила, что иногда на то, чтобы сделать один-единственный ход и рассчитать его последствия, уходил целый день. Игры зачастую проходили в доме 14 по Хиллсайд-роуд, и тогда мальчики взбирались по лестнице наверх, в тесную комнатку Стивена под самой крышей.

Дом Хокингов был настоящей лавкой древностей, битком набитой книгами, картинами, старой мебелью и всевозможными диковинами со всех концов света. Изабель и Фрэнк поддерживали в доме относительную чистоту, но в остальном не слишком заботились о хозяйстве. Мебелью и коврами пользовались, пока они не рассыпались в пыль, если обои где-то отклеивались от старости, никому в голову не приходило их заменить, штукатурка в коридоре и за дверями местами отвалилась, и в стенах зияли дыры. А комната Стивена была еще удивительнее: одновременно логово колдуна, лаборатория чокнутого профессора и захламленная комната подростка. Среди всевозможного мусора и бумажек как попало валялись тетрадки с недоделанными уроками, учебники и фрагменты моделей самолетов, повсюду стояли какие-то загадочные устройства и кружки с недопитым чаем. На секретере Стивен держал электрические приборы, о назначении которых можно было только догадываться, а рядом – стойку с пробирками, содержимое которых давно испарилось или выцвело, обрезки проводов, бумага, клей и металлические детальки: у Стивена было много неоконченных позабытых проектов.

Семья Хокингов была эксцентричной. Казалось бы, обычное семейство книгочеев, но со своей изюминкой – а еще с общественно-культурными представлениями, значительно опережавшими свое время. Один соученик Хокинга назвал его семейство «синими чулками». Хокингов было много: на одном групповом фотоснимке в семейном альбоме их 88 человек. У родителей Стивена были свои причуды. Многие годы их семейным автомобилем было лондонское такси, которое Фрэнк и Изабель купили за 50 фунтов, а потом его сменил новенький зеленый «форд-консул», типичный семейный автомобиль конца 1950-х. Для этой покупки была веская причина: Хокинги – все, кроме Стивена, которому нельзя было прерывать обучение, – решили на год отправиться в экспедицию по центральной Индии. Для 1950-х годов это было неслыханно смелое начинание, и старому лондонскому такси такое путешествие было бы точно не по силам. А зеленый «форд-консул» проехал через всю Индию и обратно. Правда, по возвращении он был, конечно, не в таком уж прекрасном состоянии.

Поездки Хокингов за пределы Сент-Олбанса далеко не всегда оказывались столь же авантюрными. Как и многие другие семьи, они приобрели домик на колесах для отдыха на южном побережье Англии – в Суссексе, близ Истбурна. Однако, в отличие от других семей, их фургончик был похож на пеструю цыганскую кибитку, а не на чудо современной техники. Обычно летом семья две-три недели гуляла по скалам и купалась в заливе. Часто они брали с собой лучшего друга Стивена Джона Маккленахана, и мальчишки вместе пускали воздушных змеев, ели мороженое и придумывали новые дразнилки для двух младших сестренок Стивена Мэри и Филиппы – и не обращали особого внимания на приемного брата Эдварда, который тогда едва научился ходить.

* * *

Фрэнк Хокинг оказал на Стивена в детстве и отрочестве очень большое влияние – в основном потому, что его почти не было дома. Для мальчика отец был фигурой далекой и загадочной: несколько месяцев в году Фрэнк проводил в Африке, где продолжал медицинские исследования, и даже не всегда присоединялся к родным в поездках на залив Рингстед, оставив детей на Изабель. Это было настолько привычным, что Мэри, старшая из сестер Стивена, лишь в юности поняла, что их семья ведет несколько необычную жизнь: она-то считала, что все папы – будто птицы, каждый год улетающие в теплые края. И дома, и за границей, до самой смерти Фрэнк Хокинг вел скрупулезные записи в дневниках и оставил их целую коллекцию. Кроме того он писал беллетристику – его перу принадлежит несколько неопубликованных романов, причем один из его литературных опытов написан от лица женщины. Изабель относилась к творчеству мужа с большим уважением, но считала, что коммерческого успеха ему ждать не приходится.

Несомненно, именно Изабель сформировала политические взгляды своего старшего сына. Как и многие английские интеллектуалы той эпохи, она придерживалась левых идей, что в ее случае привело к активному участию в работе Ассоциации либералов Сент-Олбанса в 1950-е годы. В то время либеральная партия была в парламенте меньшинством с минимальным представительством, однако среди широких масс сохраняла популярность и давала возможность для оживленных политических дискуссий, благодаря чему в 1950-е и 1960-е зачастую задавала тон по многим вопросам, в том числе по проблемам ядерного разоружения и противодействия апартеиду. Стивен никогда не придерживался радикальных политических взглядов, однако на всю жизнь сохранил интерес к политике и симпатию к левому движению.

Вскоре настольные игры наскучили Стивену с друзьями, и они переключились на другие увлечения – строили модели самолетов из бумаги и пробковой древесины и паяли всевозможную электронику. Модели нипочем не желали нормально летать, к тому же как теоретик Стивен уже тогда зарекомендовал себя гораздо лучше, чем как практик: руки у него были не слишком умелые, и модели самолетов получались неуклюжими и с аэродинамической точки зрения были далеки от совершенства. Подобные разочарования ждали его и с электроникой: один раз Стивен получил удар током в пятьсот вольт, когда пытался сделать усилитель из старого телевизора.

В третьем-четвертом классе пеструю компанию потянуло к мистике и вере. В конце 1954 года один мальчик с периферии компании – Грэхем Дау – всерьез ударился в религию. В тот год по Британии проехал с гастролями евангелист Билли Грэхем, и юный Дау подпал под его влияние. Он обратил Роджера Фернейхау – и их энтузиазм оказался заразительным. Как к этому повальному увлечению относился Хокинг, остается неясным. Скорее всего, от этих игрищ он держался в стороне и только посмеивался, глядя на приятелей, – по крайней мере, так считают все его соученики. Они рассказывают, что Стивен превыше всего ставил интеллект, поэтому восторги друзей скорее вызывали у него научный интерес, чем склоняли согласиться с ними и тем более уверовать самому.

Майкл Черч вспоминает, что при любых попытках обсудить со Стивеном что-нибудь хотя бы отдаленно мистическое или метафизическое у него возникало ощущение, что перед ним образчик чистого интеллекта, лишенный всяких эмоций:

Я не был склонен к науке и вообще не воспринимал Стивена всерьез, пока однажды, когда мы с ним возились с чем-то в его захламленном логове изобретателя и специалиста по розыгрышам, у нас не зашел разговор о смысле жизни – этот вопрос очень занимал меня в то время, – и вдруг меня поразила ужасная мысль: ведь Стивен провоцирует меня, чтобы я выставил себя дураком, а сам наблюдает за мной словно бы с заоблачных высот. Момент был крайне неприятный.[2]

Интерес к христианству сохранялся почти год. Друзья встречались у кого-нибудь дома, как раньше, когда играли в настольные игры, и все так же пили апельсиновый сквош, но теперь они вели напряженные диспуты о вере, Боге и собственных чувствах. Это была пора внутреннего роста, отчаянные попытки осмыслить мирскую суету. Благодаря этим встречам мальчики еще теснее сблизились. Один из них признавался, что во всем этом, несомненно, был оттенок подростковой гомосексуальности.

Для Стивена это было трудное время. Он хотел бы быть соучастником, не терять связи с друзьями, однако рационалистическое начало уже тогда не позволяло эмоциям взять верх над интеллектом. Все же ему удалось сберечь дружбу, но оставаться в стороне – и попутно приобрести навыки общения, которые очень пригодились ему в будущем. Парадокс в том, что в конце года, когда поветрие было в самом разгаре, именно Стивен выиграл школьную олимпиаду по богословию.

На смену христианству пришел оккультизм. Друзья увлеклись экстрасенсорикой, в то время завладевшей воображением публики. И вместе, и поодиночке, запершись в своих комнатах, они принялись за эксперименты – пытались силой мысли повлиять на игральные кости. Стивена это заинтересовало куда больше, чем религия: ведь результаты эксперимента можно было измерить, а значит, подтвердить или опровергнуть теорию. Тут речь шла уже не о вере и надежде.

Увлечение продлилось недолго. Стивен с друзьями попали на лекцию ученого, который в конце 1950-х участвовал в серии экспериментов по изучению экстрасенсорики в Университете Дьюка в Северной Каролине. Лектор показал, что во всех случаях, когда были получены обнадеживающие результаты, оказывалось, что эксперимент методологически небезупречен, а когда эксперименты проводились по всем правилам, никаких результатов они не давали.

Интерес у Стивена сменился презрением. Он пришел к выводу, что в экстрасенсорику и тому подобное способны верить лишь те, у кого аналитические способности на уровне подростков.[3]

Между тем в школе все было по-прежнему. Стивен был очень слаб во всех видах спорта, кроме, пожалуй, бега по пересеченной местности: тут его хрупкое телосложение оказалось очень кстати. Регби и крикет он хоть и с трудом, но терпел, однако особое отвращение вызывала у него военная подготовка – программа так называемого Объединенного кадетского корпуса. Школа Св. Альбана, как и большинство британских частных школ для мальчиков, участвовала в этой программе в рамках подготовки учеников к службе в армии. Каждую пятницу вся школа за исключением шести человек облачалась в военную форму. Шестеро освобожденных были те, чьи родители были противниками военной службы по идейным соображениям. Несмотря на политические пристрастия Изабель Хокинг, родители Стивена не были идейными пацифистами, поэтому он участвовал во всех военно-спортивных играх, сборах и парадах наравне со всеми. Те, кого не слишком увлекала военная романтика, сохранили довольно мрачные воспоминания о занятиях Объединенного кадетского корпуса: каждую пятницу, даже зимой, под январским мокрым снегом, от которого коченели щеки и пальцы, приходилось выполнять приказы молодцеватых старшеклассников-офицеров.

Стивен имел звание младшего капрала Королевского корпуса связи – именно туда по традиции попадали молодые люди научного склада. По отзывам всех его знакомых, военная подготовка была ему как кость в горле, но он все терпел. Альтернатива в некотором смысле была еще хуже. Те, кто не желал защищать отчизну и королеву, подвергались массированной агитации. Сначала идейного пацифиста отправляли к полковнику Прайку, командующему Объединенным кадетским корпусом. Если тому не удавалось уговорить отщепенца, следующей линией атаки становился субдекан каноник Фивер, человек очень грозный, который читал мальчику лекцию о том, что служить Богу и королеве и сыграть положенную роль в общем порядке вещей – его нравственный долг. Если непокорный и это выносил, последним испытанием становилась встреча с директором школы Уильямом Томасом Маршем.

Марш был одним из самых строгих директоров за всю историю Сент-Олбанса, однако в своей должности он добился значительных успехов. Соученики Хокинга единодушно называют его «сущим кошмаром», и перечить ему было крайне неразумно. Если директору не удавалось вернуть отказника на путь истинный, значит, тот и вправду отличался алмазной твердостью убеждений. Однако это было лишь начало. Те, кто не участвовал в тренировках Объединенного кадетского корпуса, вместе со всеми облачались в военную форму и принудительно копали на школьной территории котлован под греческий амфитеатр. Марш был большой поклонник классической учености и полагал, что подобная работа служит ритуальным уничижением. Строительство греческого амфитеатра продолжалось и в дождь, и в зной до победного конца. В хорошую погоду Марш прохаживался по краю котлована, а в слякоть и снегопад наблюдал за работами из окна теплой комнаты.

* * *

Впрочем, школьная жизнь не всегда была такой унылой. Классы часто выезжали на экскурсии по научным достопримечательностям – на химические заводы, электростанции и в музеи. Как правило, «банду юных оборванцев» возил туда командующий Объединенным кадетским корпусом полковник Прайк. Он с теплотой вспоминает, как однажды возил класс Хокинга на химический завод «Империал Кемикл Индастриз» в Биллингем на севере Англии. Поначалу все шло неплохо, но потом, сразу после обеда, научный сотрудник, показывавший школьникам завод, отвел Прайка в сторону и сердито зашипел:

– Кого вы мне привели?! Черт возьми, они такие вопросы задают, что я не знаю, что отвечать!

К четырнадцати годам Стивен понял, что хочет профессионально заниматься математикой; примерно тогда же стали заметны его недюжинные способности. Он почти не тратил времени на домашние задания по математике и все равно получал отличные оценки. Как вспоминал один его соученик: «У него была невероятная научная интуиция. Я ломал себе голову над решением сложной математической задачи, а он просто знал ответ, ему даже думать не приходилось!»[4] У «заурядного» неглупого мальчика обнаружился выдающийся талант.

Джону Маккленахану особенно запомнился один случай, когда Стивен проявил свою интуицию. Дело было на уроке физики в шестом классе, и учитель задал вопрос:

– Предположим, вы хотите выпить чаю с молоком. Чай очень горячий. В каком случае он быстрее остынет до температуры, когда его можно будет пить: когда вы нальете в чашку одновременно молоко и чай или когда вы сначала дадите чаю немного остыть, а потом добавите молока?

Одноклассники Хокинга закопались в формулы, а Стивен тут же уловил суть дела и дал правильный ответ практически мгновенно:

– Ну конечно! Молоко потом!

После чего подробно объяснил, почему: чем горячее жидкость, тем быстрее она остывает, поэтому есть смысл наливать молоко в самом конце, чтобы чай остыл быстрее.

Экзамены первого уровня Стивен сдал без сучка и задоринки – девять в июле 1957 года, а десятый, латынь, через год, вместе с экзаменами второго уровня. Когда он выбирал, по каким предметам сдавать экзамены второго уровня, важную роль сыграло мнение родителей. Стивен хотел сдавать математику, физику и дополнительные главы математики, чтобы подготовиться к изучению математики и физики в университете. Однако у Фрэнка Хокинга были другие планы. Он хотел, чтобы сын стал врачом, а для этого Стивен должен был сдавать химию второго уровня. После долгих споров Стивен согласился сдавать математику, физику и химию второго уровня, однако оставил открытым вопрос о том, какую специальность выберет в университете: окончательное решение можно было принять через год.

Шестой класс стал для Стивена, пожалуй, самым счастливым годом в школе Св. Альбана. В последние два года мальчики пользовались относительной свободой и грелись в лучах славы после блестящей сдачи экзаменов первого уровня. В выпускном классе дружеская компания разбилась на мелкие группы в зависимости от того, кому какие предстояли экзамены второго уровня. Те, кто собирался заниматься гуманитарными науками, по понятным причинам несколько отдалились от «физиков»; теперь они посматривали друг на друга свысока. Бэзил Кинг, Джон Маккленахан и Хокинг выбрали точные науки, остальные мальчики – гуманитарные. У «физиков» появились новые друзья.

Весной 1958 года Хокинг с друзьями, в том числе с новыми приятелями Барри Блоттом и Кристофером Флетчером, собрали компьютер, который назвали LUCE – «Logical Uniselector Computing Engine». В 1950-е годы в Великобритании компьютеры были разве что в министерстве обороны и на нескольких университетских кафедрах. Однако мальчикам удалось собрать свою логическую машину, пусть и очень примитивную. Помогал им Дик Тартар, юный учитель математики, которого наняли нарочно, чтобы он внес свежую струю в изучение математики и помогал ученикам генерировать идеи.

На работу ушел месяц. Оказалось, что главное препятствие – не трудности теоретической разработки, а неумение паять. В основном устройство собирали из деталей старого телефонного коммутатора, но, чтобы компьютер заработал, нужно было соединить множество проводов, и мальчикам очень долго не удавалось добиться безупречной пайки. Однако в конце концов устройство заработало и стало настоящей сенсацией среди одноклассников. Заметка Математического общества в школьном журнале «Albanian» возвращает читателя в прошлое не хуже машины времени:

Не раз и не два на протяжении истории математикам приходилось покидать свои горние чертоги и вспоминать, что главная их задача – вычислять. Так, в 1641 году Паскаль изобрел арифметическую машину – предшественницу современного компьютера, который заменил бирку с насечками, счеты и логарифмическую линейку как инструмент вычислений. Пока не настанет счастливая пора, когда у каждого четвероклассника будет свой карманный «Эрни»[5], нам придется довольствоваться таблицами логарифмов. Но начало положено, пусть пока наши достижения и скромны: теперь у нас есть LUCE, компьютер школы Св. Альбана. Эта машина решает никому не нужные, но довольно сложные логические задачи. Работе с ней было посвящено прошлое заседание Общества, оказавшееся оживленным и многолюдным. Создатели LUCE, опираясь на полученный опыт, намерены построить цифровой компьютер; названия у него пока нет, но он будет именно «считать» (мужайтесь, четвероклассники, недолго терпеть осталось!).[6]

Впервые Хокинг с друзьями удостоились внимания прессы, когда местная газета «Herts Advertiser» опубликовала статью об «ученых школьниках», собравших своими руками новомодную машинку. Как и обещала заметка в школьном журнале, мальчики и правда успели создать более сложную версию компьютера еще до окончания школы.

Когда Найджел Вуд-Смит, нынешний глава отделения информатики в школе Св. Альбана, много лет спустя заступил на пост, то нашел под партой в кабинете математики загадочную коробку. С его точки зрения, там была просто груда старого хлама – какие-то транзисторы, реле, проводки, железки и табличка с буквами «LUCE» поверх. Он выбросил все в мусор. Лишь много лет спустя он понял, что нечаянно выбросил историческую реликвию – компьютер, который сделал Стивен Хокинг.

Глава 2
Классическая космология

Наука космология изучает Вселенную в целом, ее зарождение, эволюцию и дальнейшую судьбу. С точки зрения идей, это величайшая из всех наук. Однако с точки зрения оборудования, все не так внушительно. Да, космологи получают сведения о Вселенной при помощи гигантских телескопов и космических зондов, а иногда вычисляют что-нибудь на суперкомпьютерах. Но суть космологии – это по-прежнему математика, а значит, космологические идеи можно выразить в формулах, записанных карандашом на бумаге. Космологию, в отличие от всех прочих отраслей наук, можно изучать при помощи одного лишь мозга. Так обстоят дела сейчас – и так было и 75 лет назад, когда Альберт Эйнштейн разработал общую теорию относительности (ОТО) и тем самым изобрел теоретическую космологию как науку.

Когда ученые говорят о «классических» физических представлениях, то имеют в виду не соображения древнегреческих мыслителей. Классическая физика, строго говоря, – это физика Исаака Ньютона, который заложил основы научного метода исследования мира еще в XVII веке. Ньютонова физика царила безраздельно вплоть до начала XX века, когда была свергнута в результате двух революций: первую разожгла эйнштейновская общая теория относительности, а вторую – квантовая теория. Первая из этих теорий – лучшая на сегодня гипотеза гравитации, вторая объясняет, как устроено все остальное в материальном мире. Совокупно эти теории – теория относительности и квантовая механика – стали столпами современной физики XX века. Но подлинный Святой Грааль современной физики, который жаждут найти очень многие, – теория, которая связала бы их единым математическим аппаратом. И для нынешнего поколения искателей Грааля 1990-х годов даже эти столпы в первоначальной форме безнадежно устарели. Иногда «классической физикой» ученые между собой называют все, что разработали предыдущие поколения исследователей, то есть все, чему больше двадцати пяти лет. Более того, четверть века назад в истории физики произошло переломное открытие: в 1967 году были открыты пульсары, и в том же году Стивен Хокинг отпраздновал собственное двадцатипятилетие. Сегодня эти объекты называют нейтронными звездами; это схлопнувшиеся ядра массивных звезд, жизнь которых завершилась мощным взрывом – взрывом сверхновой. Именно открытие пульсаров, сверхплотных объектов на грани превращения в черные дыры, и натолкнуло Хокинга на первую попытку успешного сочетания квантовой теории и теории относительности.

Правда, работать над теорией черных дыр Хокинг начал по меньшей мере за два года до открытия пульсаров, когда лишь немногие математики интересовались такими экзотическими следствиями из уравнений Эйнштейна, а сам термин «черная дыра» в этой связи еще не употреблялся (как мы вскоре убедимся, такая прозорливость для Стивена типична). Хокинг как ученый, как и все его современники, воспитывался на классических представлениях Ньютона и на теории относительности и квантовой физике в первоначальном виде. Чтобы оценить, как далеко продвинулась с тех пор физика – отчасти при содействии Хокинга, – нужно рассмотреть сами классические идеи, и это станет легкой разминкой у подножия гор перед покорением головокружительных вершин. В общепринятом смысле «классической космологией» принято называть все, что было известно до революции, вызванной открытием пульсаров, то есть именно то, чему учили в институте ровесников Хокинга.

* * *

Исаак Ньютон превратил Вселенную в место логичное и упорядоченное. Он объяснил поведение материального мира при помощи фундаментальных законов, которые, как считалось тогда, встроены в саму ткань мироздания. Самый знаменитый пример – закон всемирного тяготения. Обриты планет, вращающихся вокруг Солнца, до Ньютона оставались полнейшей загадкой, но он рассчитал их при помощи закона всемирного тяготения, который гласит, что планета на определенном расстоянии от Солнца ощущает определенную силу, которая притягивает ее обратно пропорционально квадрату расстояния до Солнца; это называется закон обратных квадратов. Иначе говоря, если планету волшебным образом переместить на вдвое большее расстояние от Солнца, она ощутит четверть силы, втрое дальше – одну девятую, и так далее. Когда планета на стабильной орбите движется в космическом пространстве со своей скоростью, эта сила, направленная вовнутрь, в точности уравновешивает стремление планеты улететь в космос. Более того, Ньютон заключил, что тот же самый закон обратных квадратов объясняет и падение яблока с дерева, и орбиту Луны вокруг Земли, и даже приливы и отливы. Это универсальный закон.

Еще Ньютон объяснил, как материальные тела реагируют на иные силы, помимо гравитации. Когда здесь, на Земле, мы что-то толкаем, оно движется, но только пока мы его толкаем. Любое движущееся тело на Земле подвергается воздействию силы трения, которая противостоит его движению. Перестанешь толкать – и сила трения остановит объект. Но без силы трения (подобно планетам в космосе или атомам, из которых состоит все вокруг), согласно Ньютону, тело движется равномерно и прямолинейно, пока не подвергнется воздействию какой-нибудь силы. И тогда, пока сила действует, тело ускоряется, меняет направление или скорость, либо и то, и другое. Чем легче тело или чем больше сила, тем больше в итоге ускорение. Однако если убрать силу, тело снова начнет двигаться равномерно и прямолинейно, но с другой скоростью – с той, которую оно набрало за время, пока ускорялось.

Когда что-то толкаешь, оно толкает тебя в ответ, и сила действия равна по значению и противоположна по направлению силе противодействия. По этому принципу устроена ракета: она выбрасывает вещество из сопла в одном направлении, и сила противодействия толкает ее в другом направлении. Наглядный пример действия этого закона в наши дни – бильярдный стол: шары сталкиваются и отскакивают друг от друга очень по-ньютоновски. И именно такова картина мира, которая следует из ньютоновой механики: картина, в которой шары (или атомы) сталкиваются и отскакивают друг от друга, а звезды и планеты движутся под воздействием тяготения исключительно правильно и предсказуемо.

Все эти представления описаны в фундаментальном труде Ньютона «Начала» («Principia»), опубликованном в 1687 году (полное название великой работы Ньютона в переводе звучит как «Математические начала натуральной философии»). Представление о мире, которое подарил нам Ньютон, иногда называют «заводная Вселенная». Если Вселенная состоит из материальных объектов, которые взаимодействуют друг с другом посредством сил, подчиняющихся подлинно универсальным законам, и если законы, подобные закону действия и противодействия, в точности соблюдаются во всей Вселенной, значит, Вселенную можно считать исполинской машиной, космическим часовым механизмом, который, единожды придя в движение, будет вечно следовать целиком и полностью предсказуемым путем.

Это порождает всякого рода загадки, которые не давали покоя ни философам, ни богословам. Суть проблемы – вопрос свободы воли. Неужели в подобной «заводной» Вселенной предопределено абсолютно все, в том числе и человеческое поведение во всей его многогранности? Было ли предопределено, заложено в законы физики, что совокупность атомов по имени Исаак Ньютон напишет книгу под названием «Начала», которая выйдет в свет в 1687 году? И если Вселенная подобна космическому часовому механизму, кто завел эти часы, кто привел их в движение?

Даже надежные рамки религиозных представлений Европы XVII века несколько пошатнулись от подобных вопросов: казалось бы, логично сказать, что завел часы и привел их в движение именно Бог, однако традиционное христианство предполагает, что человек обладает свободой воли и, таким образом, может по желанию либо следовать учению Христа, либо нет. Мысль, что грешники, в сущности, не имели никакой свободы выбора в своих поступках, а грешили, подчиняясь незыблемым законам, и следовали по пути к вечным мукам, который заложил изначально сам Господь, решительно не вписывалась в сложившееся христианское мировоззрение.

Как ни странно, со времен Ньютона и до ХХ века наука практически не интересовалась идеей начала Вселенной. Считалось, что Вселенная вечна и неизменна, а «неподвижные» звезды просто висят в пространстве. Библейская история о сотворении мира, в которую в XVII веке ученые верили, как все, была применима только к нашей планете Земля или разве что к семейству планет вокруг Солнца – Солнечной системе – но не к Вселенной в целом.

Ньютон полагал, как выяснилось, ошибочно, что неподвижные звезды могут находиться на своих местах в пространстве вечно, если Вселенная бесконечно велика, поскольку сила тяготения, влияющая на каждую звезду в отдельности, одинакова во всех направлениях. На самом деле подобная конструкция крайне нестабильна. Достаточно легчайшего отклонения, и идеально равномерное распределение звезд приведет к мощному притяжению в том или ином направлении, и звезды придут в движение. А как только звезда двинется в сторону любого источника гравитационной силы, расстояние до источника сократится, сила увеличится – в полном соответствии с законом обратных квадратов Ньютона. То есть стоит звездам прийти в движение, и сила, приводящая к неоднородности, начнет возрастать, поэтому звезды продолжат движение с ускорением. Статическая вселенная вскоре схлопнется под воздействием силы гравитации. Но это стало понятно только после того, как Эйнштейн разработал новую теорию гравитации – теорию, которая, более того, заключала в себе предсказание, что Вселенная определенно не может быть статической и, вероятно, на самом деле не схлопывается, а расширяется.

* * *

Альберту Эйнштейну, как и Ньютону, принадлежит множество научных достижений. И главным трудом его жизни, как у Ньютона, стала теория гравитации – ОТО. Насколько важной оказалась его теория для современного понимания Вселенной, можно судить по тому, что специальная теория относительности (СТО) – та, в результате которой была выведена знаменитая формула E = mc2, – это лишь довольно малая часть работы. Однако СТО, опубликованная в 1905 году, стала главной составляющей нового понимания Вселенной. Но прежде чем перейти к этому, остановимся хотя бы ненадолго на основных чертах специальной теории.

Эйнштейн разработал СТО, чтобы решить задачу, сформулированную физикой XIX века. Великий шотландский физик Джеймс Клерк Максвелл вывел уравнения, описывающие поведение электромагнитных волн. Вскоре уравнения Максвелла были скорректированы для описания поведения радиоволн, открытых в 1888 году. Однако Максвелл обнаружил, что уравнения автоматически дают ему определенную скорость,[7] которая определяется как скорость распространения электромагнитных волн. Оказалось, что особая скорость, следующая из уравнений Максвелла, – это в точности скорость света, которую физики к тому времени уже измерили. Следовательно, свет – тоже разновидность электромагнитной волны, подобно радиоволнам, но с меньшей длиной волны (то есть с более высокой частотой). А еще эти уравнения говорили, что свет (как и другие виды электромагнитного излучения, в том числе радиоволны) всегда распространяется с одной и той же скоростью.

Это противоречит нашим представлениям о движении предметов в быту. Если человек, стоящий напротив вас, легким движением бросит вам мяч, вы без труда его поймаете. Если этот человек будет двигаться в вашу сторону в автомобиле со скоростью 80 километров в час и таким же легким движением бросит вам мяч из окна, мяч помчится на вас со скоростью 80 километров в час плюс скорость броска. Так что вас сильно удивило бы, если бы мяч, легким движением выброшенный из машины, долетел бы до вас всего лишь с небольшой скоростью броска, без прибавки скорости автомобиля. Однако со световыми импульсами именно так и происходит. Подобным же образом, если машину, которая едет по прямой дороге со скоростью 80 километров в час, обгоняет машина, которая едет со скоростью 90 километров в час, то вторая машина движется относительно первой со скоростью 10 километров в час. Иными словами, скорость относительна. Но если вас обгонит световой импульс, и вы измерите скорость, с которой он пролетает мимо, окажется, что эта скорость равна скорости светового импульса, который пролетает мимо вас, когда вы стоите неподвижно.

Об этом никто не догадывался до конца XIX века. Ученые предполагали, что свет ведет себя так же, как и тела вроде мячей, которыми перебрасываются люди, – то есть скорости точно так же складываются и вычитаются. А «постоянство» скорости света в уравнениях Максвелла ученые объясняли тем, что уравнения относятся к какому-то «абсолютному пространству», фундаментальной системе отсчета всей Вселенной.

Согласно этой точке зрения, пространство как таковое задавало систему отсчета, относительно которой надо было проводить измерения, и это было абсолютное пространство, в котором двигались и Земля, и Солнце, и свет, и все остальное. Еще это абсолютное пространство называли эфиром, и считалось, что это субстанция, в которой распространяются электромагнитные волны, подобно тому, как движутся водяные волны в море. Заминка была в том, что когда экспериментаторы попытались измерить изменения скорости света, вызванные движением Земли сквозь абсолютное пространство («относительно эфира»), ничего найти не удалось.

Поскольку считалось, что Земля движется вокруг Солнца по приблизительно круглой орбите, она в разные времена года должна была двигаться относительно эфира в разных направлениях и, следовательно, с разной скоростью. Это как плавать по кругу в быстрой реке. Иногда Земля должна была «плыть по течению эфира», иногда – поперек течения, иногда – против. Если свет всегда движется относительно абсолютного пространства с одинаковой скоростью, здравый смысл подсказывает, что это должно проявляться в виде сезонных изменений скорости света, измеренной с Земли. Оказалось, что нет.

Эйнштейн решил эту задачу при помощи СТО. Она гласит, что все системы отсчета одинаковы, нет никакой абсолютной системы отсчета. Наблюдатель, движущийся с постоянной скоростью в пространстве, вправе считать себя неподвижным. Он увидит, что движущиеся тела в его системе отсчета подчиняются законам Ньютона, а электромагнитное излучение – уравнениям Максвелла, так что скорость света при любых измерениях получается одинаковой – такой, какую дают эти уравнения, где она обозначена буквой c. Более того, всякий, кто движется с постоянной скоростью относительно нашего героя (первого наблюдателя, как говорят физики), тоже смогут с полным правом сказать, что находятся в покое, и обнаружат, что все тела в их лаборатории подчиняются законам Ньютона, а измерения всегда дают скорость света c. И даже если один наблюдатель движется навстречу другому со скоростью, равной половине скорости света, и светит вперед фонариком, второй наблюдатель, измерив скорость света от фонарика, получит не 1,5 с, а по-прежнему с!

Эйнштейн отталкивался от наблюдаемого факта, что скорость света постоянна и не зависит от того, в какую сторону движется Земля в пространстве, и вывел математический аппарат, описывающий поведение материальных тел в системах отсчета, движущихся с постоянной скоростью друг относительно друга, то есть так называемых инерциальных системах отсчета. Если скорости малы относительно скорости света, эти уравнения дают в точности те же «ответы», что и ньютонова механика. Но, если скорости составляют заметную долю от скорости света, начинаются странности.

Например, при сложении двух скоростей никогда не получается относительная скорость больше с. Наблюдатель видит, как два других наблюдателя мчатся друг другу в лоб со скоростью 0,9 с каждый в системе отсчета первого наблюдателя, однако, если кто-то из мчащихся наблюдателей проделает измерения, у него неизбежно получится, что второй наблюдатель движется со скоростью меньше с, но больше 0,9 с (в данном случае).

Почему же скорости складываются так странно? Причина отчасти в том, что пространство и время на высокой скорости определенным образом искажаются. Чтобы учесть постоянство скорости света, Эйнштейну пришлось признать, что движущиеся часы идут медленнее неподвижных и движущиеся тела сокращаются по направлению движения. Кроме того уравнения говорят, что чем быстрее движется тело, тем больше его масса.

Все эти странные и удивительные явления – лишь периферия истории современной космологии и поисков связи между гравитацией и квантовой физикой. Однако надо подчеркнуть, что все это не безумные идеи, не «просто теория», как говорим мы иногда, отмахиваясь от чего-то неправдоподобного. Для ученого теория – это гипотеза, прошедшая все экспериментальные проверки. СТО – не исключение. Все чудеса, которые следуют из СТО – постоянство скорости света, растяжение времени и сокращение длины у движущихся тел, увеличение массы движущегося тела – измерены и подтверждены с высокой точностью в ходе огромного количества экспериментов. Ускорители частиц, установки, где «сталкиваются атомы», например, в ЦЕРНе, Европейском центре ядерных исследований, в Женеве, – попросту не работали бы, если бы теория оказалась неверной, поскольку спроектированы и построены в соответствии с уравнениями Эйнштейна. СТО как описание мира высоких скоростей подтверждается такими же надежными экспериментальными фактами, как и ньютонова механика, как описание повседневной жизни, и единственная причина ее конфликта с нашим здравым смыслом – в том, что мы не каждый день сталкиваемся с перемещением на таких высоких скоростях, чтобы эффекты СТО стали заметны. Ведь скорость света c составляет ни много ни мало 300 000 километров в секунду, а релятивистскими эффектами можно смело пренебрегать при скоростях, составляющих менее 10 % от этой величины, то есть при скоростях меньше каких-то 30 000 километров в секунду.

В сущности, СТО – результат сочетания ньютоновых уравнений движения с максвелловыми уравнениями, описывающими излучение. СТО во многом дитя своего времени, и если бы Эйнштейн не выдвинул свою теорию в 1905 году, это наверняка сделал бы в ближайшие годы кто-нибудь из его современников. Однако без неповторимого гения Эйнштейна потребовалось бы, вероятно, целое поколение, прежде чем кто-нибудь оценил бы важность куда более глубоких соображений, заложенных в СТО.

Эта важнейшая составляющая, на которую мы уже намекали, была результатом другого сочетания – единства пространства и времени. В повседневной жизни пространство и время – совершенно разные вещи. Пространство окружает нас по трем измерениям (вверх-вниз, вправо-влево, вперед-назад). Мы видим, где расположены в пространстве предметы, и перемещаемся по нему более или менее так, как хотим. А время практически невозможно описать, хотя мы все представляем себе, что это такое. В каком-то смысле у времени есть направление (из прошлого в будущее), но мы не можем заглянуть ни в прошлое, ни в будущее и, конечно, не в силах перемещаться во времени по своему желанию. Однако великая универсальная постоянная c – это скорость, а скорость – величина, связывающая пространство и время. Скорость и измеряют соответственно – в километрах в час, сантиметрах в секунду, милях в год, словом, в единицах расстояния за единицу времени. Если говорить о скорости, одно без другого невозможно. Так что тот факт, что фундаментальная постоянная – это именно скорость, наверняка говорит нам что-то очень важное о Вселенной. Но что именно?

Если помножить скорость на время, получится длина. Если сделать это правильно (умножить промежуток времени на скорость света c), то можно сочетать меры длины (пространства) и меры времени в одном и том же наборе уравнений. Такой набор уравнений, сочетающий пространство и время, состоит из уравнений СТО, описывающих замедление времени и сокращение длины,[8] и позволяет предсказать, что масса m эквивалентна энергии E, что и описано формулой E = mc2. Эйнштейн еще в 1905 году объяснял физикам, что вместо того чтобы считать пространство и время независимыми величинами, их надо представлять себе как разные аспекты единого унифицированного целого – пространства-времени. Но это пространство-время, добавляет СТО, не зафиксировано раз и навсегда, как абсолютное пространство или абсолютное время ньютоновой физики, – его можно растягивать и сжимать. И здесь и заложена основа для следующего огромного шага вперед.

Эйнштейн говорил, что на создание общей теории относительности (которая прежде всего представляет собой теорию гравитации) его вдохновила мысль, что если у лифта лопнет трос, то человек, падающий вместе с лифтом, не ощутит вообще никакой силы тяжести. Мы прекрасно представляем себе, что он имел в виду, потому что видели фильмы об астронавтах, которые вращаются вокруг Земли в космических кораблях. Космический корабль на орбите не «свободен» от воздействия гравитации Земли – напротив, именно гравитация и удерживает его. Однако космический корабль вместе со всем своим содержимым «падает» вокруг Земли с тем же ускорением свободного падения, что и гипотетический лифт, поэтому у астронавтов нет веса, и они плавают в воздухе в кабине. Для них гравитации словно бы не существует – это и называется свободным падением. Однако Эйнштейн ничего такого не видел, и ему приходилось воображать себе картину свободно падающего лифта. Получается, что ускорение падающего лифта, который с каждой секундой разгоняется, в точности обнуляет воздействие гравитации. А для этого гравитация и ускорение свободного падения должны быть в точности эквивалентны.

Ход рассуждений Эйнштейна, приведший к созданию теории гравитации, был основан на том, как все это влияет на луч света – универсальный измерительный прибор СТО. Представим себе, что сквозь падающий лифт от стены к стене горизонтально светит луч фонарика. В свободно падающем лифте тела подчиняются законам Ньютона: они двигаются по прямым с точки зрения наблюдателя в лифте и отскакивают друг от друга с равными по величине и противоположными по направлению силами действия и противодействия – и так далее. А главное, с точки зрения наблюдателя в лифте, свет распространяется по прямой. Но как все это выглядит с точки зрения наблюдателя, который стоит на земле и смотрит, как падает лифт? Ему покажется, что свет движется по траектории, расстояние от которой до потолка лифта всегда одинаково. Однако за время, пока свет пересекал кабину, лифт с ускорением продвинулся вниз, и свет луча, очевидно, должен был сделать то же самое. Чтобы свет, направленный поперек кабины лифта, всегда оставался на одном и том же расстоянии от потолка лифта, световой импульс должен пройти по кривой, если смотреть на него снаружи лифта. То есть световой луч под воздействием гравитации искривится.

Эйнштейн объяснил это искривлением пространства-времени. Он предположил, что присутствие вещества в пространстве искажает пространство-время вокруг, поэтому тела, двигающиеся в искривленном пространстве-времени, отклоняются от пути так, словно на них в обычном «плоском» пространстве воздействует сила, обратно пропорциональная квадрату расстояния между телами. Обдумав эту мысль, Эйнштейн вывел набор уравнений, которые все это описывают. На это у него ушло десять лет. Когда работа была завершена, оказалось, что из новой теории гравитации Эйнштейна следует и знаменитый закон всемирного тяготения Ньютона, однако ОТО зашла гораздо дальше теории Ньютона, поскольку предлагала общую теорию всей Вселенной. ОТО описывает все пространство-время, а следовательно, все пространство и все время. (Есть удобный способ запомнить, как все устроено. Вещество диктует пространству-времени, как искривляться, а пространство-время диктует веществу, как двигаться. Однако из уравнений следует, что само пространство-время тоже способно двигаться на свой манер.)

ОТО была завершена в 1915 и опубликована в 1916 году. Среди прочего она предсказывала, что лучи света от далеких звезд, проходящие мимо Солнца, будут искривляться, двигаясь сквозь пространство-время, искаженное массой Солнца. Поэтому наблюдаемое местоположение звезд на небосклоне сдвинется, и этот сдвиг можно измерить и сфотографировать во время полного солнечного затмения, когда слепящий свет Солнца перекрыт. Такое затмение и произошло в 1919 году, и ученые сделали фотографии и обнаружили именно тот эффект, который предсказывал Эйнштейн. Искривленное пространство-время существует на самом деле; ОТО оказалась верной.

Однако уравнения Эйнштейна, описывающие искажение пространства-времени в присутствии вещества, те самые уравнения, которые так триумфально подтвердили наблюдения солнечного затмения, обладали одной обескураживающей чертой, объяснить которую не мог сам Эйнштейн. Из уравнений следовало, что пространство-время, в котором укоренена материальная вселенная, не может быть статическим. Оно либо сжимается, либо расширяется. Эйнштейн оказался в безвыходном положении и был вынужден добавить к своим уравнениям дополнительное слагаемое – только для того, чтобы удержать пространство-время на месте. Даже в начале 1920-х годов Эйнштейн, как и все его современники, придерживался ньютоновой идеи статической вселенной. Но не прошло и десяти лет, как наблюдения, которые проделал Эдвин Хаббл при помощи нового мощного телескопа, установленного на вершине горы в Калифорнии, показали, что Вселенная расширяется.

Звезды в небе не разлетаются друг от друга. Они принадлежат к одной огромной системе – галактике Млечный Путь, – в которой содержится около ста миллиардов звезд, и она словно остров в космосе. В 1920-е годы астрономы при помощи новых телескопов обнаружили, что за пределами Млечного Пути есть множество других галактик, и во многих миллиарды звезд вроде нашего Солнца. И разбегаются друг от друга не отдельные звезды, а галактики – их уносит вместе с расширением пространства, в котором они находятся.

Этот прогноз ОТО поразил научное сообщество даже сильнее, чем искривление света, заметное во время затмения. Подобным следствиям из собственных уравнений поначалу отказывался верить даже Эйнштейн, но впоследствии наблюдения показали, что так и есть. Самые основы научного мировоззрения пошатнулись. Оказывается, Вселенная не статична, она развивается; впоследствии Эйнштейн признавался, что попытки подправить уравнения, чтобы удержать вселенную на месте, были «величайшей ошибкой в его жизни»[9] – уже к концу 1920-х годов и наблюдения, и теория указывали на то, что Вселенная расширяется. А если галактики разбегаются, значит, когда-то давно они были ближе друг к другу. Насколько ближе? Что происходило в те времена, когда галактики соприкасались? А еще раньше?

Мысль о рождении Вселенной в виде сверхплотного сверхгорячего огненного шара – теория так называемого Большого Взрыва – в наши дни служит краеугольным камнем науки, однако на ее разработку ушло время – более полувека. Пока астрономы искали подтверждения расширения Вселенной и тем самым преобразовывали научную картину Вселенной в целом, их коллеги – физики – разрабатывали квантовую теорию, преображая наше понимание очень малых величин. Внимание исследователей в течение ближайших десятилетий было сосредоточено в основном на разработке квантовой теории, а теория относительности и космология (наука о Вселенной) превратились в экзотическое побочное научное направление, которым занимались лишь несколько узких специалистов-математиков. До объединения большого и малого даже в конце 1920-х оставалось еще очень далеко.

Когда XIX век уступил место XX веку, физики были вынуждены пересмотреть свои представления о природе света. Поначалу скромная поправка к их мировоззрению росла и набирала силу, будто снежная лавина, вызванная одним-единственным снежком, покатившимся вниз по склону, и превратилась в настоящую революцию, охватившую физику в целом – в квантовую революцию.

Первым шагом было осознание, что электромагнитную энергию не всегда можно понимать просто как волну, проходящую сквозь пространство. Например, луч света в некоторых обстоятельствах ведет себя скорее как поток крошечных частиц (теперь их называют фотонами). Среди первооткрывателей «корпускулярно-волнового дуализма» был и Эйнштейн, который в 1905 году показал, что явление, когда электромагнитное излучение вышибает электроны из атомов в металлической пластине (фотоэффект), прекрасно объясняется существованием фотонов, а не волнами электромагнитной энергии. (Кстати, Нобелевскую премию Эйнштейн получил именно за эту работу, а не за две теории относительности.)

Корпускулярно-волновой дуализм изменил все наши представления о природе света. Мы привыкли считать, что импульс – это величина, зависящая от массы частицы и ее скорости (точнее, векторной скорости). Если два тела движутся с одинаковой скоростью, у того, которое тяжелее, импульс больше, и ему труднее остановиться. У фотона нет массы, и, казалось бы, не должно быть и импульса. Однако вспомним, что Эйнштейн открыл, что масса и энергия эквивалентны, а энергия у света определенно есть, более того, луч света – это луч чистой энергии. Поэтому импульс у фотонов есть, и он связан с их энергией, хотя у них нет массы и они не могут менять скорость. Если у фотона меняется импульс, это значит, что у него изменилось количество переносимой энергии, а не скорость, а изменение энергии фотона означает изменение длины его волны.

Когда Эйнштейн все это сопоставил, у него получилось, что, если умножить импульс фотона на длину связанной с ним волны, результат всегда один и тот же. Эту величину теперь называют постоянной Планка в честь Макса Планка, еще одного первооткрывателя квантовой теории. Постоянная Планка, которую принято обозначать латинской буквой h, вскоре оказалась одной из самых фундаментальных величин в физике наряду со скоростью света c. В частности, она входит в уравнения, выведенные в первые десятилетия века для описания того, как электроны удерживаются на орбитах вокруг атомов. Непонятный дуализм природы света очень донимал ученых, однако настоящий переполох начался в 1920-е годы, когда французский ученый Луи де Бройль предложил применять корпускулярно-волновое уравнение в обратную сторону. Вместо того чтобы взять длину волны (света) и на ее основании рассчитать импульс соответствующей частицы (фотона), можно взять импульс частицы (например, электрона) и на его основании вычислить длину соответствующей волны!

Воодушевленные этой мыслью экспериментаторы тут же провели опыты, показавшие, что при правильных условиях электроны и правда ведут себя как волны. В квантовом мире (в мире очень малых величин – на уровне атома и меньше) частицы и волны – попросту две стороны всего сущего. Волны могут вести себя как частицы, частицы – как волны. В английском языке даже появился новый термин «wavicle» – «волночастица». Дуалистическое понимание волн как частиц и частиц как волн оказалось ключом к квантовому миру и привело к созданию приемлемой теории, объясняющей поведение атомов, частиц и света. Но в самой сердцевине этой теории заложена глубочайшая тайна.

Поскольку у всех квантовых сущностей есть волновой аспект, их местоположение в пространстве нельзя определить точно. Ведь волны по самой своей природе растянуты в пространстве. Поэтому мы не можем судить, где именно находится электрон; как выяснилось, неопределенность – неотъемлемая черта квантового мира. Немецкий физик Вернер Гейзенберг в 1920-е годы установил, что все наблюдаемые величины на квантовом масштабе подвержены случайным вариациям и величина этих вариаций определяется постоянной Планка. Это и есть знаменитый «принцип неопределенности» Гейзенберга. Он означает, что все качества объекта вроде электрона невозможно определить точно: мы можем лишь приписывать им вероятности, очень точно выводимые из уравнений квантовой механики, например, вероятность, с которой электрон окажется в том или ином месте в то или иное время.

Более того, неопределенная, вероятностная природа квантового мира означает, что, если с двумя идентичными волнами-частицами обойтись идентичным образом (например, столкнуть их с волной-частицей другого типа), они не обязательно отреагируют идентично. То есть результаты экспериментов на квантовом уровне тоже неопределенны, и их нужно описывать только в терминах вероятностей. Электроны и атомы – вовсе не крошечные бильярдные шарики, отскакивающие друг от друга в соответствии с законами Ньютона.

На масштабе нашей повседневной реальности все это никак не проявляется, и тела вроде бильярдных шаров действительно отскакивают друг от друга предсказуемо, детерминистически, в соответствии с ньютоновой механикой. Дело в том, что постоянная Планка очень мала: в стандартных единицах, принятых у физиков, она составляет всего 6 × 10–34 (то есть 33 нуля и 6 после запятой) джоуль-секунд. А джоуль – весьма осязаемая единица энергии в повседневной жизни: шестидесятиваттная лампочка излучает 60 джоулей энергии каждую секунду. Привычные нам тела – бильярдные шары или мы сами – не подчиняются постоянной Планка, поскольку из-за ее малого размера волна, связанная с телом, так мала, что ей можно пренебречь. Но связанная квантовая волна есть и у вас, и у бильярдного шара, хотя она становится настолько большой, что влияет на взаимодействие тел, лишь для очень маленьких тел вроде электронов с очень маленьким импульсом.

Все это довольно туманно – и мы, пожалуй, вправе спокойно отдать подобные рассуждения на откуп физикам, а сами жить себе как жили. В общем-то, так и есть, хотя полезно знать, что физика, на основании которой работают компьютеры и телевизоры, зависит от понимания квантового поведения электронов. Лазерные лучи тоже работают исключительно на принципах квантовой физики, а любой проигрыватель компакт-дисков сканирует диски и считывает музыку именно при помощи лазерного луча. Поэтому квантовая физика участвует в нашей повседневной жизни, хотя не надо разбираться в квантовой механике, чтобы включить телевизор или музыкальный центр. Но в квантовой физике содержится и кое-что другое, гораздо более важное для нашей реальности. Когда квантовая физика учла в своих уравнениях неопределенность и вероятность, это раз и навсегда положило конец предсказуемому часовому механизму ньютонового детерминизма. Если на самом глубинном уровне Вселенная устроена по-настоящему непредсказуемо и недетерминированно, значит, нам вернули свободу воли, и мы наконец вправе сами принимать решения и сами совершать ошибки.

* * *

В начале 1960-х великие столпы физики стояли поодаль друг от друга. Общая теория относительности объясняла поведение космоса в целом и предполагала, что Вселенная зародилась из сверхплотного состояния, которое принято называть Большим Взрывом. Квантовая физика описывала, как устроены атомы и молекулы, и позволяла понять природу света и других видов излучения. Один юный физик, только что получивший первую ученую степень в Оксфордском университете, наверняка основательно изучил основы обеих теорий. Однако он вряд ли подозревал, что в ближайшие тридцать лет сыграет одну из главных ролей в объединении теорий и покажет, как их можно свести в одну великую теорию, которая объяснила бы все – от Большого Взрыва до атомов, из которых мы состоим.

Глава 3
Оксфорд

Год 1959 начался с потрясений: 2 января тридцатидвухлетний Фидель Кастро захватил власть на Кубе, а спустя месяц погиб в авиакатастрофе Бадди Холли, а лидером правящей партии конгресса в Индии стала Индира Ганди. К весне на острове Уайт приступили к строительству первого в мире судна на воздушной подушке, две макаки-резус стали первыми приматами в космосе, умер в возрасте семидесяти лет писатель Раймонд Чандлер. Тем временем в маленьком хартфордширском городке семнадцатилетний школьник по имени Стивен Хокинг готовился к вступительному экзамену в Оксфорд, засев в большой захламленной спальне в ветхом эдвардианском родительском доме.

Получить место в Оксфорде было делом нелегким. У абитуриента было два варианта: сдавать экзамен в конце шестого класса средней школы (в 17–18 лет), до экзаменов второго уровня сложности, либо в седьмом классе при условии, что за экзамены первого уровня сложности были получены очень высокие оценки. Первый вариант позволял успешно сдавшему экзамен абитуриенту отправиться в Оксфорд сразу после летних каникул, второй требовал ждать до следующего октября.

Стивен с отцом решили остановиться на первом варианте, и мальчик записался на экзамен в конце последнего года в школе Св. Альбана. С самого начала предполагалось, что Стивен будет претендовать на стипендию (scholarship) – это высочайшая награда, предлагаемая университетом. Стипендия давала право на целый ряд привилегий, а главное – отчасти покрывала расходы на обучение в Оксфорде. Если студенту не удавалось получить такую стипендию, он мог получить частную субсидию (exhibition), не такую престижную, которая в меньшей степени компенсировала плату за обучение. Наконец, абитуриенту могли предложить место в университете без материальной помощи, и таких студентов называли «нестипендиатами» (commoners).

Весь предыдущий год отец с сыном бесконечно препирались, какую специальность выбрать. Стивен настаивал, что хочет заниматься математикой и физикой, то есть обучаться по программе естественных наук. Отец сильно сомневался, поскольку считал, что математику негде найти себе работу помимо преподавания. Стивен точно знал, чем хочет заниматься, и победил в споре: медицина его не привлекала. Вот что он рассказывает:

Отцу хотелось, чтобы я пошел в медицину. Однако мне казалось, что биология – наука слишком описательная, ей недостает фундаментальности. Возможно, я относился бы к ней иначе, если бы знал о молекулярной биологии, но в то время она была мало известна.[10]

Спор о выборе специальности Фрэнк Хокинг проиграл, но твердо решил, что сын должен занять место в его бывшем колледже – Университетском колледже в Оксфорде. Однако очевидно, что доктор Хокинг даже тогда не слишком верил в способности сына и считал, что нужно нажать на определенные рычаги, чтобы юношу приняли. Похоже, он решил проявить инициативу. Перед самым вступительным экзаменом, назначенным на пасхальные каникулы, Фрэнк устроил Стивену встречу с потенциальным оксфордским куратором доктором Робертом Берманом. По воспоминаниям Бермана, Хокинг-старший так напирал, что это отбивало всякое желание принимать такого абитуриента. Но Стивен сдал экзамен настолько блистательно, что Берман и руководство университета вскоре стали относиться к нему значительно теплее.

Вступительный экзамен был очень трудным. Он проходил в течение двух дней и состоял из пяти работ, на каждую из которых отводилось по два с половиной часа. Две работы были по физике, две – по математике, а затем – проверка общей эрудиции и знаний о нынешней политической ситуации в стране и мире. Типичный вопрос звучал примерно так: «Вероятные краткосрочные последствия захвата власти на Кубе Фиделем Кастро». В то время от семнадцатилетних подростков никто не ждал сложившихся мнений по подобным материям, а кое-кто из руководства университета и вовсе сомневался, что абитуриентам стоит иметь подобные мнения. Скажем, на доктора Бермана, по его же словам, гораздо более сильное впечатление произвели бы не представления юного Хокинга о современной политике, а его знания об английской сборной по крикету.

После двенадцати с половиной часов теоретических проверок и одной лабораторной работы по физике следовали собеседования. Сначала – общее, когда абитуриентов бомбардировали жесткими вопросами глава колледжа, декан факультета, старший куратор и преподаватели по соответствующей специальности. Все это происходило в профессорской Оксфордского университета. Потенциальные студенты входили туда по одному и подвергались пристрастному допросу комиссии, причем от них ждали умных и тонких ответов на целую череду тупых вопросов. Цель была такой же, как и у собеседования при приеме на работу: изучить характер кандидата. После общего собеседования нужно было пройти еще и собеседование по специальности, которое происходило в кабинете доктора Бермана. На нем Хокингу задавали вопросы по физике.

После всех испытаний и собеседований абитуриенты разъезжались по своим школам по всей стране дожидаться результатов и сдавать экзамены второго уровня. Тем временем кураторы проверяли работы и совещались, кого принимать, а кого нет. Если Университетский колледж хотел принять Хокинга, его руководство должно было предложить ему стипендию, поскольку Хокинг поставил колледж на первое место в списке в своем заявлении. Далее, если бы руководство Университетского колледжа решило, что не хочет давать ему стипендию – ни основную, ни частную – этот вариант должны были рассмотреть другие оксфордские колледжи. Если бы ни один из колледжей не согласился дать Хокингу стипендию, его заявление вернулось бы в Университетский колледж, и ему предложили бы при желании поступить туда нестипендиатом.

Новости из Оксфорда Хокинг получил только через десять дней. Пришло приглашение снова приехать в университет и пройти еще одно собеседование. Это вселяло надежды. Значит, к заявлению Хокинга отнеслись серьезно, и у него очень хорошие шансы поступить. Стивен еще не знал, что получил 95 % за обе работы по физике и почти такие же высокие оценки за остальные работы. Через несколько дней после второго собеседования на коврик у двери Хокингов упало судьбоносное письмо. Университетский колледж предложил Стивену Хокингу стипендию. Его приглашали приступить к занятиям в Оксфордском университете в ближайшем октябре при единственном условии: летом ему нужно было сдать два экзамена второго уровня.

* * *

Часто говорят, что в Оксфорде какое-то особое освещение, чудесная игра солнечного света на песчанике, столетиями вдохновлявшая поэтов и художников, подобно столь же прекрасным городам Италии и Германии. Облик центра города целиком определяет университетский комплекс – его здания рассеяны повсюду, так что здесь нет никакой организованной структуры или нервных узлов. Колледжи разбросаны там и сям, а остальной город вьется вокруг. Архитектура так же беспорядочна, как и география: здесь есть и средневековые здания, и сооружения конца XX века. Летом, когда песчаник так и блестит на солнце и в реке кишат плоскодонки, и те, кто в них плывет, погружают шесты в искрящуюся воду, а те, кто устроился на траве на бережку, поднимают к губам бокалы шампанского, – все это, конечно, очень похоже на стоп-кадры земного рая.

На рубеже 1950-х и 1960-х годов Оксфорд – микрокосм британского общества – очутился на грани великих перемен. Когда Хокинг приехал в Оксфорд в первый четверг октября и впервые ступил на Хай-стрит в качестве студента, университет во многом был таким же, как и во времена его отца – более того, он мало изменился за последние несколько столетий. Правда, после войны университетская дисциплина несколько ослабла. До этого студентам запрещалось ходить в городские питейные заведения, а если их ловили, университетская полиция – так называемые «бульдоги» – их исключала. В мужские общежития женщины допускались только с письменного разрешения декана, который должен был указать строгие временные рамки и условия в письме к главному портье, который затем педантично исполнял указания декана. Все это изменилось, когда в университет поступили ветераны, вернувшиеся с войны, – и на первый курс, и чтобы возобновить прерванное обучение. Они, естественно, не желали соглашаться с такими драконовскими ограничения, поэтому правила постепенно смягчались.

Комнаты в общежитии доставались не всем, на них была очередь, но тут Хокингу повезло: поскольку он был полным стипендиатом, то имел преимущество и сохранил за собой место в общежитии на протяжении всех трех лет обучения.

У большинства оксфордских колледжей есть квадратные внутренние дворы с лужайкой посередине и тропинками в траве. Из двора в здание можно попасть по лестницам, а комнаты студентов расположены на верхних этажах. Убирали в общежитиях и в целом вели хозяйство университетские «служители», и они же отвечали за то, чтобы похмельные юноши и случайно оказавшиеся в общежитии девушки успевали на завтрак в положенное время с восьми до четверти девятого и не натыкались на запертую дверь столовой. К студентам служители обращались «сэр» – или «мистер Такой-то», если хотели, чтобы в их голосе прозвучали нотки презрения. А к ним полагалось обращаться по фамилии, как к слугам.

Принимали в Оксфорд в основном юношей, как правило, из частных школ по всей стране, причем большинство – из верхней десятки, куда входили Итон, Харроу, Рагби и Вестминстер. Правда, в последнее время стало больше студентов из среднего и рабочего класса, однако классовые различия в Оксфорде во многих отношениях проявлялась даже отчетливее, чем в обществе в целом. Были проведены строгие демаркационные линии, невидимые границы, которые крайне редко нарушались дружбой или романтическими отношениями, и каждый такой случай был настоящей сенсацией. Для этого представители разных классов должны были сначала познакомиться – а это бывало совсем не часто.

В одном лагере была элита, дети из аристократических семей, наследники «старых денег», Себастьяны Флайты этого мира; они составляли существенную долю студентов из Крайст-черч-колледжа и в меньшей степени – из колледжа Бейлиол. Привилегированные тратили свои зачастую весьма значительные карманные деньги на развлечения для бывших одноклассников, которые пошли в университет вместе с ними, и на тех приятелей, кто предпочел «другое место» – Кембридж. На выпускников менее престижных частных школ вроде школы Св. Альбана они смотрели свысока и не отличали их от низшей касты – мальчиков из классических школ (grammar schools). Конечно, литература склонна к преувеличениям, но все же здесь царила атмосфера «Возвращения в Брайдсхед». А «северные химики» – отличники, пришедшие из государственных (comprehensive) школ, и «хулиганы из классических школ» по другую сторону раскола жили на стипендии и гранты и вместо перепелиных яиц и шампанского радовались пиву и пирогам со свининой.

Во многих отношениях эти касты были на удивление похожи. В конце 1950-х среди студентов и молодых ученых независимо от происхождения были в моде мешковатые брюки и твидовые пиджаки. Просто у привилегированных эти пиджаки были из ателье на Сэвил-роу, а просторные штаны с отворотами – из универмага «Хэрродс». А на студенческих балах, проводившихся каждое лето, спутницей выпускника Харроу или Итона была, скорее всего, дочь барона или герцога в платье из самого лучшего шелка. А выходцы из среднего класса на таких мероприятиях искали общества себе подобных – и с удовольствием попивали шампанское, пользуясь редким случаем.

Однако вскоре после того, как в Оксфорд поступил Стивен Хокинг, начались радикальные перемены, суть которых прекрасно сформулировал один его современник: «Когда мы поступили в Оксфорд, вся сколько-нибудь значимая знать занималась греблей и ни за что не надела бы джинсы. Когда мы выпускались, вся сколько-нибудь значимая знать презирала греблю и носила джинсы».

Перемены были везде. Умы молодежи стала занимать поэзия бит-поколения из Сан-Франциско. Набирала популярность лейбористская партия. Традиционные ценности, особенно классовая система, стали анахронизмом, по крайней мере, среди интеллигенции. «Штурмовать крепость» никто не пытался, к этому призывали десять лет спустя и в другом городе, но дух времени явно вступал в свои права. В такой обстановке человек с характером Стивена Хокинга, должно быть, рассматривал Оксфорд и все его устройство как довольно забавный микрокосм, систему ценностей, которая – типично по-британски – приведет скорее к сатирическим шоу вроде «За гранью» («Beyond the Fringe») и «Монти Пайтона», чем к кровавым рекам в чреве Парижа.

* * *

Несмотря на все соблазны, первый курс в Оксфорде оказался для Стивена Хокинга не самым веселым годом. Среди его однокурсников почти не было бывших соучеников по школе Св. Альбана и не оказалось ни одного близкого друга. В 1960 году в Оксфорд поступил Майкл Черч, а Джон Маккленахан поехал в Кембридж. Многие однокурсники Хокинга до университета отслужили в армии и, значит, были на два-три года старше. (Сам Хокинг избежал призыва только потому, что за несколько месяцев до того, как он вступил в призывной возраст, правительство Гарольда Макмиллана отменило обязательную военную службу.)

Учиться Стивену было скучно. Все задачи по физике и математике, которые задавали преподаватели, он решал без труда – и покатился по скользкой дорожке пренебрежения к учебе и умеренной радости от легких побед. Оксфордская система очень способствовала тому, чтобы студенты вроде Хокинга впадали в апатию. Еженедельное расписание предполагало несколько лекций и один семинар, на котором разбирали задачи, заданные на предыдущем семинаре. А в остальном студенты были предоставлены самим себе.

Мало того что на занятиях царила подобная вольница – система экзаменов тоже была совсем не строгой, и для студентов калибра Хокинга оставался огромный простор для всякого рода манипуляций. Значение имели только университетские экзамены, а не экзамены в колледже, а они проходили только в конце первого курса и на последнем курсе. Ученую степень присуждали исключительно по результатам выпускных экзаменов. Кроме того в начале каждого триместра проходили экзамены на уровне колледжа, целью которых было проверить, как студенты усвоили материал предыдущего триместра и как работали самостоятельно на каникулах. Эти экзамены назывались «collections», и оценки за них ставили свои же кураторы и преподаватели. Хокинг вспоминает:

В целом тогдашние оксфордские студенты отнюдь не были настроены трудиться. Модно было либо блестяще учиться безо всякого труда, либо смириться со своей ограниченностью и получить бакалаврский диплом «четвертой степени» – то есть без отличия, еле-еле натянув проходной балл. А прилежно учиться, чтобы получить диплом с отличием, считалось признаком «серости» – худший эпитет в оксфордском словаре.[11]

Хокинг знал, что относится к первой категории, и решил соответствовать образу. На первом курсе он ходил исключительно на лекции и семинары по математике и сдавал экзамены в колледже только по математике. Как охотно признает сегодня его куратор, курсы по физике в то время были не более чем повторением материала экзаменов второго уровня, и Хокингам нашего мира они были ни к чему.

В университете сложилась настоящая фольклорная традиция – корпус легенд о чудесных прозрениях Хокинга, точь-в-точь рассказы о юном Моцарте. Один из соучеников, вместе с Хокингом ходивший на семинар, вспоминает случай, который произвел на него сильное впечатление. Преподаватель задал им домашнее задание на следующий семинар. Решить задачи не смог никто, кроме Стивена. Преподаватель попросил у него задание, посмотрел и был глубоко потрясен изящным доказательством какой-то особенно сложной теоремы. Похвалив способного студента, он вернул ему работу. Хокинг взял листок, смял его в комок и зашвырнул в мусорную корзину в углу – причем в этом не было и намека на дерзость. Другой участник семинара потом заметил: «Если бы я сумел доказать эту теорему хотя бы за год, я бы сохранил записи!»

Рассказывают также, что однажды четверым участникам семинара задали на неделю несколько задач. Утром того дня, когда надо было сдавать решения, трое из четверых обнаружили, что Стивен уютно устроился в кресле в гостиной и читает фантастический роман.

– А что задачки, Стив? – спросил кто-то из соучеников.

– Я еще не смотрел, – отозвался Хокинг.

– Пора бы, – заметил его приятель. – Мы всю неделю ломали над ними голову и решили только одну.

Когда все собрались на семинар и в аудиторию вошел Хокинг, остальные спросили, что ему удалось решить.

– А, я успел сделать только девять, – сказал он.

Хокинг почти не вел конспектов, и учебников у него было мало. Дело в том, что он настолько опережал свое время, что не доверял многим стандартным учебникам. Рассказывают, как один из его преподавателей, младший научный сотрудник Патрик Сандарс, задал студентам несколько задач из учебника. На следующий семинар Хокинг пришел, не сделав домашнего задания. На вопрос, почему, он двадцать минут рассказывал об ошибках в учебнике.

Несмотря на разгильдяйское отношение к учебе, Хокинг умудрился не поссориться со своим куратором доктором Берманом. Иногда он даже заходил на чай к Берманам в дом на Бэнбери-роуд. Летом они устраивали пикники на лужайке за домом, ели клубнику и играли в крокет. Жена доктора Бермана Морин прониклась особенной симпатией к чудаковатому юному студенту, которого ее муж считал весьма способным физиком. Хокинг часто приходил к чаю заранее, чтобы посоветоваться с ней, какие хорошие книги стоит купить, и она держала его на строго интеллектуальной литературной диете в дополнение к трудам по физике, которые он иногда читал.

Недостаток прилежания вовсе не мешал Хокингу добиваться блестящих успехов в физике. В конце второго курса он, как отличник, был номинирован на университетскую награду по физике, на которую претендовали все другие студенты, изучавшие этот предмет. Он без малейших усилий получил первую премию – сертификат на 50 фунтов в знаменитый оксфордский книжный магазин «Блэкуэллз».

Оставаться на первых местах среди соучеников и дружить с доктором Берманом – это одно, но сражаться с непреодолимой скукой – совсем другое, и примерно в это время Стивен, вероятно, рисковал скатиться в депрессию. К счастью, на втором курсе у него появилось новое увлечение, которое помогло обрести своего рода стабильность. Стивен занялся греблей. Гребля в Оксфорде и Кембридже – традиция, уходящая в глубь веков. Гребцы упорно тренируются, участвуют в соревнованиях между колледжами, а каждый год проходят соревнования между университетами, на которых выявляют лучших из лучших.

Гребля – спорт, требующий изрядной физической подготовки, и гребцы относятся к тренировкам очень серьезно. Спортсмены выходят на воду при любой погоде, и в дождь, и в снег, разбивают утренний ледок зимой и потеют на солнцепеке летом. Гребля требует упорства и усердия, вот почему она так популярна в университете. Она служит прекрасным противовесом трудной напряженной учебе, по крайней мере, у некоторых студентов. А в случае Хокинга она стала чудесным лекарством, позволявшим не окостенеть от скуки, которую навевал на него весь оксфордский уклад.

Поскольку гребля – силовой вид спорта, гребец должен быть достаточно крепко сложен, чтобы двигать лодку по воде, а Хокинг атлетизмом не отличался, однако в каждом экипаже есть один незаменимый человек – так называемый рулевой.

На эту роль Стивен подходил идеально. Он мало весил, поэтому не перегружал лодку, обладал громким голосом и обожал выкрикивать команды так, чтобы слышно было всем и каждому, а кроме того был дисциплинированным и не пропускал тренировок. Тренировал его Норман Дикс, уже несколько десятков лет проработавший в гребном клубе университетского колледжа. Он вспоминает, что из Хокинга получился неплохой рулевой, однако он почему-то никогда не стремился, чтобы его восьмерка заняла первое место, довольствуясь вторым. Тренер подозревал, что первое место пугало Хокинга, поскольку тогда пришлось бы относиться к делу слишком серьезно, и вся затея лишилась бы всякой привлекательности.

Дикс вспоминает, что в юности Хокинг был буйного нрава и с самого начала старался, чтобы экипаж считал его настоящим сорвиголовой. Не раз и не два восьмерка возвращалась на берег с поцарапанными бортами и поломанными веслами, потому что Стивен хотел провести лодку в очень узкую щель и оплошал. Дикс никогда не принимал на веру заявления Хокинга, что «в реке что-то попалось».

«Мне постоянно казалось, что почти все время он сидит на корме, думая исключительно о звездах, – вспоминает Дикс. – Голова у него была занята математическими формулами».

Тренировались команды очень серьезно. Во время учебы они спускали лодки на воду каждый день, чтобы подготовиться к большим соревнованиям, которые проходили в феврале и летом. Первые называются «Torpids» – от прилагательного «torpid» (оцепенелый, вялый) – поскольку в нем участвуют и первокурсники, а следовательно, стандарты многих экипажей заметно снижаются. Новички приходили в гребной клуб в октябре, и им приходилось всю зиму упорно тренироваться, чтобы похвастаться новообретенными навыками на пятой неделе зимнего триместра. «Torpids» – гонки на выживание, соревнования идут несколько дней. Тринадцать лодок стартуют через промежутки в сто сорок футов. Каждая привязана к берегу канатом длиной сорок футов, конец которого держит рулевой. По сигналу стартового пистолета рулевой отпускает канат, и лодки гонятся друг за другом по участку реки, причем их задача – лавируя среди двенадцати других лодок, врезаться в лодку впереди и при этом не дать никому врезаться в них, и главную роль в этом играет рулевой. После каждого заплыва «стукнувшие» и «стукнутые» меняются местами. Если экипаж действует очень умело и за несколько заездов поднимается на несколько мест, каждый гребец получает право приобрести весло, на котором начертана триумфальная история столкновений, имена экипажа и дата. Потом эти весла украшают стены комнат победителей. Экипажи Хокинга были средненькие, набирали во время гонок лишь скромное количество столкновений, но главным было другое – сбросить напряжение из-за учебы и как следует повеселиться.

После гонок кто-то ликовал, кто-то принимал соболезнования – и то, и другое сопровождалось неумеренным потреблением эля, за которым следовал обед в гребном клубе с речами и тостами. И именно поэтому Хокинг решил во всем этом участвовать. На первом курсе он чувствовал себя чужим, ему было одиноко, учеба навевала скуку, потому что давалась слишком легко. А гребной клуб позволил девятнадцатилетнему Стивену перестать вариться в собственном соку и войти в университетское сообщество.

Когда старые школьные друзья увидели Стивена на втором курсе, то не могли поверить своим глазам – так он изменился. Соученики называли его по-разному – и «своим в доску», и «отъявленным хулиганом», и этот стройный юноша с растрепанной шевелюрой и в розовом клубном шарфе был совсем не похож на нескладного мальчишку, окончившего школу Св. Альбана каких-нибудь два года назад. Он перестал быть изгоем и превратился в полноправного члена «избранного круга». Это был мир сугубо мужской, куда женщины практически не допускались, и в какой-то степени продолжение дружеской компании из школы Св. Альбана, правда, без прежней напряженной интеллектуальной жизни, зато с переизбытком алкоголя. Суть была в том, чтобы пить очень много эля, рассказывать жутковатые истории и как можно больше веселиться, впрочем, безобидно. Однако пробудившаяся страсть к приключениям едва не довела Стивена до беды.

Как-то вечером Стивен с приятелем решили похулиганить. Они пропустили по несколько кружек пива, после чего двинулись к пешеходному мостику через реку. Выйдя из паба, приятели прихватили банку краски и кисти, припрятанные в колледже, и сложили в сумку. У моста они взяли несколько досок и тщательно подвязали их веревкой, чтобы они свисали на несколько футов ниже парапета параллельно мосту. Перелезли через перила, встали на доски, взяли краску и кисти и принялись за работу. Через несколько минут на мосту можно было различить в полумраке надпись «ГОЛОСУЙТЕ ЗА ЛИБЕРАЛОВ» аршинными буквами. Расчет был на то, что днем надпись увидят все, кто выйдет на берег или на воду.

Тут разразилась катастрофа. Когда Хокинг дорисовывал последнюю букву, с моста на них посветил луч фонаря, и грозный голос закричал: «Что это вы затеяли?» Это был местный полицейский. Приятели запаниковали, и друг Хокинга перебежал по доскам на берег и умчался в город, а Хокинг с кистью в руке остался один на месте преступления. Говорят, дело кончилось выговором в участке, после чего об инциденте мало-помалу забыли. Но воспитательные меры оказались действенными: Стивен так перепугался, что с тех пор никогда не пытался нарушить закон.

* * *

Меньше чем через три года после поступления в Оксфорд Стивена ожидало еще одно суровое испытание. Приближались выпускные экзамены, а он внезапно обнаружил, что плохо подготовился. Доктор Берман предвидел, что при всех своих талантах Хокингу придется на экзаменах трудно, поскольку тот не ожидал, что они окажутся такими сложными. Берман понимал, что хорошо учатся в Оксфорде два типа студентов: способные и очень трудолюбивые – и гениальные, и очень ленивые. И за письменные работы у первых оценки обычно бывали выше. Так уж устроены экзамены: одно дело – получать ежегодные премии по какому-то предмету, и совсем другое – хорошо сдать выпускные. Все или ничего – кульминация трех лет обучения. Как-то раз Хокинг подсчитал, что за три года в Оксфорде занимался всего около тысячи часов, то есть в среднем примерно час в день; едва ли это можно считать усердной подготовкой к трудным выпускным экзаменам. Один его приятель с улыбкой вспоминает: «К концу он занимался уже по три часа в день!»

Однако у Хокинга был план. Поскольку каждая письменная работа состояла из нескольких заданий и можно было выбирать, на какие вопросы отвечать, он решил, что возьмется только за вопросы по теоретической физике, а задания, требующие детальных фактических познаний, не станет выполнять. Он понимал, что ответит на любой теоретический вопрос благодаря проверенным временем природным способностям и интуитивному пониманию предмета. Однако была одна сложность. Хокинг подал заявление в Кембридж, чтобы писать там диссертацию по космологии на степень доктора философии под руководством Фреда Хойла, самого выдающегося британского астронома того времени. Беда в том, что в Кембридж Хокинга приняли бы только с дипломом бакалавра с отличием первой степени, а это была высшая оценка в Оксфорде.

В ночь перед экзаменами Хокинга охватила паника. Он почти не спал и до утра ворочался в постели. Утром он облачился в парадную студенческую форму (черная мантия особого покроя, белая рубашка и белый галстукбабочка, которые полагалось надевать на экзамены), вышел из комнаты, взволнованный, с мутными глазами, и отправился в экзаменационный зал неподалеку на Хай-стрит. По тротуарам текли потоки таких же нарядных студентов – кто-то тащит под мышкой кипу книг, кто-то лихорадочно затягивается последней сигаретой у входа в зал. Находка для туриста с фотоаппаратом, но настоящая пытка для тех, кому предстоит несколько дней подряд писать экзаменационные работы.

Обстановка в экзаменационных залах была гнетущая – архитекторы об этом позаботились. Высокие потолки, огромные канделябры, висящие в пустоте, длинные ряды грубых деревянных столов и жестких стульев. По проходам расхаживают надзиратели, соколиным взором оглядывающие студентов – кто-то уставился в потолок или в пространство, зажав в стиснутых зубах ручку, кто-то согнулся над листком и бешено строчит, записывая свой поток сознания. Когда на стол перед Хокингом положили задание, он стряхнул сонное оцепенение и прилежно последовал плану: занялся исключительно теоретическими вопросами. После экзаменов они с однокурсниками пошли отпраздновать окончание учебы – перекрыли по традиции движение на Хай-стрит, пили шампанское из горлышка и пускали струи пены в летнее небо. Результатов пришлось подождать несколько дней, все не находили себе места от беспокойства, но вот они наконец пришли. Хокинг оказался на грани между дипломом с отличием первой и второй степени. Чтобы решить его судьбу, ему назначили «viva» – очное собеседование с экзаменаторами.

Хокинг прекрасно понимал, какая у него сложилась репутация в университете. Он был уверен, что его считают не слишком хорошим студентом – неряшливым и на первый взгляд ленивым, – и думают, что его больше интересует выпивка и веселье, чем серьезная работа. Возможно, он был прав, однако не ожидал, что преподаватели настолько высоко ценят его способности. Мало того: как любит повторять Берман, Хокинг на очном собеседовании был в своей стихии, поскольку, если у экзаменаторов была хоть капля мозгов, они сразу понимали, насколько он умнее их. Но одна его реплика на собеседовании особенно ярко показывает, как точно он умел формулировать суть дела, и к тому же, вероятно, спасла его карьеру. Глава комиссии попросил его рассказать о планах на будущее.

– Если вы дадите мне отличие первой степени, – ответил Хокинг, – я поеду в Кембридж. А если я получу диплом второй степени, то останусь в Оксфорде, так что, полагаю, вы дадите мне отличие первой степени.

Так они и поступили.

Глава 4
Доктора и доктораты

Часто говорят, что Кембридж – единственный настоящий университетский город в Англии. Оксфорд гораздо больше, а за его кольцевой дорогой раскинулись промышленные зоны, соседствующие с едва ли не крупнейшими в Европе районами жилой застройки. Кембридж значительно меньше и уютнее, и академический дух ощущается в нем гораздо сильнее.

Историки считают, что Кембриджский университет основали перебежчики из Оксфорда, однако оба академических центра возникли примерно в одно и то же время, в XII веке, по образцу Парижского университета. Кембриджский университет, как и Оксфорд, состоит из множества колледжей под управлением одной администрации. Как и Оксфорд, Кембридж привлекает лучших ученых со всей планеты и пользуется авторитетом во всем мире, сопоставимым только с репутацией его великого соперника и исторического близнеца на расстоянии всего-то в восемьдесят миль. Как и Оксфорд, Кембридж полон традиций, драм и историй.

* * *

В октябре 1962 года Стивен Хокинг, бакалавр искусств (с отличием), вернувшись из-за границы, прибыл в Кембридж и сменил голый выжженный ландшафт Ближнего Востока на осенний ветер и морось над темными полями Восточной Англии. Когда в то дождливое утро он ехал в свой новый дом через луга и пологие холмы, мир и покой «единственного настоящего университетского города в Англии» – и всех людей на планете – омрачала тень охватившего весь мир Карибского кризиса.

Тогда и вправду казалось, что мир вот-вот сгинет в пламени ядерной бури. Сегодня, в относительно спокойный период, когда СССР больше не существует, трудно представить себе атмосферу того времени, ощущение непредсказуемости и незащищенности. И Хокинг, как и все, понимал, что никак не влияет на события в мире и что положение безнадежно. Старые кумиры, добрые и прекрасные, меркли и рушились, и на их место готовы были заступить новые герои. В августе того года умерла Мэрилин Монро, Джону Ф. Кеннеди оставалось жить чуть больше двенадцати месяцев, а «Битлз» стояли на пороге международной славы, не имевшей аналогов в истории популярной культуры.

Невзирая на нависшую угрозу мгновенного уничтожения, жизнь в Кембридже шла своим чередом. Студенты устраивались в новых домах и осваивали незнакомый город, местные жители занимались обычными делами, как уже тысячу лет со времен основания Кембриджа.

В первые дни после переезда в Кембридж, когда большой мир, казалось, вот-вот разнесет сам себя в клочья, Стивен Хокинг начал подозревать, что и внутри у него что-то неладно. Под конец обучения в Оксфорде ему стало трудновато шнуровать ботинки, он постоянно на что-то натыкался, несколько раз у него подкашивались ноги. Случалось, что у него заплетался язык, как у пьяного, даже без капли спиртного. Стивен не желал признавать, что с ним что-то не так, никому ничего не говорил и старался жить по-прежнему.

Когда он приехал в Кембридж, возникло другое осложнение. Поскольку он хотел писать здесь диссертацию, у него было два варианта на выбор – заниматься либо элементарными частицами, то есть изучать очень малое, либо космологией, то есть изучать очень большое. Вот как говорил он сам:

Я считал, что элементарные частицы – это не так интересно, поскольку, хотя постоянно и открывают новые частицы, приемлемой теории элементарных частиц не существует. Можно лишь объединять их в семейства, как в ботанике. Что же касается космологии, тут была вполне определенная теория – общая теория относительности Эйнштейна.[12]

Тут-то и таилась загвоздка. Хокинг решил ехать в Кембридж в первую очередь потому, что в Оксфорде невозможно было заниматься космологией, а главное – он хотел учиться у Фреда Хойла, который тогда считался самым выдающимся специалистом по космологии в мире. Но научным руководителем Хокинга стал не Хойл, а некто Деннис Сиама, о котором он впервые слышал. Поначалу такой поворот казался Стивену катастрофой, но постепенно он начал понимать, что научный руководитель из Сиамы получится не в пример лучше Хойла, поскольку Хойл вечно в разъездах, и играть роль наставника ему некогда. Вдобавок Хокинг вскоре обнаружил, что доктор Сиама и сам очень достойный ученый, умеет заинтересовать своих учеников и всегда готов помочь и поговорить.

Первый семестр в Кембридже прошел для Хокинга совсем не гладко. Оказалось, что ему недостает оксфордской математической подготовки, и он путается в сложных вычислениях, которых требует теория относительности. Усердно учиться он не привык, и справляться с программой ему становилось все труднее. Он второй раз очутился на грани краха. Сиама (он умер в 1999 году) вспоминал, что, хотя Хокинг был явно очень способным студентом и отличался готовностью отстаивать свою точку зрения с толком и умом, отчасти его трудности объяснялись невозможностью найти подходящую тему для исследований.

Дело в том, что задача должна была быть достаточно сложной, чтобы удовлетворять требованиям к диссертации на степень доктора философии, а поскольку исследования такого уровня по теории относительности были тогда в новинку, подобрать тему оказалось непросто. Сиама считал, что в те дни Хокинг был близок к утрате почвы под ногами и краха всего своего таланта. Так было, по крайней мере, весь первый год его работы над диссертацией. Все наладилось только благодаря сложному стечению обстоятельств, причиной которых стали перемены, уже происходившие в организме Хокинга.

* * *

Когда Стивен вернулся в Сент-Олбанс на рождественские каникулы в конце 1962 года, вся южная Англия была укрыта толстым снежным одеялом. Должно быть, тогда Хокинг уже понимал, что его здоровье пошатнулось. Непонятные приступы неуклюжести повторялись все чаще и чаще, однако в Кембридже никто пока не обращал на это внимания. Правда, Сиама припоминал, что еще в начале триместра ему показалось, что у Хокинга иногда чуть-чуть «плывет» речь, но не придал этому особого значения. Но когда Стивен приехал к родителям, они сразу заметили, что с ним что-то не так, поскольку увидели его после перерыва в несколько месяцев. Отец тут же пришел к выводу, что летом на Ближнем Востоке Стивен подхватил какую-то неведомую инфекцию, – логично для врача, занимающегося тропическими болезнями. Но эту гипотезу надо было проверить. Они обратились к семейному доктору, а тот направил Стивена к неврологу.

В канун Нового года Хокинги устроили в доме 14 по Хиллсайд-роуд прием. Это было, как и следует ожидать, официальное мероприятие с вином и шерри, были приглашены ближайшие друзья, в том числе бывшие одноклассники Стивена Джон Маккленахан и Майкл Черч. Прошел слух, что Стивен заболел, чем именно – непонятно, но в целом все считали, что какой-то заграничной хворью. Майкл Черч вспоминает, что Стивену было трудно налить вино в стакан, оно попадало по большей части на скатерть. Никто ничего не говорил, но в тот вечер все предчувствовали недоброе.

Среди приглашенных была и девушка по имени Джейн Уайлд, которую Стивен раньше знал только шапочно. Их официально представил друг другу тем вечером общий приятель. Джейн тоже жила в Сент-Олбансе, училась в местной школе. Последние минуты 1962 года истекли, начался 1963 год, и молодые люди разговорились и познакомились поближе. Джейн заканчивала выпускной класс и уже поступила в Вестфилдский колледж в Лондоне, где ей предстояло с осени изучать современные языки. Кембриджский аспирант, которому было уже двадцать один, показался Джейн очень интересным чудаком и сразу ей понравился. Она вспоминала, что в нем, конечно, чувствовался некоторый интеллектуальный снобизм, но «было ощущение, что он какой-то потерянный, что он знает, что с ним происходит что-то не подвластное ему».[13] Той ночью началась их дружба.

В январе Стивен должен был вернуться в Кембридж – начался зимний триместр – но вместо учебы он очутился в больнице на обследовании. Хокинг живо вспоминает, как это было:

У меня взяли образец мышечной ткани из руки, повсюду навтыкали электродов, ввели в позвоночник какую-то рентгеноконтрастную жидкость и на рентгеновском аппарате смотрели, как она там ходит вверх-вниз, когда мою койку наклоняют. После всего этого мне так и не сказали, что это, не сказали, что это не рассеянный склероз и что я нетипичный случай. Однако я заключил, что врачи считают, что дальше будет только хуже, а сделать ничего не могут, кроме как пичкать меня витаминами. Я понимал, что особого эффекта они от этого не ждут. Выяснять подробности мне не хотелось, потому что ничего хорошего мне бы не сказали.[14]

Врачи посоветовали вернуться в Кембридж и отвлечься на космологию, но это, разумеется, было проще сказать, чем сделать. Работа и так не ладилась, а теперь все мысли и поступки Стивена сопровождались страхом неизбежной смерти. Хокинг поехал в Кембридж и стал ждать результатов обследования. Вскоре ему поставили диагноз: редкая неизлечимая болезнь – боковой амиотрофический склероз, которую в США называют болезнью Лу Герига – в честь бейсболиста из «Янки», который умер от нее. В Великобритании ее принято называть болезнью моторных нейронов.

Боковой амиотрофический склероз поражает нервы спинного мозга и часть головного мозга, отвечающую за произвольные двигательные функции. Клетки постепенно дегенерируют, мышцы по всему телу атрофируются, следует паралич. В остальном мозг остается незатронутым, высшая нервная деятельность – мышление и память – не страдают. Тело постепенно разрушается, но разум больного остается целым и невредимым. Прогноз, как правило, состоит в постепенной потере подвижности, в результате которой наступает паралич, а затем и смерть от удушья или пневмонии при отказе дыхательных мышц. Симптомы безболезненны, но на последних стадиях болезни пациентам часто дают морфин, чтобы облегчить хроническую депрессию.

Как ни парадоксально, но Стивену Хокингу невероятно повезло, что он занимался как раз теоретической физикой – одной из немногих профессий, для которых человеку, в сущности, не нужно ничего, кроме собственного мозга. Будь он физиком-экспериментатором, его карьере пришел бы конец. Это, конечно, едва ли утешало молодого человека, которому был всего двадцать один год: ведь он, как и все его сверстники, считал, что его ждет нормальная жизнь, а не медленная смерть от неврологической болезни. Врачи дали ему два года.

При этом известии Хокинг впал в глубочайшее уныние. Легенда Флит-стрит гласит, что он заперся в темной комнате, пил и предавался пьяной жалости к себе, включив Вагнера на полную громкость. Однако сам он указывает, что рассказы о запое сильно преувеличены, но все же настроение у него тогда было «трагическое»,[15] поэтому да, он и вправду на некоторое время ограничил общение с друзьями и слушал музыку, в основном Вагнера:

Журнальные рассказы о том, как я тогда пил, – преувеличение. Беда в том, что стоило упомянуть о моем пьянстве в одной статье, как это тут же подхватили все остальные: ведь какой интересный сюжет! Даже если о чем-то упоминали в печати много раз, это не обязательно правда.[16]

Как было на самом деле, мы, возможно, никогда не узнаем, но думается, что стоит верить воспоминаниям самого Хокинга. Мысль о том, чтобы на некоторое время оглушить себя любыми доступными средствами, лишь бы умерить ментальную боль, в таких обстоятельствах более чем логична.

Более того, его слова подтверждают и другие. Например, Деннис Сиама как-то заметил, что не помнит, чтобы Хокинг надолго исчезал, что бы ни говорила желтая пресса. А поскольку в учебное время Сиама виделся со своими студентами ежедневно, то первым бы заметил отсутствие Стивена.

При этом не приходится сомневаться, что подобная новость глубоко потрясла Хокинга, и наверняка он погрузился в депрессию. Продолжать исследования было бессмысленно, поскольку он просто не успеет закончить диссертацию. Стивен был искренне убежден, что жить ему незачем. Если он умрет в ближайшем будущем, ради чего стоит трудиться? Религия и мысли о загробной жизни его никогда не привлекали, так что искать утешения в этой области он и не пытался. Он проживет свой век, а потом умрет. Такова его судьба. На личные трагедии Стивен реагировал как любой из нас – и только и мог, что думать: «Почему такое случилось именно со мной? За что мне все это?»[17]

Хокинг рассказывает, что во время обследования с ним произошел случай, оставивший глубокое впечатление и помог пережить кошмарные дни после возвращения в Кембридж:

Когда я лежал в больнице, то видел, как на соседней койке умирает от лейкемии один молодой человек – мой дальний знакомый. Зрелище было некрасивое. Очевидно, на свете есть люди, которым приходится хуже моего. При моей болезни хотя бы не тошнит. Когда меня одолевала жалость к себе, я всегда вспоминал того мальчика.[18]

В то время Стивену снились беспокойные и очень яркие сны. В больнице ему приснилось, что его собираются казнить. И вдруг он понял, что, если его помилуют, можно сделать много ценного. В другом повторяющемся сне ему приходила мысль, что можно пожертвовать жизнью ради других: «Все равно умру, хотя бы сделаю доброе дело», – думал он.[19]

Когда Хокинг, преодолев депрессию, вернулся к работе, его отец решил навестить Денниса Сиаму. Он рассказал доктору Сиаме, что случилось, и спросил, сможет ли Стивен завершить диссертацию в сжатые сроки, не дожидаясь трехлетнего минимума, поскольку, возможно, столько не проживет. Сиама, который, пожалуй, лучше других понимал, на что способен его студент, сказал Фрэнку Хокингу, что на диссертацию потребуется никак не меньше трех лет и о сжатых сроках не может быть и речи. Неизвестно, подозревал ли он, что работа даст Стивену цель и смысл в жизни, – может быть, и так, но прежде всего он знал правила, а правила нельзя было нарушать даже ради умирающего студента.

Почти все считали, что медицинские прогнозы верны и Хокингу осталось совсем немного. Джон Маккленахан живо припоминает, как накануне его отъезда в Америку на год сестра Хокинга Мэри сказала ему, что если он не вернется раньше, то, возможно, уже не застанет своего друга в живых. Болезнь, вступив в свои права, развивалась быстро. Джейн увидела Стивена вскоре после выписки из больницы и поняла, что он совсем растерян и утратил волю к жизни.

Однако не приходится сомневаться, что появление Джейн стало переломным моментом в жизни Стивена Хокинга. Они стали видеться все чаще и чаще и уже не могли обходиться друг без друга. Именно Джейн помогла Стивену сбросить оковы депрессии и снова поверить в работу и в дальнейшую жизнь. Но диссертация продвигалась черепашьими темпами.

* * *

Стивен был не единственным учеником Сиамы. Когда Сиама заступил на пост в 1961 году, первым его студентом стал выходец из Южной Африки Джордж Эллис. Через год появился Хокинг, на следующий год – еще двое студентов, которые стали близкими друзьями и коллегами Хокинга и Эллиса на всю жизнь. Звали их Брендон Картер и Мартин Рис. Вокруг них сплотилась небольшая группа космологов и релятивистов, каждый из которых работал над своей задачей в одной и той же области.

По вечерам приятели часто расслаблялись в каком-нибудь пабе, а когда им надоедало обсуждать физику за кружкой пива, вместе ходили на концерты, в кино, в театр. У них было много общих интересов помимо работы. Эллиса всегда интересовала политика, он был яростным противником апартеида. Хокинг глубоко симпатизировал его взглядам, и они часто говорили о политике. Зимой они устраивались в пабах поближе к камину, летом – в саду и говорили о чем угодно от вьетнамской войны до «Власти черных». Разумеется, Хокинг познакомил с приятелями и Джейн, и, когда она приезжала к нему в Кембридж на выходные, они все вместе ходили обедать или устраивали пикники на реке, глядя на проплывающие лодки.

На первом курсе Хокинг работал с другими студентами и преподавателями в «Крыле Феникса» Кавендишской лаборатории, первым директором которой был в 1870-е Джеймс Клерк Максвелл. В начале 1960-х годов заведующим кафедрой физики был Джордж Бэтчелор, который убедил администрацию создать отдельную кафедру прикладной математики и теоретической физики в Старом здании университетского издательства на Сильвер-стрит.

Система обучения в Кембридже предполагает, что студенты и молодые специалисты приписаны к какому-то конкретному колледжу, однако работают в зданиях университета с коллегами из других колледжей. Хокинг был студентом колледжа Тринити-Холл, жил и столовался при колледже, но работал не только в зданиях Тринити-Холл и не обязательно со студентами и сотрудниками своего колледжа.

Атмосфера на кафедре физики царила неформальная, и у студентов, работавших над диссертациями, не было ни жесткого расписания, ни определенного учебного плана. Задачей научного руководителя считалось поставить ряд задач и целей и обсудить со студентом план атаки, после чего при необходимости давать ему советы и наставления. Сиама вспоминал, как в нескольких случаях врывался в кабинет Хокинга с новой идеей по поводу того, над чем работал его подопечный, и они вдвоем устраивали мозговой штурм. А иногда Хокинг приходил в кабинет к Сиаме – эту комнату, где стены между книжными стеллажами были увешаны репродукциями современных художников, Хокинг вспоминает особенно тепло.

Все студенты, работавшие над диссертациями на кафедре прикладной математики и теоретической физики, посещали регулярные семинары, где тридцать-сорок человек слушали доклады кого-нибудь из преподавателей или приглашенного лектора. Затем следовало общее обсуждение. Но главным местом для бесед и обмена мнениями была общая гостиная, она же чайная. Согласно давней традиции, заложенной еще в Кавендишской лаборатории и перенесенной на Сильвер-стрит, преподаватели и студенты дважды в день – в одиннадцать за кофе, в четыре за чаем – обменивались соображениями и идеями. Кабинеты у студентов были общие, и их двери вообще не закрывались, никому и в голову не приходило работать в одиночку или таить свои идеи. Эта атмосфера свободного общения и позволила Хокингу случайно наткнуться на тему первого значительного проекта в самом начале работы над диссертацией.

Фред Хойл был настоящим светилом кафедры физики Кембриджского университета. Он прославился своими представлениями о происхождении Вселенной. Хойл был отнюдь не чужд саморекламе, прекрасно умел манипулировать журналистами и относился к той породе ученых, которые при случае готовы поделиться с публикой непроверенными гипотезами. Оправдывал он это очень просто. Он не был ни самовлюбленным эгоистом, ни интеллектуальным радикалом, просто для того, чтобы получать финансирование на исследования, нужно было внимание широкой публики, требовалась международная известность. Поэтому Хойл очень дорожил своей славой.

Путь к вершинам был для Хойла отнюдь не легким. Отец Хойла был йоркширский торговец мануфактурой, и Фред поступил в Кембридж в 1930-е годы на полную стипендию, сразу почувствовал себя чужаком из-за скромного происхождения и странного акцента, и это его ожесточило. Интеллектуально он превосходил почти всех современников, однако обида оставила в его душе неизгладимый след, и иметь с ним дело было трудно. Практически все время, пока Фред Хойл преподавал в Кембридже, он был вовлечен в жаркие споры либо с властями, либо с коллегами. Вскоре после переезда на Сильвер-стрит Хойл открыл в Кембридже собственный институт, однако вовсю пользовался мозгами и помощью ученых с кафедры прикладной математики и теоретической физики.

Во время всех этих споров и скандалов в Кембридже Хойл горячо отстаивал теорию стационарной вселенной. Эту гипотезу он разработал вместе с математиком Германом Бонди из Королевского колледжа в Лондоне и астрономом Томасом Голдом, однако в начале 1960-х главенствующих теорий было две, и гипотеза Хойла была просто более разработанной. Хойл презирал конкурирующую теорию спонтанного возникновения Вселенной, которую когда-то сравнил с проституткой, выпрыгивающей из торта: недостойно и неэлегантно. Однако именно он, к собственному удивлению, ввел в обращение термин «Большой Взрыв» – сам Хойл придумал это выражение в насмешку и упомянул в радиопередаче, в которой пропагандировал собственную теорию стационарной вселенной.

Хойл не только работал над собственной теорией происхождения вселенной, но и был научным руководителем группы избранных студентов. Среди его подопечных был аспирант Джайант Нарликар. В рамках работы над диссертацией Нарликар должен был проделать кое-какие математические расчеты для теории Хойла. А еще у них с Хокингом были соседние кабинеты. Уравнения Нарликара очень заинтересовали Хокинга. Нарликар не заставил себя долго уговаривать и показал Хокингу материалы своих исследований, а Хокинг стал прорабатывать его теории. В ближайшие месяцы Хокинг все чаще и чаще заглядывал в кабинет к своему приятелю, в одной руке держа кипу бумаг, исписанных формулами, а другой опираясь на новенькую трость.

Следует подчеркнуть, что никакой вражды к Хойлу, а тем более к Нарликару Хокинг не питал. Просто ему было любопытно, чем они занимаются, а его собственные проекты буксовали. Уравнения Нарликара и их смысл увлекали его и вдохновляли гораздо сильнее собственных исследований. Да и вообще обмен идеями и взаимопомощь на кафедре очень поощрялись.

Но вскоре обстановка обострилась. Хойл решил рассказать о своих открытиях на конференции Королевского общества в Лондоне. Хотя подобное, конечно, уже случалось, многие его коллеги решили, что он слишком спешит, ведь его работа еще не была рецензирована. Слушателями Хойла было человек сто, и выступление закончилось теплыми аплодисментами и обычным шумным обсуждением. Затем Хойл спросил, будут ли вопросы. Хокинг, естественно, пришел его послушать и внимательно следил за дискуссией. Он медленно поднялся, опираясь на трость. Все умолкли.

– Величину, о которой вы говорите, нельзя вычислить, она расходится, – сказал Хокинг.

По залу пронесся шепоток. Собравшиеся сразу поняли, что если утверждение Хокинга верно, последние открытия Хойла окажутся ошибочными.

– Нет, конечно, не расходится, – возразил Хойл.

– Расходится, – не сдавался Хокинг.

Хойл помолчал и обвел глазами зал. Стояла полная тишина.

– Откуда вы знаете? – свирепо спросил Хойл.

– Я посчитал, – медленно выговорил Хокинг.

По залу прокатился смущенный смех. Это Хойлу совсем не пришлось по душе. Юный выскочка взбесил его. Однако враждовали они недолго: Хокинг показал, что он слишком хорош как физик для подобных споров. Однако Хойл решил, что поступок Хокинга неэтичен, и так и сказал. На это Хокинг с коллегами ответили, что Хойл тоже поступил неэтично, когда обнародовал непроверенные результаты. Единственным, кто был совершенно ни при чем и на кого тем не менее обрушился гнев Хойла, стал оказавшийся между двух огней Нарликар.

Нет никаких сомнений, что интеллектуально Хойл ни в чем не уступал Хокингу, однако в этом случае молодой человек был абсолютно прав: величина, о которой говорил Хойл, и в самом деле расходилась, а это означало, что последняя часть его теории неверна. Хокинг написал статью о своих математических выкладках, которые заставили сделать этот вывод. Статью приняли хорошо, и у Хокинга сложилась репутация подающего надежды молодого исследователя. Стивен продолжал работать над диссертацией под руководством Сиамы, но в разреженной атмосфере космологических исследований о нем заговорили как о независимой величине.

* * *

В первые два года в Кембридже симптомы бокового амиотрофического склероза быстро усугублялись. Хокингу стало очень трудно ходить, он не мог пройти и нескольких шагов без трости. Друзья помогали ему чем могли, но он почти всегда отказывался от помощи. Мучительно медленно он двигался по комнатам и коридорам, опираясь не только на трость, но и на стены и мебель. Во многих случаях и этого было мало. Сиама и его коллеги прекрасно помнят, что в те дни Хокинг то и дело приходил в кабинет с повязкой на голове – это означало, что он в очередной раз упал и сильно ударился.

Болезнь затронула и речь. Теперь у Стивена не просто заплетался язык – слова стало трудно разобрать, и даже близкие коллеги зачастую не понимали, что он говорит. Однако все это не мешало ему работать, более того, лишь подхлестывало. Еще никогда он не работал так быстро и плодотворно, и это показывает, как он относился к болезни. Как ни безумно это звучит, Хокинг не придавал своему недугу особого значения. Конечно, он сталкивался со всеми препятствиями и унижениями, с какими сталкиваются в нашем обществе инвалиды; естественно, ему приходилось приспосабливаться к своему состоянию и жить в особых обстоятельствах. Однако болезнь не затронула самую суть его бытия – его разум – а значит, не повлияла на работу.

Разумеется, сам Хокинг первым хотел бы не придавать значения болезни и сосредоточиться на главном – на научных достижениях. Его коллеги и сотрудники, а также физики со всего мира, относящиеся к нему с глубочайшим уважением, не видят, чем Хокинг отличается от всех остальных. Их не волнует, что он не может двигаться и говорить без высокотехнологичных устройств, присоединенных к кончикам пальцев. Для них он друг, коллега, а главное – великий ученый.

Когда Стивен примирился с болезнью и нашел Джейн Уайлд – спутницу жизни, которая понимала его без слов, – он буквально расцвел. Они с Джейн обручились, она стала гораздо чаще приезжать по выходным. Всем было очевидно, что они на седьмом небе от счастья и созданы друг для друга. Джейн вспоминает: «Мне нужен был смысл существования, и я, наверное, обрела его в мысли, что буду ухаживать за ним. Но мы любили друг друга».[20] А однажды она сказала: «Я решила, как мне быть, и так и поступила. Он был очень, очень целеустремленным, очень честолюбивым. Примерно как сейчас. Когда мы познакомились, болезнь уже начала проявляться, поэтому я не знала Стивена здоровым и бодрым».[21]

Для Хокинга помолвка с Джейн стала, вероятно, главным событием в жизни. Она показала ему, ради чего стоит жить дальше, и придала решимости, она изменила все. Если бы не помощь Джейн, Стивен, скорее всего, не смог бы вынести этих испытаний – да и не захотел бы.

С тех пор он покорял научные вершины одну за другой, и Сиама поверил, что Хокинг, вероятно, все-таки сможет собрать воедино разрозненные фрагменты диссертации. Ручаться за успех было еще нельзя, но тут все решил еще один счастливый случай.

Исследовательская группа Сиамы заинтересовалась работами молодого прикладного математика Роджера Пенроуза, который тогда работал в Биркбек-колледже в Лондоне. Пенроуз был сыном выдающегося генетика, учился в Университетском колледже в Лондоне, а в начале 1950-х перебрался в Кембридж. После стажировки в США он в начале 1960-х начал разрабатывать идеи теории сингулярности, которые прекрасно соответствовали представлениям, следовавшим из работ сотрудников кафедры прикладной математики и теоретической физики. Кембриджская группа стала ходить на доклады в Королевском колледже в Лондоне, где профессором прикладной математики был великий математик и соавтор теории стационарной вселенной Герман Бонди. Оказалось, что Королевский колледж – очень удобное место встречи для Пенроуза (которому нужно было приехать с другого конца Лондона), кембриджских ученых и небольшой компании физиков и математиков из того же колледжа. Сиама брал на эти встречи Картера, Эллиса, Риса и Хокинга с мыслью о том, что обсуждавшиеся на семинарах вопросы полезны для их работы. Однако иногда Хокингу было настолько трудно добраться до Лондона, что поездки едва не срывались.

Брендон Картер вспоминает один такой случай, когда они опоздали на станцию и поезд уже подъехал. Они побежали за вагоном, забыв про Стивена, который ковылял следом, опираясь уже на две трости. Только в вагоне они сообразили, что его рядом нет. Картер выглянул в окно, увидел жалкую фигуру, плетущуюся к ним по платформе, и понял, что поезд сейчас тронется и Стивен может не успеть. Все знали, как Хокинг злится, если к нему относятся не так, как ко всем, и старались не навязывать ему помощь. Но в тот раз Картер с приятелем спрыгнули на платформу, чтобы помочь Стивену дойти до дверей и сесть в поезд.

Если бы Хокинг пропустил хотя бы одну из этих лондонских встреч, это была бы горькая гримаса судьбы, поскольку именно благодаря им наметился новый поворот во всей его научной карьере. Как-то раз на докладе в Королевском колледже Роджер Пенроуз познакомил коллег с представлением о сингулярности пространства-времени в центре черной дыры, и кембриджскую группу это, естественно, очень увлекло. Вечером по дороге домой в Кембридж они сидели в купе второго класса и обсуждали все, что узнали сегодня на докладе. Хокингу не хотелось разговаривать, и он смотрел в окно на темнеющие поля, мчавшиеся мимо, и на отражение приятелей в стекле. Коллеги спорили о тонкостях математической модели Пенроуза. Тут Хокинга осенило, и он отвернулся от окна и сказал сидевшему напротив Сиаме: «Интересно, что будет, если применить теорию сингулярности Пенроуза ко всей Вселенной». Как выяснилось, одна эта идея, в сущности, спасла диссертацию Хокинга и открыла перед ним дорогу к славе звезды первой величины в мире науки.

Пенроуз опубликовал свои идеи в январе 1965 года; к этому времени Хокинг уже принялся за работу, а все благодаря вдохновению, которое снизошло на него по дороге домой из Лондона в Кембридж вечером после доклада. Применить теорию сингулярности ко всей Вселенной – задача отнюдь не из простых, и через несколько месяцев Сиама заподозрил, что его юный студент вот-вот совершит поразительное открытие. А Хокинг впервые погрузился в работу с головой. Он рассказывает:

Я… всерьез взялся за работу впервые в жизни. И неожиданно обнаружил, что мне это нравится. Может быть, нечестно называть это работой. Кто-то когда-то сказал: «За то, что нравится, платят только ученым и проституткам».[22]

Когда Хокинг решил, что математические расчеты, стоящие за его идеями, его устраивают, он приступил к самому тексту. Тут пришлось основательно повозиться, поскольку первую половину пребывания в Кембридже Хокинг, в сущности, блуждал в потемках. Они с Сиамой долго не могли подобрать ему подходящую тему, поэтому в диссертации осталось много пробелов и вопросов без ответа. Но все спасло применение теории сингулярности, мысль, посетившая Хокинга на третьем году.

Последняя глава диссертации Хокинга – шедевр научной мысли, и именно за нее ему присудили степень доктора философии. Оценивали работу научный руководитель Деннис Сиама и независимый эксперт. Диссертацию могут не только принять или отклонить, но и отложить защиту, и тогда соискатель должен подать ее повторно через некоторое время, обычно через год. Благодаря последней главе Хокинг избежал подобных унижений, и комиссия присудила ему искомую степень. С тех пор двадцатитрехлетний физик получил право именоваться «доктор Стивен Хокинг».

Глава 5
От черных дыр к большому взрыву

К началу 1960-х астрономы уже выяснили, что любая звезда, в которой содержится в три раза больше вещества, чем в нашем Солнце, обречена рано или поздно погибнуть, схлопнувшись под воздействием собственной массы в так называемую черную дыру. Более чем за два десятка лет до этого ученые, опираясь на уравнения ОТО Эйнштейна, вычислили, что такой объект искривляет пространство-время вокруг себя таким образом, что эта масса оказывается полностью отрезанной от остальной Вселенной. Если мимо черной дыры пройдет луч света, его согнет так, что даже фотоны будут кружиться по орбите вокруг центральной «звезды» и никогда не смогут вырваться во внешнюю Вселенную. Очевидно, поскольку такой объект не излучает света, он будет черным, и именно поэтому американский релятивист Джон Уилер в 1969 году назвал эти мертвые звезды черными дырами.

Но хотя все знали, что ОТО предсказывает существование подобных объектов, к тому времени, когда Хокинг завершал учебу в университете и переходил к самостоятельным исследованиям, к идее черных дыр никто не относился серьезно. Дело в том, что было открыто уже очень много звезд с массой гораздо больше трех масс Солнца. Они не схлопываются, потому что идущие в их недрах ядерные реакции поддерживают высокую температуру. Жар создает направленное наружу давление, которое и позволяет звезде сопротивляться гравитации. Астрономы знали, что, когда у таких звезд кончается ядерное «топливо», они взрываются и выбрасывают в космическое пространство свою внешнюю оболочку. Еще тридцать лет назад астрономы считали, что в результате подобного взрыва выбрасывается столько вещества, что масса оставшегося ядра меньше трех масс Солнца, а может быть, когда остатки звезды начинают сжиматься, в игру вступает какое-то другое давление, природу которого еще не выяснили.

Это ошибочное представление подкреплялось еще и тем, что астрономы постоянно открывали старые мертвые звезды. Эти звездные останки всегда имели массу чуть меньше массы Солнца, однако сжимались в объем, примерно равный объему Земли. Такие звезды размером с планету называются белыми карликами. Гравитации, которая сжимает их изнутри, противостоит давление высвободившихся из атомов электронов, которые действуют как электронный газ. Белые карлики такие плотные, что каждый кубический сантиметр их вещества весит миллион граммов. До 1967 года это были самые плотные известные объекты во Вселенной.

Но, хотя астрономы не предполагали всерьез, что может существовать что-то плотнее белого карлика, некоторым математикам нравилось развлекаться с уравнениями Эйнштейна, чтобы разобраться, что будет с веществом, если его сжать до еще более высоких плотностей. Уравнения говорили, что, если в три раза больше вещества, чем в Солнце, сжать до сферы с радиусом чуть меньше девяти километров, пространство-время в окрестностях этой сферы исказится так сильно, что оттуда не сможет вырваться даже свет. Мы знаем, что быстрее света перемещаться невозможно, следовательно, из окрестностей такого объекта не может вырваться в принципе ничего, поэтому математики иногда называли его «коллапсар» («коллапсирующая звезда»). Коллапсар – это бесконечный бездонный провал, куда может упасть все что угодно, но откуда ничего никогда не выходит. А плотность внутри коллапсара выше, чем в ядре атома, а это, как думали теоретики того времени, конечно, невозможно.

На самом деле ученые рассматривали вероятность существования звезд с плотностью атомного ядра, правда, не всерьез. К 1930-м годам физики знали, что ядро атома состоит из тесно упакованных частиц – протонов и нейтронов. Каждый протон несет единицу положительного заряда, нейтроны, как следует из их названия, электрически нейтральны, однако масса нейтрона примерно равна массе протона. В обычных атомах вроде тех, из которых состоит эта книга, каждое ядро окружено облаком электронов. Каждый электрон несет единицу отрицательного заряда, и электронов в атоме столько же, сколько протонов, так что атом в целом электрически нейтрален.

Но в атоме очень много пустого пространства. Ядро крошечное, но очень плотное, а электронное облако огромное (по сравнению с ядром) и разреженное. Пропорции атома таковы, что ядро в нем – словно песчинка посреди концертного зала. В белых карликах некоторые электроны из-за высокого давления оказываются вырванными из атомов, и ядра плавают в море «обобществленных» электронов, принадлежащих звезде в целом, а не конкретному ядру. Но между ядер все равно остается много свободного пространства, хотя это пространство и содержит электроны. Каждое ядро заряжено положительно, а поскольку одинаковые заряды отталкиваются, ядра держатся на расстоянии друг от друга. Однако квантовая теория учит нас, что все же есть способ сделать звезду плотнее белого карлика. Если звезда под воздействием гравитации еще сильнее сжимается, электроны вынуждены соединяться с протонами, образуя нейтроны. В результате получается звезда, состоящая из одних нейтронов, а их можно упаковать тесно, как протоны и нейтроны в ядре атома. Это и есть нейтронная звезда.

Расчеты показывают, что такое может произойти с любой мертвой звездой с массой более чем на 20 % больше массы Солнца (то есть с массой больше 1,2 массы Солнца). Нейтронная звезда с такой массой упакована в сферу радиусом примерно 10 километров, чуть выше земных гор. Плотность вещества нейтронной звезды составляет 1014 граммов на кубический сантиметр – то есть 1 с 14 нулями, сто тысяч миллиардов. Но даже такой плотный объект – еще не черная дыра, поскольку свет с его поверхности все же может излучаться во Вселенную.

Чтобы сделать из мертвой звезды черную дыру, нужно сокрушить даже нейтроны, и это хорошо понимали теоретики начала 1960-х. Более того, согласно квантовым уравнениям даже нейтроны не выдержат веса мертвой звезды с массой больше трех масс Солнца, к тому же если после взрывной агонии массивной звезды и останется подобный объект, он полностью схлопнется и превратится в математическую точку под названием «сингулярность». Задолго до того, как коллапсирующая звезда достигнет состояния нулевого объема и бесконечной плотности, она искривит пространство-время вокруг себя, и коллапсар окажется отрезан от внешней Вселенной.

На самом деле уравнения говорят, что, если достаточно сильно сжать любое количество вещества, оно поведет себя точно так же – тоже коллапсирует.

Особая черта объектов массой больше трех масс Солнца состоит в том, что они схлопываются сами, под собственным весом. Но если бы удалось сжать наше Солнце в сферу с радиусом около трех километров, оно тоже превратилось бы в черную дыру. Как и Земля, если сжать ее примерно до сантиметра. В любом случае, если сжать объект до критического размера, гравитация возьмет верх, замкнет пространство-время вокруг объекта, и тот продолжит сжиматься в сингулярность бесконечной плотности внутри черной дыры. Однако следует отметить, что сделать черную дыру гораздо проще, если у тебя есть много массы. Критический размер не просто пропорционален количеству массы, которой вы располагаете: чем меньше сжимаемая масса, тем больше плотность, при которой формируется черная дыра.

Для каждой массы есть свой критический радиус, при достижении которого образуется черная дыра, – так называемый радиус Шварцшильда. Как показывают приведенные примеры, у менее массивных объектов радиус Шварцшильда меньше: чтобы сделать черную дыру, Землю придется сжимать сильнее, чем Солнце, а Солнце – сильнее, чем более массивную звезду. Когда черная дыра сформируется, вокруг нее возникнет поверхность (что-то вроде поверхности моря), отмечающая границу между Вселенной в целом и регионом сильно искаженного пространства-времени, откуда не может вырваться ничего. Это будет горизонт, который можно пройти только в одном направлении (в отличие от поверхности моря!): излучение и материальные частицы проходят за него без всяких затруднений и под воздействием гравитации примыкают к накапливающейся массе сингулярности, но изнутри не прорывается ничего, даже свет.

Тридцать лет назад многих математиков тревожило, что по расчетам в черной дыре обязательно должна быть сингулярность. Их смущала мысль о бесконечной плотности. Однако большинство астрономов придерживались более прагматических представлений. Прежде всего, они сомневались, существуют ли вообще черные дыры. Возможно, думали они, есть какой-то закон физики, из-за которого останки мертвой звезды не могут обладать достаточной массой, чтобы коллапсировать. И даже если черные дыры существуют, их природа такова, что заключенные в них сингулярности невозможно ни наблюдать, ни исследовать. Тогда какая разница, что гласит теория? Ведь даже если точки бесконечной плотности существуют, они скрыты за непроходимыми горизонтами!

Однако у астрономов уже тогда появился повод для беспокойства. Чтобы получить черную дыру из маленькой массы, ее нужно сжимать очень сильно; но если масса больше, сжимать можно слабее. То есть масса около 4,5 миллиардов солнечных масс превратилась бы в черную дыру, если бы сосредоточилась в пределах сферы с диаметром всего вдвое больше солнечной системы.

Казалось бы, такой массы в природе не существует, о ней и говорить смешно. Но вспомним, что в одной только нашей галактике Млечный Путь содержится сто миллиардов звезд. Подобная сверхмассивная черная дыра могла бы сформироваться всего из 5 % их общей массы. А плотность такого объекта была бы несопоставимо меньше, чем плотность атомного ядра или нейтронной звезды: всего грамм на кубический сантиметр, как у воды. То есть черную дыру можно сделать даже из воды – надо только взять ее очень много!

Понять, в чем тут дело, будет проще, если представить себе беговые дорожки. Главное в черной дыре – то, что она полностью замыкает пространство-время вокруг себя, в результате чего луч света на горизонте бесконечно кружит вокруг центральной сингулярности. Однако «орбиты» фотонов не могут быть ни слишком крутыми, ни слишком плавными. Беговые дорожки ближе к центру стадиона обычно сильно искривлены, чтобы вписать их в доступное пространство. Внешние дорожки искривлены плавнее и занимают больше места. Но в любом случае, когда бежишь по дорожке, рано или поздно возвращаешься к месту старта – описываешь замкнутую кривую. Подобным же образом черная дыра может быть очень маленькой, с тесно скрученным вокруг пространством-временем, или очень крупной, в которой лучи света лишь слегка искривляются вдоль горизонта (возможны, разумеется, и все промежуточные варианты).

В 1960-е годы космологи начали осознавать, что из этого следует, – впрочем, очень медленно. Они поняли, что вся Вселенная, вероятно, ведет себя как колоссальная черная дыра, самая большая черная дыра на свете: все в ней удерживается гравитацией, все пространство-время представляет собой самодостаточную замкнутую сущность, которая свернута вокруг себя с самой что ни на есть плавной кривизной. Но есть одно большое различие: черные дыры втягивают вещество внутрь, к сингулярности, а Вселенная расширяется вовне с момента Большого Взрыва. Вселенная – словно черная дыра, вывернутая наизнанку.

Уравнения Эйнштейна – общая теория относительности – гласят, что Вселенная не может быть статичной, она должна либо расширяться, либо сжиматься. Наблюдения показывают, что Вселенная расширяется. Что же говорят уравнения Эйнштейна о том, каковы были условия во Вселенной в далеком прошлом, когда галактики были гораздо ближе друг к другу, и еще раньше? Они гласят, что Вселенная должна была зародиться в точке бесконечной плотности – в сингулярности – около 15 миллиардов лет назад. Астрономам 1940-х и 1950-х годов было «очевидно», что это нонсенс. Если из уравнений следует сингулярность, значит, где-то в них вкралась ошибка, и кто-нибудь, несомненно, выдвинет более совершенную теорию, позволяющую избегать таких радикальных прогнозов, дайте только срок. А пока вроде бы было логично применять уравнения как они есть, если речь шла об условиях, более или менее похожих на наблюдаемые сегодня.

На сегодня самое плотное известное нам вещество – ядро атома, тесно упакованные протоны и нейтроны. Поэтому некоторые самые отчаянные сорвиголовы среди ученых решили проверить, не прояснит ли ОТО вопрос о происхождении Вселенной из состояния, в котором общая плотность была такой же, как плотность ядра атома, то есть, если угодно, о рождении Вселенной из «первичного атома», в котором, словно в нейтронной суперзвезде, содержалась вся масса Вселенной.

А что было «до этого»? Откуда взялась эта первичная сверхплотность, которую иногда называют «космическим яйцом»? Неизвестно, можно лишь догадываться. Возможно, космическое яйцо существовало вечно, а потом что-то побудило его расширяться. А возможно, у Вселенной была какая-то предыдущая фаза, когда пространство-время сжималось в соответствии с уравнениями Эйнштейна. Сжимающаяся Вселенная могла довести себя до ядерных плотностей, а потом снова «спружинить» наружу, вступить в фазу расширения, не дойдя до катастрофической сингулярности.

Идея первичного атома или космического яйца возникла в начале 1930-х годов и оттачивалась и уточнялась еще лет двадцать. Однако даже в начале 1960-х годов это оставалось математической игрой, в которую играли отдельные специалисты, в основном для собственного удовольствия. Мысль о сверхплотном космическом яйце всего раз в тридцать больше Солнца, которое содержало в себе все на свете, а потом взорвалось и породило расширяющуюся Вселенную, соответствовала и уравнениям Эйнштейна, и наблюдениям. Только, похоже, никто по-настоящему не верил, что эти уравнения описывают Вселенную. Никто не огорчился бы, если бы оказалось, что гипотеза космического яйца в корне неверна.

О том, как относились к этой мысли в 1950-е, можно судить по условным названиям, которые давали ученые своей работе. На самом деле уравнения ОТО позволяют давать не одно, а несколько толкований поведения пространства-времени в целом. Мы уже знаем, что эти уравнения допускают либо расширение, либо сжатие, но не статическое состояние. Очевидно, что Вселенная, в которой мы живем, не может одновременно и расширяться, и сжиматься, так что два решения уравнений не могут быть верными для современной Вселенной. Поэтому эти решения называют моделями. Космологическая модель – это набор уравнений, описывающих, как может вести себя вселенная (не обязательно наша). Уравнения должны подчиняться известным законам физики, но не обязаны описывать реальное поведение настоящей (нашей) Вселенной. Оба решения уравнений Эйнштейна, и сжатие, и расширение, описывают модели вселенных, занятные математические игрушки, а модель расширения, вероятно, описывает реальную Вселенную. Однако в начале 1960-х годов большинство космологов предпочитали называть моделью и то решение, которое предполагает расширение.

Но в 1960-е все больше популярности набирала мысль о Большом Взрыве. Космологи приходили к убеждению, что их уравнения и в самом деле описывают происходящее в реальной Вселенной, поскольку у ОТО появлялось все больше экспериментальных подтверждений. Это вдохновило их на новые теоретические изыскания, те, в свою очередь, позволили дать новые прогнозы и потребовали новых наблюдений, и эта раскручивающаяся спираль стала причиной революции в наших представлениях о рождении Вселенной.

К 1976 году теория Большого Взрыва настолько прочно вошла в научный обиход, что американский физик Стивен Вайнберг написал научно-популярный бестселлер «Первые три минуты», где описал первые этапы Большого Взрыва и рассказал, как возникла наша Вселенная из сверхплотного состояния космического яйца. Хотя эта книга написана в 1970-е, в ней изложены представления о Большом Взрыве, царившие в 1960-х, и нам придется ненадолго остановиться на этих представлениях, прежде чем рассказывать нашу историю дальше.

* * *

Во всех этих описаниях Вселенной – релятивистских космологических моделях – есть одна странность: Большой Взрыв – это не взрыв огромного первичного атома, висевшего в пустоте. Между тем именно так он и видится многим обывателям: галактики – словно осколки взорвавшейся бомбы, разлетающиеся в космосе в разные стороны. Но на самом деле все было не так.

Уравнения Эйнштейна говорят нам, что расширяется само пространство – и это оно, расширяясь, уносит галактики за собой. Когда-то, когда Вселенная была моложе, галактики располагались гораздо теснее, поскольку расстояния между ними были более «сжатыми», чем теперь. Представьте себе две капли краски на резиновой ленте. Потянешь за концы ленты, она растянется, и капли краски разойдутся в стороны, но относительно материала, из которого сделана лента, они никуда не сдвинутся.

Так что в очень юной Вселенной во время взрыва первичного атома не было никакого «внешнего пространства», куда разлетались осколки после взрыва. Пространство было тесно свернуто само на себя, так что космическое яйцо было полностью самодостаточным шаром из вещества, энергии, пространства и времени. То есть, в сущности, представляло собой сверхплотную черную дыру. И оно до сих пор представляет собой черную дыру, разница лишь в том, что оно расширилось, поэтому плотность черной дыры стала гораздо меньше, и теперь свет в ней описывает на горизонте очень плавные кривые.

Мы живем в черной дыре, просто такой огромной, что искривление пространства-времени в ней очень мало, и земными астрономическими инструментами его не измерить. Большой Взрыв растянул пространство и буквально дал материальному содержимому космического яйца простор для маневра. Сначала Вселенная была очень плотной и горячей, но по мере расширения доступного пространства этот огненный шар остывал и разрежался. Совсем как жидкость в радиаторе вашего холодильника остужает его. Внутри холодильника жидкость распространяется по просторной камере и охлаждается, а снаружи, на задней стенке холодильника, втискивается в более тесное пространство и нагревается, однако тепло уходит с радиатора, прежде чем жидкость возвращается в холодильник и начинается новый цикл. Когда Вселенная была сжатой, ее температура была гораздо выше, как у сжатой охлаждающей жидкости или у воздуха в велосипедном насосе.

Насколько выше? Если вернуться по логической цепочке космологической модели к самому началу, то есть к сингулярности, предсказанной уравнениями Эйнштейна, придется иметь дело с бесконечными температурами, а не только с бесконечной плотностью. Но в 1960-е годы никто не доходил до таких крайностей. Бесконечности по-прежнему считались каким-то просчетом в ОТО, но все равно момент появления в модели бесконечностей мог служить отметкой начала времен (по крайней мере, пока никто не предложил теорию получше).

Физика 1960-х годов ничего не могла сказать о том, что происходило в долю секунды сразу за началом этого начала времен, зато подробно описала все, что происходило со Вселенной в течение 15 миллиардов лет, которые начались всего через одну десятую долю секунды после Большого Взрыва. Космологи все больше убеждались, что ОТО не так уж и плохо описывает Вселенную, раз объясняет все, что случилось за последние 15 миллиардов лет, кроме самой первой десятой доли секунды. Вот что она им говорила.

Спустя одну десятую секунды после «начала» (или после «отскока», как выражались многие космологи 1960-х), плотность Вселенной была в 30 миллионов раз больше плотности воды. Температура составляла 30 миллиардов градусов,[23] и Вселенная состояла из смеси очень высокоэнергичного излучения (фотонов) и материальных частиц, в том числе нейтронов, протонов и электронов, но не только – были еще нестабильные экзотические частицы, ненадолго возникавшие из чистого излучения. Ярчайший пример эквивалентности вещества и энергии, выраженной в знаменитом уравнении Эйнштейна E = mc2. На Земле, в атомной бомбе, в недрах Солнца, где идут ядерные реакции, крошечные количества вещества (m) преобразуются в огромную энергию (E), потому что c – это скорость света, 300 000 километров в секунду, а c2 – это прямо-таки очень много. Но если у тебя в распоряжении вдоволь энергии, из нее и вправду можно создавать вещество, и после Большого Взрыва энергии для этого фокуса было предостаточно, хотя многие частицы, возникшие в результате, были нестабильны и вмиг исчезали, превратившись в излучение.

Секунду спустя, через 1,1 секунды после начала, Вселенная уже заметно остыла, до десяти миллиардов градусов. Плотность Вселенной в это время была всего в 380 000 раз больше плотности воды, а после этого реакции между частицами были очень похожи на ядерные реакции, идущие сегодня в недрах Солнца и других звезд.

При температуре в три миллиарда градусов, менее чем через 14 секунд после начала, смогли, пусть и ненадолго, сформироваться первые ядра дейтерия. Водород – самый простой атом, с единственным протоном в ядре и одним электроном на орбите вокруг ядра (в каком-то смысле одиночные протоны можно считать ядрами водорода). Следующий по сложности атом – дейтерий, ядро которого состоит из одного протона и одного нейтрона, а вокруг них по орбите вращается один электрон. Атомы, у которых одинаковое количество электронов, но разное количество нейтронов, обладают одинаковыми химическими свойствами и называются изотопами; дейтерий – изотоп водорода, который иногда называют «тяжелый водород».

Температура – мера средней скорости частиц, из которых состоит вещество (именно поэтому не может быть температуры ниже –273 °C, когда прекращается движение атомов), а при температурах выше трех миллиардов градусов протоны и нейтроны носятся так быстро, что способны лишь отскакивать друг от друга. Одни частицы движутся быстрее среднего, другие медленнее, хотя скорости большинства близки к средней. Поэтому, когда температура падает ниже этой величины, некоторые протоны и нейтроны движутся уже довольно медленно и при столкновении соединяются. Соединяет их притяжение, известное как сильное взаимодействие. Как ясно из названия, это мощная сила притяжения, возникающая между протонами и нейтронами. Однако действует она только на очень малых расстояниях, и быстрые частицы проскакивают мимо друг друга или отскакивают быстрее, чем сильное взаимодействие успевает их связать. Поначалу большинство ядер дейтерия, возникших таким образом, разрушались при столкновениях с более быстрыми частицами, но огненный шар понемногу остывал, и шансы на выживание у ядер дейтерия постоянно повышались.

Всего через 3 минуты и 2 секунды после начала температура упала ниже миллиарда градусов, и Вселенная была всего в семьдесят раз горячее, чем недра Солнца в наши дни. Теперь почти все ядра дейтерия могли соединяться попарно, и получались ядра гелия. Каждое ядро гелия содержит два протона и два нейтрона, всего четыре «нуклона», поэтому они назы

Скачать книгу

Michael White, John Gribbin

STEPHEN HAWKING. A LIFE IN SCIENCE

© Michael White, John Gribbin, 2002

© ООО «Издательство АСТ», 2018 (перевод на русский язык)

Предисловие

В начале 1991 года Стивен Хокинг попал в Кембридже в незначительную аварию, но не прошло и половины суток, как все американские телеканалы уже названивали его издателю в «Bantam» и требовали полной информации. И неважно, что ученый отделался легкими ушибами и через несколько дней вернулся к работе. Все, что касается Стивена Хокинга, сразу попадает в новостные сводки. Такого внимания не удостаивался ни один ученый в мире. В глазах общественности ученые словно бы и не совсем люди, чуждые перипетиям обычной жизни, но ни один из живущих ныне ученых не может сравниться со Стивеном Хокингом в известности.

Но ведь Стивен Хокинг – не просто ученый. Его книга «Краткая история времени» разошлась по всему миру миллионными тиражами, и в статистике продаж его имя обычно упоминается в одном ряду со Стивеном Кингом и Джеффри Арчером. И вот что удивительно: книга Хокинга посвящена предмету, который настолько далек от привычного легкого чтения на ночь, что перспектива вдумываться в подобный текст теоретически должна заставить среднего читателя корчиться от комплекса неполноценности. Однако, как известно всей планете, книга профессора Хокинга – настоящий хит, сделавший его знаменитостью мирового масштаба. Хокингу удивительным образом удалось обойти преграды предрассудков и донести свои теории, понятные лишь посвященным, до рядового читателя.

Однако история Стивена Хокинга началась не с «Краткой истории времени» и ею не заканчивается. В первую очередь он выдающийся ученый. И в самом деле, он занял прочное место на переднем крае теоретической физики задолго до того, как стал кумиром миллионов. Его научная карьера началась более тридцати лет назад, когда он занялся космологическими исследованиями в Кембриджском университете.

За эти тридцать лет Хокинг, пожалуй, больше любого другого ученого поспособствовал тому, чтобы раздвинуть границы нашего понимания Вселенной. Его теоретические работы о черных дырах и открытия в области происхождения и природы Вселенной фундаментальны, а зачастую и революционны.

Научная карьера Хокинга шла в гору, однако жил он замкнуто – такой же далекий от широкой публики, как и его сугубо научные труды. Когда Хокингу был двадцать один, ему поставили страшный диагноз – болезнь моторных нейронов, она же боковой амиотрофический склероз, – и ученый почти всю жизнь провел в инвалидном кресле. Однако он раз и навсегда запретил болезни мешать его научным изысканиям. Хокинг стяжал всемирную славу популяризатора науки сначала благодаря своему бестселлеру, а затем – сериалу ВВС «Вселенная Стивена Хокинга», и все это время был известен как выдающийся физик. Он старается не распространяться ни о своей инвалидности, ни – в особенности – о личной жизни. Пусть его считают в первую очередь ученым, во вторую – писателем, автором научно-популярных книг, и уже затем – во всех отношениях обычным человеком с теми же желаниями, порывами, мечтами и устремлениями, что и у каждого из нас. В этой книге мы постарались уважать его пожелания и написать портрет человека, наделенного многочисленными талантами, но в остальном совершенно такого же, как все.

Когда мы описывали и научную деятельность профессора Хокинга, и его обыденную жизнь, скрытую от посторонних глаз, мы намеревались показать читателю и то, и другое с разных точек зрения. Повествование не обошлось без повторов, однако мы надеемся, что это поможет понять, как вписывается наука в контекст человеческой личности, – а точнее, показать, насколько неразделимы наука и жизнь в биографии Стивена Хокинга.

Майкл Уайт, Перт
Джон Гриббин, ЛьюисСентябрь 2002 года

Глава 1

День смерти Галилея

В дорогом ресторане неподалеку от центра Кембриджа за столом, накрытым льняной скатертью, роскошно сервированным и уставленным всевозможными блюдами, сидят двенадцать молодых людей и девушек. Сбоку от них – человек в инвалидном кресле. Он старше остальных. Невероятно хрупкий на вид, такой изможденный, что, кажется, вот-вот исчезнет, он неподвижно и чуть ли не безжизненно обмяк в кресле с черной обивкой. Худые бледные руки с тонкими пальцами вяло лежат на коленях. В худую шею под самым расстегнутым воротником рубашки вживлено пластмассовое устройство примерно двух дюймов в поперечнике – без него он не может дышать.

Но несмотря на немощь, лицо у него живое, мальчишеское, на лоб падает аккуратная каштановая челка, и только морщинки под глазами выдают, что перед нами ровесник Дональда Трампа и Кита Ричардса. Голова у него поникла, но ясные голубые глаза за стеклами очков в стальной оправе разглядывают собравшихся с живым интересом. Рядом сиделка – она сидит бочком и кормит его с ложечки. И иногда вытирает ему губы салфеткой.

Атмосфера в ресторане оживленная. Молодые люди вокруг шутят, смеются, иногда обращаются к сидящему в кресле и даже подтрунивают над ним. Вскоре веселую болтовню прерывает сиплый металлический голос, живо напоминающий персонажей «Звездных войн»: человек в кресле отпускает замечание, вызывающее взрыв хохота. Глаза человека в кресле загораются, все его лицо озаряется знаменитой улыбкой – «самой замечательной улыбкой в мире». И вдруг становится понятно, что этот человек полон жизни.

Обедающие приступают к горячему, и тут у входа в ресторан поднимается какая-то суета. Миг – и метрдотель подводит к столу улыбающуюся рыжеволосую красавицу в шубке из искусственного меха. Все за столом не сводят с нее глаз, умолкли и ждут, что будет, а она с улыбкой здоровается. Эта женщина выглядит гораздо моложе своих лет и к тому же роскошно одета, что особенно заметно на фоне собравшихся: никто здесь не придает особого значения внешнему виду, кроме человека постарше, сидящего в кресле – на нем аккуратный строгий пиджак и крахмальная рубашка, – и его безупречно элегантной сиделки.

– Извините за опоздание, – говорит красавица. – На мою машину в Лондоне надели башмак за неправильную парковку. Наверное, звезды так встали! – со смехом добавляет она, и все улыбаются, а человек в кресле весь сияет. Красавица обходит стол, останавливается в двух шагах перед креслом, за которым стоит сиделка, и говорит, чуть пригнувшись:

– Профессор Хокинг, я счастлива с вами познакомиться. Я Ширли Маклейн.

Он смотрит на нее снизу вверх и улыбается, а металлический голос произносит: «Здравствуйте».

Весь вечер Ширли Маклейн сидит рядом с человеком в кресле и бомбардирует его вопросами на важные для нее темы. Она очень интересуется метафизикой и сверхъестественным. Ширли объехала весь мир, говорила со множеством духовных наставников и просветленных и сформулировала собственную теорию смысла жизни. Она убеждена, что все взаимосвязано и что мы пришли в мир не просто так, верит в Бога и в сотворение Вселенной. Но это лишь вера. А человек в кресле рядом с ней, – вероятно, величайший физик современности, и его научные теории описывают происхождение Вселенной, вопросы ее существования и дальнейшую судьбу всего тварного мира, в том числе нашу, вашу и мисс Ширли Маклейн. Он очень знаменит, его имя известно миллионам жителей планеты. Ширли спрашивает профессора, верит ли он, что существует Бог, создавший Вселенную и руководящий своим творением. Профессор коротко улыбается, механический голос отвечает:

– Нет.

Это отнюдь не грубость и не высокомерие – профессору свойственна лаконичность. Ведь каждое слово ему приходится набирать на компьютере, подсоединенном к креслу, медленно и старательно, легчайшими движениями двух пальцев одной руки – это практически последние остатки телесной свободы в его распоряжении. Гостья серьезно кивает. Она не это хотела от него услышать и не согласна с ним, но может лишь слушать и принимать во внимание его слова, поскольку, помимо всего прочего, его мнение следует уважать.

Потом, отобедав, компания покидает ресторан и возвращается в университет, на кафедру прикладной математики и теоретической физики, и там две знаменитости остаются наедине в кабинете профессора Хокинга – в неизменном присутствии сиделки. И голливудская актриса осыпает кембриджского профессора вопросами еще два часа, пока в общей гостиной не подадут чай.

До встречи с Хокингом в декабре 1988 года Ширли Маклейн говорила с огромным множеством разных людей – и великих, и безвестных. Она несколько раз номинировалась на премию «Оскар» и получила ее за роль в фильме «Язык нежности», так что в то время, пожалуй, была даже более знаменита, чем ее кембриджский собеседник. Однако нет никаких сомнений, что встреча со Стивеном Хокингом стала для нее одним из самых ярких событий всей жизни. Этот человек, весом не больше девяноста фунтов, полностью парализованный, лишенный речи, не способный даже поднять голову, если она случайно свесится на грудь, провозглашен «наследником Эйнштейна», «величайшим гением конца ХХ века», «острейшим умом современности», а один журналист даже окрестил его «властителем Вселенной». Хокингу принадлежат фундаментальные открытия в космологии, он больше всех других ученых способствовал расширению наших представлений о мироздании. Вдобавок он лауреат десятков научных премий. Королева Елизавета II наградила его орденом Британской империи (степень командора), а затем и орденом Кавалеров Почета. Он автор научно-популярной книги «Краткая история времени», входившей в список бестселлеров на протяжении пяти лет, с 1988 про 1993 год; ее суммарные тиражи по всему миру превысили десять миллионов экземпляров.

Как ему это удалось? Как человек, страдающий прогрессирующей тяжелой болезнью, превозмог немощь и преодолел все препятствия на своем пути, полном побед? Как он сумел достичь того, о чем подавляющее большинство крепких здоровых людей не смеют даже мечтать?

* * *

На поверхностный взгляд стороннего наблюдателя, оказавшегося в Оксфорде в январе 1942 года, Вторая мировая война за два с половиной года не особенно повлияла на местную жизнь. Лишь присмотревшись, можно было заметить расставленные по городу пулеметные установки, свежую камуфляжную краску – тускло-серый и хаки, – высокие башни автомобильных заводов в Коули, к востоку от дремлющих шпилей, военные грузовики и армейские транспортеры, которые нет-нет да и гремели по мосту Магдалины и по Хай-стрит, мимо тронутых изморозью каменных горгулий.

Между тем война была в самом разгаре. Месяц назад, 7 декабря, Япония напала на Перл-Харбор, и в войну вступили США. На востоке советская армия громила гитлеровские войска в Крыму, что стало первым шагом к полному поражению Германии и Японии.

В Британии все приемники были настроены на волну, где Дж.-Б. Пристли вел еженедельную программу «Постскриптум к новостям», доктор Джоуд и Джулиан Хаксли обсуждали наивные вопросы слушателей на научные темы в «Мозговом тресте», а Вера Линн, «любовь каждого солдата», клялась войскам и дома, и за границей: «Мы встретимся снова!» Уинстон Черчилль только что вернулся из рождественской поездки в Америку, где выступил с обращением к обеим палатам Конгресса, воодушевив слушателей цитатами из Линкольна и Вашингтона, и показал знак «V» – «победа». Телевизор пока что оставался диковинкой, не выходивший за пределы лабораторий.

Пожалуй, то, что восьмого января 1942 года одновременно исполнилось триста лет со дня смерти одного из величайших умов в истории, итальянского ученого Галилео Галилея, и пришел в мир, охваченный кровопролитной войной, Стивен Уильям Хокинг, что-то да значит. Однако, как подчеркивает сам Хокинг, в тот же день родилось еще примерно две тысячи младенцев, так что, возможно, это просто любопытное совпадение.

Изабель, мать Стивена, приехала в Оксфорд уже на последних сроках беременности. Они с мужем Фрэнком жили в Хайгейте, северном пригороде Лондона, но решили, что рожать лучше в Оксфорде. Причина была проста. Хайгейт, как и весь остальной Лондон и почти весь юг Англии, каждую ночь подвергался налетам «люфтваффе». Однако воюющие страны, проявив поразительное взаимопонимание, заключили договоренность, что если Германия воздержится от бомбардировок Оксфорда и Кембриджа, Королевские ВВС сохранят мирное небо над Гейдельбергом и Геттингеном. Говорили даже, что Гитлер намерен сделать Оксфорд столицей мирового правительства, когда захватит всю планету, и поэтому хотел сохранить оксфордскую архитектуру во всем великолепии.

И Фрэнк, и Изабель Хокинг уже бывали в Оксфорде: они здесь учились. И он, и она родились в семьях среднего класса. Дедушка Фрэнка Хокинга был вполне преуспевающим йоркширским фермером, но во время кризиса сельского хозяйства сразу после Первой мировой быстро обнищал. Изабель была второй по старшинству из семерых детей в семье врача из Глазго. Ни та, ни другая семья не смогли бы позволить себе платить за университет без серьезных жертв, к тому же в эпоху, когда женщины получали высшее образование гораздо реже, чем мы привыкли, со стороны родителей Изабель было недюжинным либерализмом в принципе рассматривать вариант, что их дочь пойдет в университет. В Оксфорде пути молодых людей не пересекались, поскольку Фрэнк Хокинг поступил туда на несколько лет раньше своей будущей жены. Он изучал медицину и специализировался по тропическим болезням. Первый год войны застал его в Восточной Африке, где он изучал местные недуги. Услышав о войне, он решил вернуться в Европу – по суше через Африку, а затем морем в Англию, – и пойти добровольцем на фронт. Однако дома ему сообщили, что как профессиональный медик-исследователь он принесет родине гораздо больше пользы.

А Изабель после Оксфорда сменила несколько должностей, одинаково ей ненавистных, в том числе некоторое время проработав налоговым инспектором. Всего через несколько месяцев она уволилась и решила занять место, которое до нелепого не соответствовало ее квалификации: секретарша в научно-исследовательском медицинском институте. Именно там веселая и приветливая Изабель, слегка посмеиваясь над своей нынешней работой и надеясь в будущем заняться чем-то более осмысленным, познакомилась с высоким застенчивым молодым ученым, только-только вернувшимся из увлекательного путешествия по экзотическим странам.

Когда Стивену было всего две недели, Изабель Хокинг увезла его обратно в Лондон, под обстрелы. Два года спустя мать с сыном едва не погибли, когда в соседний дом попала «фау-два». К счастью, Хокинги куда-то отлучились, но само здание сильно пострадало.

После войны Фрэнк Хокинг был назначен главой отделения паразитологии Национального института медицинских исследований. Его семья жила в том же самом хайгейтском доме до 1950 года, а потом переехала на двадцать миль к северу, в Хартфордшир, в город Сент-Олбанс, и поселилась в большом нелепом доме по адресу Хиллсайд-роуд, 14.

Сент-Олбанс – небольшой городок, выстроенный вокруг собора. Основан он был в 303 году, когда Св. Альбан принял мученическую смерть, и на этом месте возвели церковь. Однако римляне задолго до того оценили стратегическое положение региона. Они выстроили здесь город Веруламий, так что первая христианская церковь, вероятно, стояла на римских развалинах, оставшихся после краха империи, когда солдаты вернулись домой. В 1950-е годы ХХ века Сент-Олбанс был типичным процветающим английским городком среднего класса. По словам одного из школьных приятелей Хокинга, «жутко помпезное было местечко, все так стремились продвинуться вверх по социальной лестнице, что даже душно становилось».

Когда семья Хокингов переехала туда, Стивену было восемь. Фрэнк очень хотел отправить сына в частную школу. Он всегда считал, что хорошая частная школа – залог профессионального успеха. Подтверждений этому было предостаточно: в 1950-е подавляющее большинство членов парламента были выпускники привилегированных учебных заведений, в престижных частных школах учились и почти все руководители различных учреждений вроде радиостанции ВВС, вооруженных сил и университетов по всей стране. Сам доктор Хокинг тоже был из небольшой частной школы, однако считал, что такое полуэлитарное образование принижает его в глазах власть имущих. Он был убежден, что не сумел достичь большего в профессии именно потому, что окончил не самую престижную школу и происходил из небогатой семьи, а другие, не такие способные, зато из аристократических кругов, обошли его в продвижении по служебной лестнице. Фрэнк не хотел той же участи для своего первенца. Он решил, что Стивен будет учиться в Вестминстере, одной из лучших школ в стране.

В десять лет мальчика записали на экзамен на стипендию, чтобы попасть в Вестминстерскую школу. Хокинг-старший был прекрасным медиком-исследователем, но его заработка, конечно, не хватило бы, чтобы платить за обучение в Вестминстере: подобными привилегиями пользовались дети адмиралов, политиков и крупнейших промышленников. А Стивен мог поступить в школу, лишь продемонстрировав свои способности; тогда плата за обучение хотя бы отчасти покрывалась бы стипендией. Настал день экзамена – и Стивен заболел. Он не писал вступительную работу и поэтому так и не получил место в одной из лучших школ Англии.

Огорченный доктор Хокинг отдал сына в местную частную школу – школу Св. Альбана, известную и безупречную с академической точки зрения монастырскую школу, имевшую давние тесные связи с собором: по некоторым источникам, она была основана в 948 году. Школа находилась в самом центре города, у собора, и в 1952 году, когда Стивен пошел туда учиться, в ней было 600 учеников. В каждой параллели были классы А, В и С – в зависимости от успеваемости. Каждый ученик – в школу принимали только мальчиков – пять лет проводил в средней школе, с первого по пятый класс, а затем сдавал экзамены первого уровня сложности по самым разным предметам; самые способные мальчики сдавали восемь-девять экзаменов. Успешно сдавшие экзамены первого уровня сдавали затем экзамены второго уровня сложности, что позволяло через два года поступить в университет.

В 1952 году конкурс в школу Св. Альбана составлял три человека на место, и каждый абитуриент должен был написать вступительную работу, как в Вестминстер. Стивен был прекрасно подготовлен, сдал экзамен без труда и 23 сентября был зачислен в школу в числе 90 мальчиков. Плата за обучение составляла 51 гинею (53,55 фунта) за семестр.

В то время Стивен был типичный знайка-отличник в серой форме и фуражке, точь-в-точь Билли Бантер из книг Фрэнка Ричардса или Том Браун из «Школьных дней Тома Брауна» Томаса Хьюза. Неуклюжий и чудаковатый, маленький и тощий. Школьная форма сидела на нем мешком, и, по воспоминаниям друзей, он так тараторил, что его было трудно понять, и к тому же слегка шепелявил – это он унаследовал от отца. Друзья даже говорили, что он говорит «на хокингском». Все это не имело отношения к первым симптомам болезни, просто таким уж он был, этот мальчик – мишень для шуток, насмешек, а иногда и жестокой травли, предмет тайного восхищения для некоторых одноклассников и пустое место для всех прочих. Видимо, в школе его таланты признавали не все: когда ему было двенадцать, один из приятелей поспорил на кулек конфет, что из Стивена толку не будет. Как скромно замечает сейчас сам Хокинг: «Даже и не знаю, кто в результате выиграл в этом споре».[1] Впрочем, к третьему классу учителя стали считать Стивена способным учеником, однако в рейтинге учеников сильного класса он оказался чуть выше середины. Он входил в небольшую компанию приятелей, отличавшихся одинаковым интересом к учению и целям в жизни. В их числе был высокий красавец Бэзил Кинг, видимо, самый умный и яркий в компании – он уже в десять лет читал Мопассана и еще дошкольником обожал оперу. Был там и Джон Маккленахан, низенький, черноволосый и круглолицый, – вероятно, лучший друг Стивена в ту пору. Кроме них в компанию входил блондин Билл Клегхорн, а еще пылкий и артистичный Роджер Фернейхау и Майкл Черч, новенький, пришедший в школу в третьем классе. Вместе они составляли компанию лучших из лучших учеников 3А класса. И правда, это были самые талантливые дети в параллели. Все они слушали по радио Третью программу ВВС (теперь это «Радио-3»), где передавали исключительно классическую музыку. Вместо того чтобы украдкой слушать первые образчики рок-н-ролла или американский кул-джаз, дети в последний раз листали конспекты по физике перед завтрашней контрольной или рисовали контурные карты по географии под звуки Моцарта, Малера и Бетховена, лившиеся из радиоприемников. Они читали Кингсли Эмиса, Олдоса Хаксли, Джона Уиндема, Клайва Льюиса, Уильяма Голдинга – «умные книжки». Поп-музыка была по ту сторону «великого разлома» в обществе: считалось, что слушать ее недостойно и даже вульгарно. Вся компания ходила на концерты в Альберт-холл. Некоторые мальчики и сами музицировали, но Стивен от природы был не слишком ловким и так и не освоил никакой музыкальный инструмент. Он очень интересовался музыкой, но не сумел преодолеть даже азы исполнительства, о чем сожалел всю жизнь. А общим героем мальчиков был Бертран Рассел – одновременно и гениальный мыслитель, и борец за права человека.

Школа Св. Альбана по праву гордилась очень высокими интеллектуальными стандартами, и Хокинги поняли и оценили это, как только Стивен приступил к учению. Вскоре всякие сожаления о том, что он не смог попасть в Вестминстер, были забыты. Школа Св. Альбана создавала идеальную среду для развития природного таланта.

Особенно живо мальчики вспоминали учителя по фамилии Финли, вчерашнего студента, который записывал радиопередачи на магнитофон – тогда это была техническая новинка, так что он намного опережал свое время, – и обсуждал их на своих уроках в 3А классе. Темы для дискуссий были самые разные: от ядерного разоружения до контроля над рождаемостью – и все, что в промежутке. Этот учитель оказал колоссальное воздействие на интеллектуальное развитие своих подопечных тринадцатилеток. Они выросли и стали журналистами и писателями, врачами и учеными, но до сих пор с теплотой вспоминают его уроки.

Домашними заданиями мальчиков нагружали основательно: по три часа каждый вечер и гораздо больше по выходным, причем по субботам утром в школе были уроки, а вечером – обязательные спортивные игры. Несмотря на такую нагрузку, мальчики все же выкраивали время, чтобы повидаться вне школы. Образ жизни у них был, можно сказать, монашеский. У английских мальчиков, учившихся в частных школах в 1950-е, из-за напряженного учебного плана не оставалось времени на девочек, поэтому дружеские вечеринки до пятнадцати-шестнадцати лет были сугубо однополыми. Только тогда при желании (и с дозволения родителей) они начинали устраивать дома вечеринки с хересом и тренировать танцевальные па, разученные после субботних школьных игр в танцевальной студии в городском культурном центре Сент-Олбанса.

А пока мальчики еще не доросли до подобных радостей, они часто ездили на долгие велосипедные прогулки по полям и лесам Хартфордшира в окрестностях Сент-Олбанса и иногда добирались даже в Уипшейд, миль за пятнадцать от дома. Еще они обожали придумывать настольные игры и играть в них. Тут заводилами были Стивен и Роджер Фернейхау. У Хокинга уже тогда проклюнулись задатки ученого и логика, поэтому именно он составлял общие правила игры, а Фернейхау придумывал доску, фишки и карточки. На выходных или в каникулы компания собиралась у кого-нибудь дома и устраивалась на полу в спальне или на ковре в гостиной с очередной игрой и стаканами апельсинового сквоша.

Первой была «Война», основанная на Второй мировой войне. Затем – «Феодал», построенная на социальных, военных и политических коллизиях средневековой Англии, с тщательно, во всех тонкостях, продуманной инфраструктурой. Однако вскоре все поняли, что у этих игр есть один большой недостаток: Стивен придумывал такие головоломно-хитроумные правила, что иногда на то, чтобы сделать один-единственный ход и рассчитать его последствия, уходил целый день. Игры зачастую проходили в доме 14 по Хиллсайд-роуд, и тогда мальчики взбирались по лестнице наверх, в тесную комнатку Стивена под самой крышей.

Дом Хокингов был настоящей лавкой древностей, битком набитой книгами, картинами, старой мебелью и всевозможными диковинами со всех концов света. Изабель и Фрэнк поддерживали в доме относительную чистоту, но в остальном не слишком заботились о хозяйстве. Мебелью и коврами пользовались, пока они не рассыпались в пыль, если обои где-то отклеивались от старости, никому в голову не приходило их заменить, штукатурка в коридоре и за дверями местами отвалилась, и в стенах зияли дыры. А комната Стивена была еще удивительнее: одновременно логово колдуна, лаборатория чокнутого профессора и захламленная комната подростка. Среди всевозможного мусора и бумажек как попало валялись тетрадки с недоделанными уроками, учебники и фрагменты моделей самолетов, повсюду стояли какие-то загадочные устройства и кружки с недопитым чаем. На секретере Стивен держал электрические приборы, о назначении которых можно было только догадываться, а рядом – стойку с пробирками, содержимое которых давно испарилось или выцвело, обрезки проводов, бумага, клей и металлические детальки: у Стивена было много неоконченных позабытых проектов.

Семья Хокингов была эксцентричной. Казалось бы, обычное семейство книгочеев, но со своей изюминкой – а еще с общественно-культурными представлениями, значительно опережавшими свое время. Один соученик Хокинга назвал его семейство «синими чулками». Хокингов было много: на одном групповом фотоснимке в семейном альбоме их 88 человек. У родителей Стивена были свои причуды. Многие годы их семейным автомобилем было лондонское такси, которое Фрэнк и Изабель купили за 50 фунтов, а потом его сменил новенький зеленый «форд-консул», типичный семейный автомобиль конца 1950-х. Для этой покупки была веская причина: Хокинги – все, кроме Стивена, которому нельзя было прерывать обучение, – решили на год отправиться в экспедицию по центральной Индии. Для 1950-х годов это было неслыханно смелое начинание, и старому лондонскому такси такое путешествие было бы точно не по силам. А зеленый «форд-консул» проехал через всю Индию и обратно. Правда, по возвращении он был, конечно, не в таком уж прекрасном состоянии.

Поездки Хокингов за пределы Сент-Олбанса далеко не всегда оказывались столь же авантюрными. Как и многие другие семьи, они приобрели домик на колесах для отдыха на южном побережье Англии – в Суссексе, близ Истбурна. Однако, в отличие от других семей, их фургончик был похож на пеструю цыганскую кибитку, а не на чудо современной техники. Обычно летом семья две-три недели гуляла по скалам и купалась в заливе. Часто они брали с собой лучшего друга Стивена Джона Маккленахана, и мальчишки вместе пускали воздушных змеев, ели мороженое и придумывали новые дразнилки для двух младших сестренок Стивена Мэри и Филиппы – и не обращали особого внимания на приемного брата Эдварда, который тогда едва научился ходить.

* * *

Фрэнк Хокинг оказал на Стивена в детстве и отрочестве очень большое влияние – в основном потому, что его почти не было дома. Для мальчика отец был фигурой далекой и загадочной: несколько месяцев в году Фрэнк проводил в Африке, где продолжал медицинские исследования, и даже не всегда присоединялся к родным в поездках на залив Рингстед, оставив детей на Изабель. Это было настолько привычным, что Мэри, старшая из сестер Стивена, лишь в юности поняла, что их семья ведет несколько необычную жизнь: она-то считала, что все папы – будто птицы, каждый год улетающие в теплые края. И дома, и за границей, до самой смерти Фрэнк Хокинг вел скрупулезные записи в дневниках и оставил их целую коллекцию. Кроме того он писал беллетристику – его перу принадлежит несколько неопубликованных романов, причем один из его литературных опытов написан от лица женщины. Изабель относилась к творчеству мужа с большим уважением, но считала, что коммерческого успеха ему ждать не приходится.

Несомненно, именно Изабель сформировала политические взгляды своего старшего сына. Как и многие английские интеллектуалы той эпохи, она придерживалась левых идей, что в ее случае привело к активному участию в работе Ассоциации либералов Сент-Олбанса в 1950-е годы. В то время либеральная партия была в парламенте меньшинством с минимальным представительством, однако среди широких масс сохраняла популярность и давала возможность для оживленных политических дискуссий, благодаря чему в 1950-е и 1960-е зачастую задавала тон по многим вопросам, в том числе по проблемам ядерного разоружения и противодействия апартеиду. Стивен никогда не придерживался радикальных политических взглядов, однако на всю жизнь сохранил интерес к политике и симпатию к левому движению.

Вскоре настольные игры наскучили Стивену с друзьями, и они переключились на другие увлечения – строили модели самолетов из бумаги и пробковой древесины и паяли всевозможную электронику. Модели нипочем не желали нормально летать, к тому же как теоретик Стивен уже тогда зарекомендовал себя гораздо лучше, чем как практик: руки у него были не слишком умелые, и модели самолетов получались неуклюжими и с аэродинамической точки зрения были далеки от совершенства. Подобные разочарования ждали его и с электроникой: один раз Стивен получил удар током в пятьсот вольт, когда пытался сделать усилитель из старого телевизора.

В третьем-четвертом классе пеструю компанию потянуло к мистике и вере. В конце 1954 года один мальчик с периферии компании – Грэхем Дау – всерьез ударился в религию. В тот год по Британии проехал с гастролями евангелист Билли Грэхем, и юный Дау подпал под его влияние. Он обратил Роджера Фернейхау – и их энтузиазм оказался заразительным. Как к этому повальному увлечению относился Хокинг, остается неясным. Скорее всего, от этих игрищ он держался в стороне и только посмеивался, глядя на приятелей, – по крайней мере, так считают все его соученики. Они рассказывают, что Стивен превыше всего ставил интеллект, поэтому восторги друзей скорее вызывали у него научный интерес, чем склоняли согласиться с ними и тем более уверовать самому.

Майкл Черч вспоминает, что при любых попытках обсудить со Стивеном что-нибудь хотя бы отдаленно мистическое или метафизическое у него возникало ощущение, что перед ним образчик чистого интеллекта, лишенный всяких эмоций:

Я не был склонен к науке и вообще не воспринимал Стивена всерьез, пока однажды, когда мы с ним возились с чем-то в его захламленном логове изобретателя и специалиста по розыгрышам, у нас не зашел разговор о смысле жизни – этот вопрос очень занимал меня в то время, – и вдруг меня поразила ужасная мысль: ведь Стивен провоцирует меня, чтобы я выставил себя дураком, а сам наблюдает за мной словно бы с заоблачных высот. Момент был крайне неприятный.[2]

Интерес к христианству сохранялся почти год. Друзья встречались у кого-нибудь дома, как раньше, когда играли в настольные игры, и все так же пили апельсиновый сквош, но теперь они вели напряженные диспуты о вере, Боге и собственных чувствах. Это была пора внутреннего роста, отчаянные попытки осмыслить мирскую суету. Благодаря этим встречам мальчики еще теснее сблизились. Один из них признавался, что во всем этом, несомненно, был оттенок подростковой гомосексуальности.

Для Стивена это было трудное время. Он хотел бы быть соучастником, не терять связи с друзьями, однако рационалистическое начало уже тогда не позволяло эмоциям взять верх над интеллектом. Все же ему удалось сберечь дружбу, но оставаться в стороне – и попутно приобрести навыки общения, которые очень пригодились ему в будущем. Парадокс в том, что в конце года, когда поветрие было в самом разгаре, именно Стивен выиграл школьную олимпиаду по богословию.

На смену христианству пришел оккультизм. Друзья увлеклись экстрасенсорикой, в то время завладевшей воображением публики. И вместе, и поодиночке, запершись в своих комнатах, они принялись за эксперименты – пытались силой мысли повлиять на игральные кости. Стивена это заинтересовало куда больше, чем религия: ведь результаты эксперимента можно было измерить, а значит, подтвердить или опровергнуть теорию. Тут речь шла уже не о вере и надежде.

Увлечение продлилось недолго. Стивен с друзьями попали на лекцию ученого, который в конце 1950-х участвовал в серии экспериментов по изучению экстрасенсорики в Университете Дьюка в Северной Каролине. Лектор показал, что во всех случаях, когда были получены обнадеживающие результаты, оказывалось, что эксперимент методологически небезупречен, а когда эксперименты проводились по всем правилам, никаких результатов они не давали.

Интерес у Стивена сменился презрением. Он пришел к выводу, что в экстрасенсорику и тому подобное способны верить лишь те, у кого аналитические способности на уровне подростков.[3]

Между тем в школе все было по-прежнему. Стивен был очень слаб во всех видах спорта, кроме, пожалуй, бега по пересеченной местности: тут его хрупкое телосложение оказалось очень кстати. Регби и крикет он хоть и с трудом, но терпел, однако особое отвращение вызывала у него военная подготовка – программа так называемого Объединенного кадетского корпуса. Школа Св. Альбана, как и большинство британских частных школ для мальчиков, участвовала в этой программе в рамках подготовки учеников к службе в армии. Каждую пятницу вся школа за исключением шести человек облачалась в военную форму. Шестеро освобожденных были те, чьи родители были противниками военной службы по идейным соображениям. Несмотря на политические пристрастия Изабель Хокинг, родители Стивена не были идейными пацифистами, поэтому он участвовал во всех военно-спортивных играх, сборах и парадах наравне со всеми. Те, кого не слишком увлекала военная романтика, сохранили довольно мрачные воспоминания о занятиях Объединенного кадетского корпуса: каждую пятницу, даже зимой, под январским мокрым снегом, от которого коченели щеки и пальцы, приходилось выполнять приказы молодцеватых старшеклассников-офицеров.

Стивен имел звание младшего капрала Королевского корпуса связи – именно туда по традиции попадали молодые люди научного склада. По отзывам всех его знакомых, военная подготовка была ему как кость в горле, но он все терпел. Альтернатива в некотором смысле была еще хуже. Те, кто не желал защищать отчизну и королеву, подвергались массированной агитации. Сначала идейного пацифиста отправляли к полковнику Прайку, командующему Объединенным кадетским корпусом. Если тому не удавалось уговорить отщепенца, следующей линией атаки становился субдекан каноник Фивер, человек очень грозный, который читал мальчику лекцию о том, что служить Богу и королеве и сыграть положенную роль в общем порядке вещей – его нравственный долг. Если непокорный и это выносил, последним испытанием становилась встреча с директором школы Уильямом Томасом Маршем.

Марш был одним из самых строгих директоров за всю историю Сент-Олбанса, однако в своей должности он добился значительных успехов. Соученики Хокинга единодушно называют его «сущим кошмаром», и перечить ему было крайне неразумно. Если директору не удавалось вернуть отказника на путь истинный, значит, тот и вправду отличался алмазной твердостью убеждений. Однако это было лишь начало. Те, кто не участвовал в тренировках Объединенного кадетского корпуса, вместе со всеми облачались в военную форму и принудительно копали на школьной территории котлован под греческий амфитеатр. Марш был большой поклонник классической учености и полагал, что подобная работа служит ритуальным уничижением. Строительство греческого амфитеатра продолжалось и в дождь, и в зной до победного конца. В хорошую погоду Марш прохаживался по краю котлована, а в слякоть и снегопад наблюдал за работами из окна теплой комнаты.

* * *

Впрочем, школьная жизнь не всегда была такой унылой. Классы часто выезжали на экскурсии по научным достопримечательностям – на химические заводы, электростанции и в музеи. Как правило, «банду юных оборванцев» возил туда командующий Объединенным кадетским корпусом полковник Прайк. Он с теплотой вспоминает, как однажды возил класс Хокинга на химический завод «Империал Кемикл Индастриз» в Биллингем на севере Англии. Поначалу все шло неплохо, но потом, сразу после обеда, научный сотрудник, показывавший школьникам завод, отвел Прайка в сторону и сердито зашипел:

– Кого вы мне привели?! Черт возьми, они такие вопросы задают, что я не знаю, что отвечать!

К четырнадцати годам Стивен понял, что хочет профессионально заниматься математикой; примерно тогда же стали заметны его недюжинные способности. Он почти не тратил времени на домашние задания по математике и все равно получал отличные оценки. Как вспоминал один его соученик: «У него была невероятная научная интуиция. Я ломал себе голову над решением сложной математической задачи, а он просто знал ответ, ему даже думать не приходилось!»[4] У «заурядного» неглупого мальчика обнаружился выдающийся талант.

Джону Маккленахану особенно запомнился один случай, когда Стивен проявил свою интуицию. Дело было на уроке физики в шестом классе, и учитель задал вопрос:

– Предположим, вы хотите выпить чаю с молоком. Чай очень горячий. В каком случае он быстрее остынет до температуры, когда его можно будет пить: когда вы нальете в чашку одновременно молоко и чай или когда вы сначала дадите чаю немного остыть, а потом добавите молока?

Одноклассники Хокинга закопались в формулы, а Стивен тут же уловил суть дела и дал правильный ответ практически мгновенно:

– Ну конечно! Молоко потом!

После чего подробно объяснил, почему: чем горячее жидкость, тем быстрее она остывает, поэтому есть смысл наливать молоко в самом конце, чтобы чай остыл быстрее.

Экзамены первого уровня Стивен сдал без сучка и задоринки – девять в июле 1957 года, а десятый, латынь, через год, вместе с экзаменами второго уровня. Когда он выбирал, по каким предметам сдавать экзамены второго уровня, важную роль сыграло мнение родителей. Стивен хотел сдавать математику, физику и дополнительные главы математики, чтобы подготовиться к изучению математики и физики в университете. Однако у Фрэнка Хокинга были другие планы. Он хотел, чтобы сын стал врачом, а для этого Стивен должен был сдавать химию второго уровня. После долгих споров Стивен согласился сдавать математику, физику и химию второго уровня, однако оставил открытым вопрос о том, какую специальность выберет в университете: окончательное решение можно было принять через год.

Шестой класс стал для Стивена, пожалуй, самым счастливым годом в школе Св. Альбана. В последние два года мальчики пользовались относительной свободой и грелись в лучах славы после блестящей сдачи экзаменов первого уровня. В выпускном классе дружеская компания разбилась на мелкие группы в зависимости от того, кому какие предстояли экзамены второго уровня. Те, кто собирался заниматься гуманитарными науками, по понятным причинам несколько отдалились от «физиков»; теперь они посматривали друг на друга свысока. Бэзил Кинг, Джон Маккленахан и Хокинг выбрали точные науки, остальные мальчики – гуманитарные. У «физиков» появились новые друзья.

Весной 1958 года Хокинг с друзьями, в том числе с новыми приятелями Барри Блоттом и Кристофером Флетчером, собрали компьютер, который назвали LUCE – «Logical Uniselector Computing Engine». В 1950-е годы в Великобритании компьютеры были разве что в министерстве обороны и на нескольких университетских кафедрах. Однако мальчикам удалось собрать свою логическую машину, пусть и очень примитивную. Помогал им Дик Тартар, юный учитель математики, которого наняли нарочно, чтобы он внес свежую струю в изучение математики и помогал ученикам генерировать идеи.

На работу ушел месяц. Оказалось, что главное препятствие – не трудности теоретической разработки, а неумение паять. В основном устройство собирали из деталей старого телефонного коммутатора, но, чтобы компьютер заработал, нужно было соединить множество проводов, и мальчикам очень долго не удавалось добиться безупречной пайки. Однако в конце концов устройство заработало и стало настоящей сенсацией среди одноклассников. Заметка Математического общества в школьном журнале «Albanian» возвращает читателя в прошлое не хуже машины времени:

Не раз и не два на протяжении истории математикам приходилось покидать свои горние чертоги и вспоминать, что главная их задача – вычислять. Так, в 1641 году Паскаль изобрел арифметическую машину – предшественницу современного компьютера, который заменил бирку с насечками, счеты и логарифмическую линейку как инструмент вычислений. Пока не настанет счастливая пора, когда у каждого четвероклассника будет свой карманный «Эрни»[5], нам придется довольствоваться таблицами логарифмов. Но начало положено, пусть пока наши достижения и скромны: теперь у нас есть LUCE, компьютер школы Св. Альбана. Эта машина решает никому не нужные, но довольно сложные логические задачи. Работе с ней было посвящено прошлое заседание Общества, оказавшееся оживленным и многолюдным. Создатели LUCE, опираясь на полученный опыт, намерены построить цифровой компьютер; названия у него пока нет, но он будет именно «считать» (мужайтесь, четвероклассники, недолго терпеть осталось!).[6]

Впервые Хокинг с друзьями удостоились внимания прессы, когда местная газета «Herts Advertiser» опубликовала статью об «ученых школьниках», собравших своими руками новомодную машинку. Как и обещала заметка в школьном журнале, мальчики и правда успели создать более сложную версию компьютера еще до окончания школы.

Когда Найджел Вуд-Смит, нынешний глава отделения информатики в школе Св. Альбана, много лет спустя заступил на пост, то нашел под партой в кабинете математики загадочную коробку. С его точки зрения, там была просто груда старого хлама – какие-то транзисторы, реле, проводки, железки и табличка с буквами «LUCE» поверх. Он выбросил все в мусор. Лишь много лет спустя он понял, что нечаянно выбросил историческую реликвию – компьютер, который сделал Стивен Хокинг.

Глава 2

Классическая космология

Наука космология изучает Вселенную в целом, ее зарождение, эволюцию и дальнейшую судьбу. С точки зрения идей, это величайшая из всех наук. Однако с точки зрения оборудования, все не так внушительно. Да, космологи получают сведения о Вселенной при помощи гигантских телескопов и космических зондов, а иногда вычисляют что-нибудь на суперкомпьютерах. Но суть космологии – это по-прежнему математика, а значит, космологические идеи можно выразить в формулах, записанных карандашом на бумаге. Космологию, в отличие от всех прочих отраслей наук, можно изучать при помощи одного лишь мозга. Так обстоят дела сейчас – и так было и 75 лет назад, когда Альберт Эйнштейн разработал общую теорию относительности (ОТО) и тем самым изобрел теоретическую космологию как науку.

Когда ученые говорят о «классических» физических представлениях, то имеют в виду не соображения древнегреческих мыслителей. Классическая физика, строго говоря, – это физика Исаака Ньютона, который заложил основы научного метода исследования мира еще в XVII веке. Ньютонова физика царила безраздельно вплоть до начала XX века, когда была свергнута в результате двух революций: первую разожгла эйнштейновская общая теория относительности, а вторую – квантовая теория. Первая из этих теорий – лучшая на сегодня гипотеза гравитации, вторая объясняет, как устроено все остальное в материальном мире. Совокупно эти теории – теория относительности и квантовая механика – стали столпами современной физики XX века. Но подлинный Святой Грааль современной физики, который жаждут найти очень многие, – теория, которая связала бы их единым математическим аппаратом. И для нынешнего поколения искателей Грааля 1990-х годов даже эти столпы в первоначальной форме безнадежно устарели. Иногда «классической физикой» ученые между собой называют все, что разработали предыдущие поколения исследователей, то есть все, чему больше двадцати пяти лет. Более того, четверть века назад в истории физики произошло переломное открытие: в 1967 году были открыты пульсары, и в том же году Стивен Хокинг отпраздновал собственное двадцатипятилетие. Сегодня эти объекты называют нейтронными звездами; это схлопнувшиеся ядра массивных звезд, жизнь которых завершилась мощным взрывом – взрывом сверхновой. Именно открытие пульсаров, сверхплотных объектов на грани превращения в черные дыры, и натолкнуло Хокинга на первую попытку успешного сочетания квантовой теории и теории относительности.

Правда, работать над теорией черных дыр Хокинг начал по меньшей мере за два года до открытия пульсаров, когда лишь немногие математики интересовались такими экзотическими следствиями из уравнений Эйнштейна, а сам термин «черная дыра» в этой связи еще не употреблялся (как мы вскоре убедимся, такая прозорливость для Стивена типична). Хокинг как ученый, как и все его современники, воспитывался на классических представлениях Ньютона и на теории относительности и квантовой физике в первоначальном виде. Чтобы оценить, как далеко продвинулась с тех пор физика – отчасти при содействии Хокинга, – нужно рассмотреть сами классические идеи, и это станет легкой разминкой у подножия гор перед покорением головокружительных вершин. В общепринятом смысле «классической космологией» принято называть все, что было известно до революции, вызванной открытием пульсаров, то есть именно то, чему учили в институте ровесников Хокинга.

* * *

Исаак Ньютон превратил Вселенную в место логичное и упорядоченное. Он объяснил поведение материального мира при помощи фундаментальных законов, которые, как считалось тогда, встроены в саму ткань мироздания. Самый знаменитый пример – закон всемирного тяготения. Обриты планет, вращающихся вокруг Солнца, до Ньютона оставались полнейшей загадкой, но он рассчитал их при помощи закона всемирного тяготения, который гласит, что планета на определенном расстоянии от Солнца ощущает определенную силу, которая притягивает ее обратно пропорционально квадрату расстояния до Солнца; это называется закон обратных квадратов. Иначе говоря, если планету волшебным образом переместить на вдвое большее расстояние от Солнца, она ощутит четверть силы, втрое дальше – одну девятую, и так далее. Когда планета на стабильной орбите движется в космическом пространстве со своей скоростью, эта сила, направленная вовнутрь, в точности уравновешивает стремление планеты улететь в космос. Более того, Ньютон заключил, что тот же самый закон обратных квадратов объясняет и падение яблока с дерева, и орбиту Луны вокруг Земли, и даже приливы и отливы. Это универсальный закон.

Еще Ньютон объяснил, как материальные тела реагируют на иные силы, помимо гравитации. Когда здесь, на Земле, мы что-то толкаем, оно движется, но только пока мы его толкаем. Любое движущееся тело на Земле подвергается воздействию силы трения, которая противостоит его движению. Перестанешь толкать – и сила трения остановит объект. Но без силы трения (подобно планетам в космосе или атомам, из которых состоит все вокруг), согласно Ньютону, тело движется равномерно и прямолинейно, пока не подвергнется воздействию какой-нибудь силы. И тогда, пока сила действует, тело ускоряется, меняет направление или скорость, либо и то, и другое. Чем легче тело или чем больше сила, тем больше в итоге ускорение. Однако если убрать силу, тело снова начнет двигаться равномерно и прямолинейно, но с другой скоростью – с той, которую оно набрало за время, пока ускорялось.

Когда что-то толкаешь, оно толкает тебя в ответ, и сила действия равна по значению и противоположна по направлению силе противодействия. По этому принципу устроена ракета: она выбрасывает вещество из сопла в одном направлении, и сила противодействия толкает ее в другом направлении. Наглядный пример действия этого закона в наши дни – бильярдный стол: шары сталкиваются и отскакивают друг от друга очень по-ньютоновски. И именно такова картина мира, которая следует из ньютоновой механики: картина, в которой шары (или атомы) сталкиваются и отскакивают друг от друга, а звезды и планеты движутся под воздействием тяготения исключительно правильно и предсказуемо.

Все эти представления описаны в фундаментальном труде Ньютона «Начала» («Principia»), опубликованном в 1687 году (полное название великой работы Ньютона в переводе звучит как «Математические начала натуральной философии»). Представление о мире, которое подарил нам Ньютон, иногда называют «заводная Вселенная». Если Вселенная состоит из материальных объектов, которые взаимодействуют друг с другом посредством сил, подчиняющихся подлинно универсальным законам, и если законы, подобные закону действия и противодействия, в точности соблюдаются во всей Вселенной, значит, Вселенную можно считать исполинской машиной, космическим часовым механизмом, который, единожды придя в движение, будет вечно следовать целиком и полностью предсказуемым путем.

Это порождает всякого рода загадки, которые не давали покоя ни философам, ни богословам. Суть проблемы – вопрос свободы воли. Неужели в подобной «заводной» Вселенной предопределено абсолютно все, в том числе и человеческое поведение во всей его многогранности? Было ли предопределено, заложено в законы физики, что совокупность атомов по имени Исаак Ньютон напишет книгу под названием «Начала», которая выйдет в свет в 1687 году? И если Вселенная подобна космическому часовому механизму, кто завел эти часы, кто привел их в движение?

Даже надежные рамки религиозных представлений Европы XVII века несколько пошатнулись от подобных вопросов: казалось бы, логично сказать, что завел часы и привел их в движение именно Бог, однако традиционное христианство предполагает, что человек обладает свободой воли и, таким образом, может по желанию либо следовать учению Христа, либо нет. Мысль, что грешники, в сущности, не имели никакой свободы выбора в своих поступках, а грешили, подчиняясь незыблемым законам, и следовали по пути к вечным мукам, который заложил изначально сам Господь, решительно не вписывалась в сложившееся христианское мировоззрение.

Как ни странно, со времен Ньютона и до ХХ века наука практически не интересовалась идеей начала Вселенной. Считалось, что Вселенная вечна и неизменна, а «неподвижные» звезды просто висят в пространстве. Библейская история о сотворении мира, в которую в XVII веке ученые верили, как все, была применима только к нашей планете Земля или разве что к семейству планет вокруг Солнца – Солнечной системе – но не к Вселенной в целом.

Ньютон полагал, как выяснилось, ошибочно, что неподвижные звезды могут находиться на своих местах в пространстве вечно, если Вселенная бесконечно велика, поскольку сила тяготения, влияющая на каждую звезду в отдельности, одинакова во всех направлениях. На самом деле подобная конструкция крайне нестабильна. Достаточно легчайшего отклонения, и идеально равномерное распределение звезд приведет к мощному притяжению в том или ином направлении, и звезды придут в движение. А как только звезда двинется в сторону любого источника гравитационной силы, расстояние до источника сократится, сила увеличится – в полном соответствии с законом обратных квадратов Ньютона. То есть стоит звездам прийти в движение, и сила, приводящая к неоднородности, начнет возрастать, поэтому звезды продолжат движение с ускорением. Статическая вселенная вскоре схлопнется под воздействием силы гравитации. Но это стало понятно только после того, как Эйнштейн разработал новую теорию гравитации – теорию, которая, более того, заключала в себе предсказание, что Вселенная определенно не может быть статической и, вероятно, на самом деле не схлопывается, а расширяется.

* * *

Альберту Эйнштейну, как и Ньютону, принадлежит множество научных достижений. И главным трудом его жизни, как у Ньютона, стала теория гравитации – ОТО. Насколько важной оказалась его теория для современного понимания Вселенной, можно судить по тому, что специальная теория относительности (СТО) – та, в результате которой была выведена знаменитая формула E = mc2, – это лишь довольно малая часть работы. Однако СТО, опубликованная в 1905 году, стала главной составляющей нового понимания Вселенной. Но прежде чем перейти к этому, остановимся хотя бы ненадолго на основных чертах специальной теории.

Эйнштейн разработал СТО, чтобы решить задачу, сформулированную физикой XIX века. Великий шотландский физик Джеймс Клерк Максвелл вывел уравнения, описывающие поведение электромагнитных волн. Вскоре уравнения Максвелла были скорректированы для описания поведения радиоволн, открытых в 1888 году. Однако Максвелл обнаружил, что уравнения автоматически дают ему определенную скорость,[7] которая определяется как скорость распространения электромагнитных волн. Оказалось, что особая скорость, следующая из уравнений Максвелла, – это в точности скорость света, которую физики к тому времени уже измерили. Следовательно, свет – тоже разновидность электромагнитной волны, подобно радиоволнам, но с меньшей длиной волны (то есть с более высокой частотой). А еще эти уравнения говорили, что свет (как и другие виды электромагнитного излучения, в том числе радиоволны) всегда распространяется с одной и той же скоростью.

Это противоречит нашим представлениям о движении предметов в быту. Если человек, стоящий напротив вас, легким движением бросит вам мяч, вы без труда его поймаете. Если этот человек будет двигаться в вашу сторону в автомобиле со скоростью 80 километров в час и таким же легким движением бросит вам мяч из окна, мяч помчится на вас со скоростью 80 километров в час плюс скорость броска. Так что вас сильно удивило бы, если бы мяч, легким движением выброшенный из машины, долетел бы до вас всего лишь с небольшой скоростью броска, без прибавки скорости автомобиля. Однако со световыми импульсами именно так и происходит. Подобным же образом, если машину, которая едет по прямой дороге со скоростью 80 километров в час, обгоняет машина, которая едет со скоростью 90 километров в час, то вторая машина движется относительно первой со скоростью 10 километров в час. Иными словами, скорость относительна. Но если вас обгонит световой импульс, и вы измерите скорость, с которой он пролетает мимо, окажется, что эта скорость равна скорости светового импульса, который пролетает мимо вас, когда вы стоите неподвижно.

Об этом никто не догадывался до конца XIX века. Ученые предполагали, что свет ведет себя так же, как и тела вроде мячей, которыми перебрасываются люди, – то есть скорости точно так же складываются и вычитаются. А «постоянство» скорости света в уравнениях Максвелла ученые объясняли тем, что уравнения относятся к какому-то «абсолютному пространству», фундаментальной системе отсчета всей Вселенной.

Согласно этой точке зрения, пространство как таковое задавало систему отсчета, относительно которой надо было проводить измерения, и это было абсолютное пространство, в котором двигались и Земля, и Солнце, и свет, и все остальное. Еще это абсолютное пространство называли эфиром, и считалось, что это субстанция, в которой распространяются электромагнитные волны, подобно тому, как движутся водяные волны в море. Заминка была в том, что когда экспериментаторы попытались измерить изменения скорости света, вызванные движением Земли сквозь абсолютное пространство («относительно эфира»), ничего найти не удалось.

Поскольку считалось, что Земля движется вокруг Солнца по приблизительно круглой орбите, она в разные времена года должна была двигаться относительно эфира в разных направлениях и, следовательно, с разной скоростью. Это как плавать по кругу в быстрой реке. Иногда Земля должна была «плыть по течению эфира», иногда – поперек течения, иногда – против. Если свет всегда движется относительно абсолютного пространства с одинаковой скоростью, здравый смысл подсказывает, что это должно проявляться в виде сезонных изменений скорости света, измеренной с Земли. Оказалось, что нет.

Эйнштейн решил эту задачу при помощи СТО. Она гласит, что все системы отсчета одинаковы, нет никакой абсолютной системы отсчета. Наблюдатель, движущийся с постоянной скоростью в пространстве, вправе считать себя неподвижным. Он увидит, что движущиеся тела в его системе отсчета подчиняются законам Ньютона, а электромагнитное излучение – уравнениям Максвелла, так что скорость света при любых измерениях получается одинаковой – такой, какую дают эти уравнения, где она обозначена буквой c. Более того, всякий, кто движется с постоянной скоростью относительно нашего героя (первого наблюдателя, как говорят физики), тоже смогут с полным правом сказать, что находятся в покое, и обнаружат, что все тела в их лаборатории подчиняются законам Ньютона, а измерения всегда дают скорость света c. И даже если один наблюдатель движется навстречу другому со скоростью, равной половине скорости света, и светит вперед фонариком, второй наблюдатель, измерив скорость света от фонарика, получит не 1,5 с, а по-прежнему с!

Эйнштейн отталкивался от наблюдаемого факта, что скорость света постоянна и не зависит от того, в какую сторону движется Земля в пространстве, и вывел математический аппарат, описывающий поведение материальных тел в системах отсчета, движущихся с постоянной скоростью друг относительно друга, то есть так называемых инерциальных системах отсчета. Если скорости малы относительно скорости света, эти уравнения дают в точности те же «ответы», что и ньютонова механика. Но, если скорости составляют заметную долю от скорости света, начинаются странности.

Например, при сложении двух скоростей никогда не получается относительная скорость больше с. Наблюдатель видит, как два других наблюдателя мчатся друг другу в лоб со скоростью 0,9 с каждый в системе отсчета первого наблюдателя, однако, если кто-то из мчащихся наблюдателей проделает измерения, у него неизбежно получится, что второй наблюдатель движется со скоростью меньше с, но больше 0,9 с (в данном случае).

Почему же скорости складываются так странно? Причина отчасти в том, что пространство и время на высокой скорости определенным образом искажаются. Чтобы учесть постоянство скорости света, Эйнштейну пришлось признать, что движущиеся часы идут медленнее неподвижных и движущиеся тела сокращаются по направлению движения. Кроме того уравнения говорят, что чем быстрее движется тело, тем больше его масса.

Все эти странные и удивительные явления – лишь периферия истории современной космологии и поисков связи между гравитацией и квантовой физикой. Однако надо подчеркнуть, что все это не безумные идеи, не «просто теория», как говорим мы иногда, отмахиваясь от чего-то неправдоподобного. Для ученого теория – это гипотеза, прошедшая все экспериментальные проверки. СТО – не исключение. Все чудеса, которые следуют из СТО – постоянство скорости света, растяжение времени и сокращение длины у движущихся тел, увеличение массы движущегося тела – измерены и подтверждены с высокой точностью в ходе огромного количества экспериментов. Ускорители частиц, установки, где «сталкиваются атомы», например, в ЦЕРНе, Европейском центре ядерных исследований, в Женеве, – попросту не работали бы, если бы теория оказалась неверной, поскольку спроектированы и построены в соответствии с уравнениями Эйнштейна. СТО как описание мира высоких скоростей подтверждается такими же надежными экспериментальными фактами, как и ньютонова механика, как описание повседневной жизни, и единственная причина ее конфликта с нашим здравым смыслом – в том, что мы не каждый день сталкиваемся с перемещением на таких высоких скоростях, чтобы эффекты СТО стали заметны. Ведь скорость света c составляет ни много ни мало 300 000 километров в секунду, а релятивистскими эффектами можно смело пренебрегать при скоростях, составляющих менее 10 % от этой величины, то есть при скоростях меньше каких-то 30 000 километров в секунду.

В сущности, СТО – результат сочетания ньютоновых уравнений движения с максвелловыми уравнениями, описывающими излучение. СТО во многом дитя своего времени, и если бы Эйнштейн не выдвинул свою теорию в 1905 году, это наверняка сделал бы в ближайшие годы кто-нибудь из его современников. Однако без неповторимого гения Эйнштейна потребовалось бы, вероятно, целое поколение, прежде чем кто-нибудь оценил бы важность куда более глубоких соображений, заложенных в СТО.

Эта важнейшая составляющая, на которую мы уже намекали, была результатом другого сочетания – единства пространства и времени. В повседневной жизни пространство и время – совершенно разные вещи. Пространство окружает нас по трем измерениям (вверх-вниз, вправо-влево, вперед-назад). Мы видим, где расположены в пространстве предметы, и перемещаемся по нему более или менее так, как хотим. А время практически невозможно описать, хотя мы все представляем себе, что это такое. В каком-то смысле у времени есть направление (из прошлого в будущее), но мы не можем заглянуть ни в прошлое, ни в будущее и, конечно, не в силах перемещаться во времени по своему желанию. Однако великая универсальная постоянная c –

1 Hawking S.-W. A Short History (неофициально изданная брошюра).
2 Church Michael. Games with the cosmos. «Independent» (June 6, 1988).
3 Hawking. A Short History.
4 Church. Games with the cosmos.
5 Компьютер, определявший выигрышные премиальные облигации.
6 «Albanian». May, 1958.
7 Строго говоря, это векторная скорость, то есть величина, задающая и скорость, и направление движения. Но для простоты мы будем на этих страницах называть векторную скорость просто скоростью.
Скачать книгу