Квантовая механика и парадоксы сознания бесплатное чтение

Александр Никонов
Квантовая механика и парадоксы сознания

© Никонов А. П., текст

© ООО «Издательство АСТ»

От автора. С надеждой на понимание

Вы держите в руках заключительную книгу трилогии. Трилогии, впрочем, весьма формальной, все три книги вполне самостоятельны и связаны между собой только наукой, тайнами и некоторыми героями. Первая книга – «Невозможное в науке» является научно-популярным детективом и посвящена попытке раскрыть некоторые таинственные явления, которые до сей поры научной разгадки не имели. Вторая книга – «Антинаучная физика» родилась в процессе размышления над природой сознания и стала сборником необъяснимых случаев, к которым наука вообще не подступала и даже само их существование отрицает. Между тем количество наблюдавших эти странные явления и ставших свидетелями необъяснимых происшествий слишком велико, чтобы от них просто отмахнуться. Поэтому в данной книге автор не только использует подходящие свидетельства, но и вольно применяет к этим происшествиям способ, который наука когда-то применила к изучению феномена шаровой молнии: если уж нельзя изучать саму шаровую молнию (в силу ее редкости и невозможности воспроизведения в лаборатории), будем изучать свидетельские показания о ней, чтобы набрать статистику. Если показания свидетелей о размерах, светимости, долгоживучести и других характеристиках шаровой молнии лягут на кривую нормального распределения, значит, мы имеем дело с природным явлением… Эх, вот бы кто-нибудь когда-нибудь всерьез принял этот подход к тем явлениям, которые я поэтично назвал «разрывами в самой ткани реальности»!

Дарю науке идею!

Ну, а мы с вами приступим к освоению нового материла.

«Сознание – это иллюзия реальности. А реальность – это иллюзия сознания».

Будда Шакьямуни, лично автору

«Нет ничего более интуитивно понятного и более непонятного при ближайшем рассмотрении, чем физическая реальность. Потому что она целиком располагается в сознании, а сознание находится в ней».

Александр Никонов, лично Будде

Потеря мира. Вместо пролога

Долго думал, с чего начать книгу на столь сложную, но дико интересную тему – про кванты. Начну, пожалуй, вот с чего…

Как-то один знакомый психотерапевт за чашкой чая бросил загадочную фразу о том, что человек может быть «разотождествлен со своими чувствами». Я тогда просто отмахнулся от этой фразы: ну, как такое может быть? Как можно не чувствовать чувства, если они есть? Абсурд! Вечно эти «мозгоправы» что-нибудь придумают, чтобы брать по 100 долларов в час с несчастных граждан. Ну, как это вообще возможно – не ощущать собственных чувств и эмоций?

Но потом узнал, что такое действительно бывает. Проводились следующие эксперименты: человека погружали в гипнотический сон, внушали ему какую-нибудь страшную ситуацию, чтобы он испытал сильный испуг, например, что за ним гонится медведь. И человек дико пугался. А потом щелчком пальцев его из состояния транса выводили.

– Как вы себя чувствуете? – спрашивает гипнотизер.

– Нормально, – говорит человек. А самого трясет от страха, сердце колотится, зрачки огромные, лицо белое как мел.

«Нормально» он себя чувствовал, потому что сидел в кабинете, где бояться было нечего. Тихий свет, удобное кресло… Но его тело находилось в состоянии стресса благодаря выброшенным в кровь гормонам.

То есть тело боялось, а человек свой страх не осознавал. Такое, кстати, бывает не только после гипноза, но и «наяву»: когда человека гложет чувство вины или страха, а мозг от этого чувства отказался, чтобы не страдать, и его не осознает. Но тело-то продолжает работать в форсажном режиме, постепенно «перегорая» и нарабатывая соматические проблемы. Задача психотерапевта в данном случае – воссоединить человека с его чувством, помочь осознать его, пережить, выработать и идти дальше, чтобы начался процесс самовосстановления организма, уже поврежденного и накопившего дисфункции из-за перманентного стресса.

Это очень тонкий момент, между прочим. Трудный. Я имею в виду не сам процесс работы психотерапевта по воссоединению тела и разума, а то, что для общего понимания ситуации этот момент довольно сложен. Философски непрост. Как и квантовая механика, кстати.

Смотрите. Вот пошла телесная реакция: впрыснут в кровоток целый коктейль веществ, которые должны реализовать в сознании страх, для чего они и предназначены. И тело показывает все признаки страха: кровь отливает от кожных покровов, зрачки расширяются, мышцы находятся в тонусе. А сам человек страха на испытывает. Между телом и сознанием образовался разрыв. Расшунтировало.

Так иногда человек не чувствует даже боли. Есть серьезное ранение, сигнал идет, а сознание боли не ощущает.

А бывает наоборот, человек чувствует, что нога болит, а болеть нечему: нога ампутирована. Это называется фантомная боль.

Почему материальные сигналы есть, а в реальности человек боли и страха не испытывает, или обратная ситуация: материального сигнала нет, а боль чувствуется? И что такое в данном случае «реальность»? Какая реальность более реальна – внешняя или внутренняя?

Что в данном случае реальность – испытываемое сознанием ощущение или материальные компоненты сигнала (гормоны, электрические импульсы, бегущие по нервам)?

Мы за триста лет существования науки настолько привыкли к так называемой объективности мира и эфемерности сознания, его обманчивости и иллюзорности, что нам легче признать реальными «твердые предметы», чем собственные ощущения. Ощущения могут обманывать, мозг может галлюцинировать, а табуретка – она и есть табуретка. Твердая и никуда не денется.

Но ведь иных инструментов восприятия твердого мира, кроме наших ощущений, у сознания нет. Как верно заметил однажды великий француз Рене Декарт, «я мыслю, следовательно, я существую. Только это по-настоящему проверяемо. Мыслю – существую. А если не мыслю – некому и существовать. То есть проверяемое существование всегда персонально. А значит, необъективно, ведь персоналия – это субъект, по определению склонный к иллюзиям.

Кстати, а что значит «существует»?

И еще вопрос: а иллюзия существует?

Существовать – значит иметь свойства и через них как-то проявлять себя в этом мире, что понятно. Но в чьих глазах? И если нет ничьих глаз, если нет наблюдателя, как установить, существует ли предмет или мир вообще? И кто будет это устанавливать?

Еще хотелось бы выяснить, бывает ли «объективная иллюзия» или это оксюморон?

Существует ряд оптических иллюзий, которые любят приводить авторы популярных книжек по физике. С одной стороны, это и вправду иллюзии, то есть чистая кажимость, с другой, они кажутся всем людях, а стало быть, их вполне можно назвать «объективными иллюзиями». Самые известные и ходовые примеры – ниже.


Рис. 1


Рис. 2


При взгляде на вторую картинку кажется, что клетки А и В разного оттенка. На самом деле оттенок серого у этих клеток совершенно одинаков. Но иллюзия сильнейшая, потому что мозг достраивает реальность по своим представлениям о ней, используя и комбинируя прежние знания о том, что:

• шахматные клетки равномерно чередуются,

• они разные по цвету,

• тень должна затемнять.

При взгляде же на первую картинку кажется, будто нижний отрезок длиннее верхнего. Но если мы возьмем твердую честную линейку и измерим оба отрезка, то убедимся в их равной длине. Ура! Наука восторжествовала над несовершенством наших чувств!

Но ведь убедиться в равной длине отрезков при взгляде на линейку нам тоже помогли наши чувства! Никакого другого инструмента, кроме чувств, у нашего сознания для познания мира нет. Мы живем в мире чувств и ощущений. Для нас только этот иллюзорный мир и реален. Ничего другого для нас нет, мы ведь видим не внешний мир, а только его восприятие нашими органами чувств, и каков мир «на самом деле», мы не знаем. Мы даже не знаем, есть ли он, можем только предполагать, постулировать его наличие, строго говоря. Единственное, в чем мы твердо можем удостовериться, так это в наличии собственных ощущений и мыслей. Как наш друг Декарт.

Тем не менее на тонкие вопросы ощущений наука до начала XX века не обращала внимания, беззаботно отмахиваясь от них. К чему вся эта бессмысленная схоластика и пустое философствование, если вот он, реальный мир вокруг нас?! Упадешь – набьешь шишку, так тебе и надо! Уравнения Ньютона прекрасно работают, угол падения равен углу отражения, Земля притягивает, чего еще желать?

И только в XX веке физики начали «чесать репу», а президент Лондонского общества физиков Артур Эддингтон после всех триумфальных успехов квантовой науки начала прошлого века признал, что единственное, что мы действительно знаем об окружающей реальности, состоит в том, что часть ее обладает сознанием; да и то знаем это лишь потому, что непосредственно осознаем свое сознание.

Но что это вообще за вопрос такой дурацкий – «существует ли реальность»? Да вот она – вокруг нас, шишки набивает! И что такое реальность, каждому школьнику прекрасно известно. Материя! Отсюда и материализм. Вон дедушка Ленин учил пионеров, что «материя есть объективная реальность, данная нам в ощущении»[1]. Я лично это со школьной скамьи помню, ночью подними…

Но обратите внимание, что ведь и в этом классическом и вполне материалистическом определении вдруг неожиданно вылезают ощущения. И, чтобы избавиться от этого «идеализма», материалистическая философия расставила приоритеты: материя первична, а сознание – продукт сложно организованной материи, и оно вторично, оно возникло в результате эволюции. Нормально. Правда, догмат о вторичности – чисто религиозный и ниоткуда не вытекающий, но он настолько вошел в плоть и кровь современной науки и западной цивилизации, что нами даже не замечается. А ведь это – чистой воды аксиоматика, то есть недоказуемое предположение, принимаемое на веру, как и само существование мира за пределами нашего сознания.

Но, в общем, это работает. Точнее, работало до поры до времени…

Как я уже сказал, до начала XX века физика изучала мир в отрыве от сознания. То есть в изучаемом наукой мире сознания как бы не было, оно было словно «вне мира» и как раз занималось постижением мира. При этом оставалось неясным, является ли сознание частью мира, а значит, вносит ли помеху в его изучение. Примерно, как электрическое сопротивление амперметра, вносящее собой помеху в измерение электрического тока (амперметр ведь не меряет силу тока в изучаемой цепи, он меряет силу тока в цепи с амперметром). С одной стороны, разумеется, сознание – это часть мира, а как иначе! С другой, философия говорила: есть материальный мир, а есть мир идеальный – это мир наших мыслей, и он совершенно нематериален.

Я до сих пор помню ту страницу из учебника марксистской философии, где говорилось про критику разных оппортунистических философий. Там премудрые марксисты, сами будучи материалистами, критиковали в том числе так называемых вульгарных материалистов, которые уверяли, будто «мысль материальна». Кстати, эту наиглупейшую фразу, которую я взял в кавычки, до сих пор часто приходится слышать от экзальтированных и особо духовных барышень, склонных к эзотерике. Они являются любителями восточных практик, верят в бога и при этом самым парадоксальным образом повторяют чушь самых примитивных материалистов про материальность мысли!..

Идею о том, что мысль материальна, отважные марксистско-ленинские философы разбивали простейшим аргументом:

– Мысль, хоть и продукт человеческого тела, не материальна, ведь ее нельзя собрать в пробирку, как желчь, также выделяемую телом.

Логично, что ж…

Получалось следующее: есть мир материи и есть наш внутренний мир мыслей и ощущений. «Однако, материя первична, не забывайте!» – строго поднимали вверх палец марксисты. А тех, кто про это забывал, сбрасывали с колоколен.

Физики такого не допускали! Они своих оппонентов с высоты не кидали, но, правда, и философией в массе своей не сильно увлекались за некоторым небольшим исключением, о котором мы еще поговорим. А остальным вполне хватало математики.

Но в XX веке на арену вышла квантовая механика и за ручку вывела на сцену общественного внимания те самые коварные вопросы, которые раньше скромно стояли за занавесом. И главными из них оказались вопросы реальности и сознания. Наконец-то физика, изучающая мир, вплотную столкнулась с сознанием, ранее не замечаемым, хотя и бывшем у всех на виду, ведь именно оно, сознание, и изучало мир, вмещая его в себя. Но при этом притворялось, что его как бы нет и мир нужно изучать «объективно», без учета субъективности, присущей сознанию. И вот теперь сознание само стало фактором, в который физика уперлась.

Это было своего рода мировоззренческой катастрофой. Недаром тьма-тьмущая великих физиков XX века, столкнувшись с проблемой интерпретации квантовой механики, то есть желая понять ее физический смысл, ударилась в мистицизм и изучение восточной философии. И какие это были физики! Столпы науки! Настоящие титаны, творившие науку о квантах: Бор, Гейзенберг, Планк, Паули, Йордан, Дирак, Борн, Эверетт, Шрёдингер и даже Эйнштейн – все они морщили лбы, пытаясь понять, что же они такое сотворили и насколько изменился в глазах ученых сам вопрос о существовании физической реальности.

Вот, например, что пишут российские публикаторы, представляя нашему читателю одну из философских работ Шрёдингера: «Существенно то, что все создатели квантовой механики, в том числе и Э. Шрёдингер, наряду с естественнонаучными исследованиями, вынуждены были размышлять над философскими проблемами, поставленными новой физикой… естественнонаучная проблематика привела их к переосмыслению фундаментальных философских понятий, таких, как «реальность», «мир», «действительность», «сознание», «познающий субъект», «нравственный закон» и др.»[2].

На этом, пожалуй, можно было бы и закончить пролог, но, поскольку в нем я припомнил свои школьные годы и дедушку Ленина, с него я, пожалуй, и начну первую часть книги. Воздадим должное старику, его гопническим повадкам в философии и его неистовой материалистической нетерпимости. В конце концов, я родился и вырос в те годы, когда любой диплом и любую диссертацию нужно было начинать с цитат из основоположников, будь они неладны, с отсылок к очередному съезду партии, работам Ленина и прочей мерзости.

Тряхну стариной! Главное, чтобы старина не отвалилась…

Часть 1. Ледокол реальности

Будто бы на ниточке, навитой на гвозде,

Ползает планета по небесной борозде

В сумрачном безмолвии,

в холодной беспредельной пустоте.

А. Иващенко, Г. Васильев

Глава 1
Ленин и квантовая механика

Интересно, что открытие радиоактивности и электрона, рождение квантовой механики и теории относительности пришлись на эпоху становления Ильича нашего, Ульянова-Ленина. Вот тут бы мне и привести какую-нибудь цитату Ленина о квантовой механике, но в голову приходит только его изречение про электрон, который, с точки зрения всезнающего дедушки, «также неисчерпаем, как и атом».[3]

Критикуя всякие буржуазные и потому весьма реакционные и вредные для пролетариата теории (у рабочего человека от них может голова сломаться), неистовый Ильич на голубом глазу полагал, будто существует объективная истина, и один только этот догмат безошибочно относит весь марксизм-ленинизм к религии и выносит за рамки науки. Наука ведь не ищет истину, она строит модели – такова философия современной научной мысли. И, кстати, это понимание сложилось только после появления эйнштейновской относительности и оформления квантовой механики, а до того физики вообще и Эйнштейн, в частности, искали именно Истину и веровали в нее. Эйнштейн так до конца и не согласился с завершенностью квантовой механики и эфемерностью физической реальности и упорно продолжал искать твердую Истину, забыв, что все относительно.

Впрочем, в философию мы особо углубляться не станем, и вождя мирового пролетариата я упомянул здесь только вот по какой причине…

Поскольку речь у нас в книге пойдет о сознании, я бы хотел обратить внимание почтенной публики на следующий интересный момент: мало кто знает, но в физике мысленные эксперименты порой могут играть роль не меньшую, а иногда и большую, чем эксперименты лабораторные, осуществленные в железе. Мы с этим парадоксом на примере великих мысленных экспериментов (в том числе придуманных автором этой книги) еще столкнемся не раз в дальнейшем, а пока расскажу об одном великом мысленном эксперименте физика Эрнста Маха. Того самого Маха, именем которого названа безразмерная величина скорости в гидродинамике и газодинамике (т. н. «число Маха»). Того самого Маха, философия которого настолько возмутила Ленина, что подвигла написать работу, которую в мое время изучали в школе на уроках обществоведения. Ее давали школьникам, поскольку сия работа считалась знаковой в коммунистической философии, и называлась она «Материализм и эмпириокритицизм. Критические заметки об одной реакционной философии».

Эмпириокритицизм – это второе название махизма. Соответственно, в своей работе дедушка Ленин бесстрашно бичевал Маха и его философию. Мах был известным физиком и членом Венской императорской академии наук. Ленин был неудавшимся юристом, физикой никогда не занимался, но решил старого физика поучить. И зря. Потому что Мах был совсем не прост! Именно идеи Маха побудили Эйнштейна создать две свои теории относительности – специальную и общую, о чем мало кто знает. Причем, создавая общую теорию относительности, Эйнштейн даже написал Маху письмо о том, что его, Маха, принципы непременно восторжествуют в новой теории Эйнштейна. Потому что именно Мах впервые отказался от ньютоновского пространственного абсолютизма и принял принцип релятивизма (относительности).

За что же невзлюбил Ленин Маха? Ведь Мах был вполне себе рационалистом и позитивистом, то есть считал, что знание должно быть эмпирическим, а мир надо изучать экспериментально, да физик и не мог не быть позитивистом! Правда, он говорил и о важности мысленного эксперимента. А вообще взгляды Маха, так взбесившие Ленина и весь мировой пролетариат, были реакцией великого физика на кризис в физике, постепенно сложившийся к концу XIX века.

Однако нефизик Ленин специально в 1908 году приехал в Лондон, чтобы расправиться с Махом путем написания своего философского труда. И наскоро расправился, используя такие сильные аргументы и выражения, как «безмозглая философия Маха», «нелепая и реакционная теория», «учено-философская тарабарщина», «профессорская галиматья», «претенциозный вздор» и т. п. Резкий был мужик!

Лезть в ленинскую философскую скучищу, слегка разбавленную ругательствами, мы не будем, поскольку книжка наша посвящена не столько философии, сколько физике и вообще мы приличные люди. Поэтому, наступив на Ленина, поговорим далее про Маха и его мысленный опыт, мощно качнувший физику того времени и давший Эйнштейну путеводный пинок к научному бессмертию, а Ленину в итоге – повод для пролетарской ярости.

Разговор придется начать с ведра. И с Ньютона. И с абсолютной безысходности бытия, от которой ломит зубы…


Мне, честно говоря, удивительно, что примерно с восемнадцатого века параллельно бурному развитию науки по Европе семимильными шагами начал распространяться атеизм. Понятно, что развитым интеллектуалам той поры библейские сказки и малограмотные проповедники уже казались смешными, поэтому французские философы-просветители начали религию всячески высмеивать. Но ведь строго говоря, физика XVII–XIX веков не оставляла атеистам никакой надежды! Мы, люди современности, привыкли, что наука противостоит религии и всячески ее разоблачает. Но, если вдуматься, ведь нет ничего страшнее и религиознее ньютоновской физики! Она ведь фатальна. Точнее, фаталистична.

Ньютоновская физика совершенно кошмарна и абсолютно безальтернативна, если вдуматься. Она не только не оставляет человеку свободной воли, но и самым парадоксальным образом научно доказывает существование бога, с одной стороны, а с другой – противоречит основным догматам христианства, которое постулирует свободу воли. Мол, бог дал человеку свободу самим решать, например, куда пойти: налево или направо.

Ньютоновская механика, которую все мы проходили в школе как базу, как первую ступеньку в доме физики, изучала мир твердых тел и их столкновений. Вспомните школьные уроки: шарики на деревянных желобах, параболические траектории на страницах учебника, три закона Ньютона плюс его же закон всемирного тяготения. Скорости, импульсы, моменты количества движения. То, что сейчас проходят дети, когда-то постигали мудрые дяди в париках. И когда прекрасное здание ньютоновской механики было выстроено и проверено практикой, оказалось, что мир – это часы, точнее, огромный часовой механизм с неизменными «шестеренками», который подчиняется железным законам механики. И если бы мы знали координаты и импульсы (скорость и массу) всех частиц во вселенной, то могли бы с любой точностью предсказать будущее на сколь угодно большой срок, будь у нас соответствующие вычислительные мощности. И восстановить прошлое тоже могли бы, запустив уравнения в обратную сторону.

То есть мир трагически фатален.

Впервые я столкнулся со словом «фаталист» на уроке литературы. Так называлась глава в романе Лермонтова «Герой нашего времени», которую мы проходили. Я тогда не знал значения этого слова, а когда узнал, по-детски тяжело задумался. Ведь слово «фаталист» обозначало странного человека, который верит в то, что все в мире предопределено и ничего изменить нельзя. С ньютоновской механикой у меня это тогда никак в голове не пересекалось. Мне чудилась какая-то невидимая книга, в которой неизвестно чья невидимая рука записала невидимыми чернилами невидимый мировой текст, от которого никакие события никоим образом не могли отклониться. Что написано, то и сбудется. Аминь.

А почему? Ведь люди говорят о какой-то свободной воле! Она тоже прописана в невидимых анналах? Тогда какая же это свобода?

Однако именно такая картина вытекала из физики XIX века, которую студенты учили в эпоху Лермонтова, наверняка не отдавая себе отчета в том, что из нее прямо вытекает тотальная детерминированность мира, состоящего из частиц, поскольку все частицы подчиняются законам механики. А раз так, мир фатален! Так говорит наука!

Но при этом возникало два вопроса.

Первый. Ну, если мы, допустим, пусть и теоретически, но можем просчитать и предсказать как будущее, так и прошлое, получается, что предопределен был и этот расчет? А если он покажет какие-то нехорошие события в скором будущем, то почему мы не можем их предотвратить? Например, получив расчетное предсказание, просто взять и не пойти в ту сторону, где на голову упадет кирпич? Или мы непременно туда попремся?.. И дело тут не в том, что нам неоткуда узнать координаты и импульсы всех частиц мироздания и нет мощностей для такого просчета, тут дело в самом принципе: если можно просчитать и узнать, почему нельзя изменить? Что помешает-то повернуть влево, а не вправо? Мы же не бессознательные автоматы, и, если нам скажут: пойдешь направо – умрешь, почему бы, осознав это, не свернуть налево? Получается, что в ньютоновском мире не может быть сознания, а только чистый автоматизм?

Вопрос второй. Мы видим усложнение в мире. В нем существуют немыслимо сложные системы типа организмов. В нем строятся дома там, где раньше их не было. Вон паровоз еще изобрели. Получается, что это все тоже следствие простых механических столкновений частиц, из которых состоим мы и все вокруг? Но это значит, что есть какая-то заранее заданная программа, то есть кто-то таким образом толкнул в изначальный момент все частицы вселенной, чтобы в результате всех последующих соударений их друг с другом получались все более сложные системы. И кто же этот Великий Программист?

Недаром Ньютон верил в бога.

А что есть бог? Бог есть Абсолют. Нечто вечное и неизменное. И то, что исходит от Абсолюта, имеет абсолютные характеристики. Значит, есть абсолютная (истинная) правда, абсолютное Зло и абсолютное Добро с больших букв, абсолютные точки отсчета и пр. И естественно, эта абсолютистская точка зрения привела Ньютона к появлению Абсолюта и в его научной парадигме.

Что же явилось таким Абсолютом в ньютоновской физике? Масса? Скорость? Направление? Все это могло меняться, а тела – перемещаться друг относительно друга. И про относительность скорости науке было известно еще со времен Галилея. Именно Галилей открыл, что в инерциальных системах отсчета никаким образом нельзя определить, находясь внутри системы, движется она или нет. Инерциальная, напомню, это такая система, которая покоится или движется равномерно и прямолинейно. Получается, что движение неотличимо от неподвижности, поскольку движение относительно, а не абсолютно. Если вы утверждаете, что движетесь, вам всегда нужно указать, относительно чего. То же самое, если вы скажете, что покоитесь, вам всегда нужно уточнять, относительно чего. И при движении всегда можно найти такую систему отсчета, относительно которой вы не движетесь, потому равномерное и прямолинейное движение и неотличимо от покоя. Все окей!

А криволинейное? А неравномерное?

Вот на этом-то Ньютон и выскочил из галилеевской относительности! Да, действительно, если человек сидит в закрытой вагонетке, он никакими экспериментами не сможет узнать, движется ли он равномерно и прямолинейно по рельсам или вагонетка стоит на месте. Никакими! А вот для того, чтобы узнать про ускоренное или криволинейное движение, ему даже экспериментов проводить не надо, он узнает об этом просто по своим внутренним ощущениям. Тело само подскажет: если вагонетка будет ускоряться, человека вдавит в кресло; если она затормозит, тело бросит вперед; а если начнет поворачивать или двигаться по окружности, его накренит и прижмет к поручням кресла.

Разве не странно? Ведь движение относительно, и, приняв за систему отсчета (систему координат) саму движущуюся вагонетку, мы с полным правом заявим, что она покоится. В теории! А на практике тело сразу скажет вам, что ни черта подобного, ишь как кидает и в кресло вжимает, не иначе мы на американских горках носимся!

Но почему? Куда вдруг делась относительность движения? Отчего движение с набором скорости или по кривой отличается от движения без изменения скорости и по прямой? Что делает ускоренное движение «абсолютным»?

Ньютон сел под яблоней и, не обращая более никакого внимания на хлопающие по макушке яблоки, поскольку всемирный закон тяготения был уже открыт, зажмурил глаза и представил себе ведро на веревке. И мы сейчас сделаем то же самое, немного напрягшись.

Итак, ведро. С водой. На веревке. Если ведро попридержать, а веревку закрутить вдоль оси, как резинку, приводящую в движение пропеллер фанерного самолетика, а потом отпустить, веревка начнет раскручивать ведро.

Сначала будет раскручиваться только само ведро, а уровень воды в нем будет горизонтальным. Потом стенки ведра постепенно приведут во вращение весь массив воды, и вскоре вода будет вращаться как единое целое с ведром, а ее угловая скорость сравняется со скоростью стенок ведра. При этом поверхность воды примет вогнутую форму. Вы примерно такую наблюдали, когда ложечкой сахар в чае размешивали, только здесь не ложка раскручивает воду, а стенки сосуда.

Ну, а затем произойдет понятный обратный процесс – веревка закрутится в другую сторону до предела, в какой-то момент ведро замрет на мгновение и начнет крутиться в другую сторону. Вода же по инерции будет еще некоторое время крутиться в прежнем направлении, сохраняя воронку на поверхности. Постепенно стенки ведра затормозят воду, по мере этого торможения поверхность воды будет терять свою вогнутость, в какой-то момент массив воды остановится, поверхность примет ровную горизонтальную форму, а затем, увлекаемая стенками, вода начнет крутиться в другом направлении вслед за ведром, а поверхность станет все больше выгибаться.

– Что все это значит? – задумался Ньютон. – Выгибание поверхности воды центробежными силами однозначно показывает нам: вода крутится. Но относительно чего она движется при этом? Относительно ведра? Нет! Когда скорости воды и ведра сравниваются, вода относительно ведра не движется, но имеет вогнутую форму. А вот когда скорости стенок ведра и воды максимально разнятся и вода движется относительно ведра, ее поверхность как раз гладкая и горизонтальная.

Значит, не в ведре дело. Не его нужно брать в качестве системы отсчета. Значит, истинное кручение воды, о котором однозначно свидетельствует образовавшаяся на поверхности воды воронка, происходит относительно чего-то другого. Чего? Что является той абсолютной системой координат, движение относительно которой выгибает воду в ведре?

Ньютон вздохнул, снял парик, почесал побитую яблоками макушку и решил, что та абсолютная и невидимая глазу координатная сетка, относительно которой крутится ведро и которая заставляет воду выгибаться, это пустое пространство.

– Пустое пространство есть абсолютная система невидимых божественных координат! – сказал Исаак наш Ньютон, как отрезал. – Это сцена, на которой материя разыгрывает свой спектакль!

Сильно. Но непонятно.

Что такое пустое пространство? Это же ничего! И как ничего может выгибать воду? Чем? Как пустое пространство воздействует на реальный материальный объект?

К тому же оставался неясным еще один вопрос: если пространство действительно существует как самостоятельная объективная сущность, почему оно воздействует силовым способом только на тела, изменяющие скорость, а на равномерно движущиеся не воздействует? Почему, если абсолютная неподвижная сетка координат, именуемая пространством, действительно существует в реальности, по ней нельзя засечь равномерное движение? Почему только ускоренное? Тут, уж извините, или трусы наденьте, или крестик снимите; или сетка есть, и мы относительно нее меряем скорость, или здесь какая-то натяжечка у вас произошла, дорогой Исаак!

– А может ли вообще существовать пространство без материи? Имеет ли оно вообще какой-то физический смысл отдельно от материи, как самостоятельная сущность? – задумался Мах. Не является ли пространство без материи такой же нелепостью, как алфавит без букв, шахматы без фигур или лед без воды?

И дальше Мах провел свой знаменитый мысленный эксперимент, который смелостью мысли потряс физиков той эпохи, заставив их разделиться на два лагеря.[4]

Представим себе, предположил Мах, что мы имеем некое тело – то же ведро с водой, например, висящее в безбрежном космосе, где вокруг только далекие звезды. И оно начинает вращаться. Как определить, относительно чего оно вращается? Да очень просто – относительно звезд! Если это тело не ведро, а человек, то он увидит, как вокруг него закружилась звездная сфера. И неважно, сколько там звезд – много или мало, да хоть бы всего одна, все равно мы увидим свое вращение.

А если звезд нет?

Если наша воображаемая вселенная абсолютно пуста? Как тогда засечь вращение? Как определить, вращается наше тело или нет, если вокруг ничего, никаких зацепок? В этом случае утверждение про вращение просто не будет иметь смысла! В этом случае вращение просто неотличимо от невращения. И значит, вода в нашем ведре выгибаться не будет (оно же не вращается, по сути), а если это наше тело в скафандре, наши раскинутые руки не будет растаскивать центробежная сила в разные стороны.

А это значит, по мнению Маха, что центробежная сила образуется не пустым пространством, относительно которого мы вращаемся, а всей материей вселенной, всеми теми миллиардами звезд вселенной, которые гравитируют и относительно которых вращается наша масса.

Это была богатая идея! Мах отказался от ненаблюдаемой и неощущаемой координатной сетки пространства, связав пространство с материей в один неразрывный комплекс. Он убрал недвижный мифический Абсолют и заменил его относительностью вселенской материи, заявив: «А если бы во вселенной была всего одна звезда, вода в нашем ведре выгнулась бы совсем-совсем-совсем чуть-чуть, ничтожно мало!»

– Елки-палки! – от неожиданности крякнули тогда физики всего мира и Ленин. И крепко задумались. Идея всем понравилась (кроме Ленина). Она очень понравилась и Эйнштейну.

– Что-то в этом есть, – подумал тогда молодой и смелый работник патентного бюро в Берне. Результат его раздумий нам всем теперь известен и многократно подтвержден экспериментально: две теории относительности как с куста! А началось все с антиленинских идей Маха (что конкретно не понравилось Ленину во взглядах австрийского физика, мы увидим далее).

В дальнейшем уже сам Эйнштейн предложил несколько удивительных мысленных экспериментов, которые сломали физикам головы, причем, один их них был через много лет экспериментально проверен, что самому Эйнштейну представлялось невозможным.

И если Мах связал пространство с материей, то Эйнштейн позже эту связь углубил и показал, как именно они связаны (через искривление пространства массой), а также связал пространство со временем в один пространственно-временной континуум, вслед за Махом раскачав ломом относительности божественный абсолютизм Ньютона. Но это оказались только цветочки. Квантовые ягодки были впереди! Именно квантовая механика демонтировала фатализм ньютоновской механики и отодвинула в сторону бога, определив, что запросто можно обойтись и без него, а заодно поставила вопрос о самом существовании физической реальности.

Глава 2
Сплошное волнение

Вы хорошо представили себе этот мир ньютоновской механики, похожий на неумолимые часы с шестеренками? До боли представили? До ужаса? Мир, в котором ничего нельзя изменить, в котором все происходит с механической предопределенностью, а из причины следует однозначное неизменяемое следствие…

Откуда бы взялся этот мир, столь законченный, завершенный и совершенный, как заведенный брегет с крышкой, забытый на каминной полке? И зачем в таком мире сознание, если и так произойдет все, что должно произойти – с убийственной неизбежностью механической шестерни? В таком мире сознание просто бы не возникло за ненадобностью. Впрочем, о сознании мы еще поговорим…

Все, что окружало Ньютона и физиков его эпохи, – это твердые тела, а также жидкости и газ, также состоящие из атомов, то есть опять-таки твердых неделимых частичек, подчиняющихся законам механики. Две только вещи были непонятными в этом механическом мире: притягивание бумажек натертым о шерсть янтарем и свет.

Свет – это вообще что такое?

Вопрос, конечно, интересный для XVII века. Ньютон считал, что свет – это корпускулы, то есть крохотные частички, испускаемые источником света. Если весь мир состоит из частичек, то почему бы и свету ими не быть? Отражение света от зеркала (угол падения равен углу отражения) – это упругий отскок частичек. Причем частички эти разного размера, полагал Ньютон. Те, что побольше, воспринимаются нами как красный цвет (свет); те, что поменьше – иных цветов радуги. Самые маленькие – голубой и фиолетовый. А смесь разнокалиберных частичек в равной пропорции дает белый цвет (свет). Гениально! И практически в точку даже по размерам.

Но была и другая точка зрения на такое загадочное и вместе с тем обыденное явление, как свет. Некоторые физики небезосновательно думали, что свет – это волна. Эту точку зрения разделял Гюйгенс.

Мысль смелая, поскольку весь механистический ньютоновский мир состоит из частичек, и в нем наблюдается такое явление, как волны, состоящие из коллективного согласованного движения частичек среды, то почему бы свету не быть такими волнами, а? Волны на море – лучший пример согласованного движения частичек среды. Звуковые волны – тоже неплохой. Разница между ними только в том, что морские волны – поперечные, а звуковые – продольные, но это непринципиальное отличие. Главное, что математическая теория волновых колебаний у физиков была. Физики – народ ушлый, они изучали и отдельные физические тела, упруго сталкивающиеся, и их коллективное поведение, которое удобнее было описывать волновыми уравнениями.

Но вопрос тем не менее оставался: все-таки свет – это поток отдельных частиц, летящих прямо, как горошины, или это волновые колебания некоей упругой среды, состоящей из частиц, наподобие звуковых волн в воздухе? И что это за среда?.. А среда, полагал Гюйгенс, это некий все собой заполняющий мировой эфир, который подозрительно напоминал ньютоновское пространство, только был не пустым местом.[5] Может, этот гипотетический мировой эфир и есть та самая абсолютная система координат?

Пока в среде физиков шли эти терки, мимо прокрался Томас Юнг и в 1801 году, в наполеоновскую эпоху, с помощью простейших опытов доказал:

– Ребята! Свет – это волны. Теперь, что хотите, то и делайте! – И сатанински расхохотался.

Пусть читатель извинит меня за мою прямоту, но я рассказываю все, как было. Пусть также искушенный читатель извинит меня за дальнейшие всем известные еще со школьной скамьи подробности, которые излагаются во многих научно-популярных книгах по физике и даже мною в разных книгах были изложены неоднократно. Я имею в виду описания легендарных двухщелевых экспериментов, которые мне снова придется описать и в этой книге тоже. Я же не могу отсылать читателя к другим источникам прямо в середине интересного рассказа. Наверняка есть люди, для которых это внове, ибо они плохо учились в школе, поэтому здесь я еще раз изложу ситуацию с самых азов – так, чтобы поняли даже девочки и двоечники. Мне это удастся легко! Потому что автор обладает редким талантом излагать сложные вещи простым языком. Так что следите за мыслью!..

Двухщелевые эксперименты стали самыми известными экспериментами в физике. Именно они перевернули мир…


Волны, как и любая физическая реальность, имеют свойства, присущие только им… Вообще, давайте разберемся, в чем принципиальное отличие волн от других физических штук типа табуретки или Луны. Луна и табуретка – это физические тела, то есть объекты. Если их швырнуть, они полетят по какой-то траектории. Луну даже швырять не надо, она и так летает вокруг Земли по эллипсовидной орбите.

А волна – это не объект. Волна – это процесс. Процесс согласованного движения мириадов частиц среды, в результате которого по среде бегут те самые волны сгущений или разряжений (в случае продольных волн) или пиков и впадин (в случае волн поперечных).

И процесс распространения волны имеет свои свойства. Волны обладают свойствами рефракции, дифракции и интерференции. То есть они могут огибать препятствия и складываться друг с другом. Там, где складываются горбушки волн, получается волна удвоенной амплитуды (высоты), а если горб встречается с впадинкой – они компенсируют друг друга. И волна гаснет. Ну, и еще, как всякому известно, волны характеризуются частотой (число колебаний в единицу времени) и длиной волны (расстояние между соседними горбами).

Понятно, что у объектов всего этого нет: ни частоты, ни длины волны, ни интерференции – две табуретки не начнут складываться, чтобы при встрече друг с другом образовать табуретку вдвое большего размера.

Хитрый, как сто чертей, Томас Юнг пропустил луч света через две расположенные рядом прорези в светонепроницаемой шторке, и на экране за шторкой образовалась чудесная интерференционная картина.


Если бы свет был частицами, картина на экране была такой.

Рис. 3


А она – вот такая. Волны интерферируют, образуя интерференционную картинку.

Рис. 4


Все! Баста! Разговор окончен! Таким вот простым способом была неопровержимо доказана волновая природа света. Расходимся…

Позже выяснилось, что свет – это электромагнитная волна. И теперь в каждом школьном классе висит чудесная цветная шкала электромагнитных колебаний, начиная от радиоволн и заканчивая жестким гамма-излучением. И примерно в середине этой шкалы есть маленький участок оптического диапазона. Тот самый свет.

Опыт Юнга был поставлен в 1801 году, и весь долгий девятнадцатый век наука знала: свет – это волны. Наверное, колебания некоего светоносного эфира, который мы раньше считали пустотой. Максвелл разработал теорию электромагнетизма, расписав формулы, которые нынче учат в школах и институтах. И все было прекрасно и удивительно в науке физике, которая, базируясь на ньютоновской механике, включала в себя также электродинамику и термодинамику (науку о распространении тепла).

Все было просто превосходно – до тех пор пока не случилась та самая катастрофа.

Вы, скорее всего, даже вспомните ее название из школьного курса. Поскольку то, что случилось, воспринималось именно как крах, физики отразили свои переживания в самом названии проблемы – «ультрафиолетовая катастрофа». Под зданием физики рванула настоящая бомба!

Поначалу не все физики поняли масштабы бедствия. Ньютонианская картина мира, дополненная теорией электромагнетизма Максвелла и термодинамикой Больцмана энд К0, была столь прекрасна, величественна и непротиворечива, что в храме физики к началу XX века заиграла органная музыка и воцарилось чинное благолепие. Что подчеркивается следующим историческим диалогом, который приводят многие авторы научно-популярных книг по физике (и я не исключение, потому вновь прошу прощения у тех, кто знает, о чем пойдет речь).

Диалог этот состоялся в 1874 году в стенах Мюнхенского университета между молодым человеком, выбиравшим свою жизненную стезю, и профессором физики Филиппом Жоли. Юноша колебался, какой путь выбрать – стать физиком или музыкантом. Он писал музыкальные пьесы, отлично играл на рояле и имел хороший голос. Но физика его интересовала тоже, и в математике парень разбирался отлично. Старенький профессор окинул взглядом студента и сказал:

– Молодой человек! Физика как наука кончилась: она практически завершена. Осталось сделать пару мелких уточнений, на которые вам, наверное, не стоит тратить жизнь.

– Да я в мировые звезды и не рвусь. – Ответил юноша. – Меня устраивают мелочи. Сделаю пару уточнений!

Звали этого молодого человека Макс Планк. В 1947 году «Нью-Йорк Таймс» назвала его одним из самых величайших гигантов мысли в истории цивилизации наряду с Эйнштейном и Архимедом. На надгробии этого человека вместо дат рождения и смерти выбито число, которое в физике называется «постоянная Планка». Это главная константа квантового мира…

Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла…

Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.

А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы – это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был – физика! Планк стоял в самом ее передовом ряду и не было никого первее.

Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?

Дырочек было две. Первая – несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка – та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.

Что такое абсолютно черное тело?

Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике – абсолютно черное тело (АЧТ). По определению, АЧТ – это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ – это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!

Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.


Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.

Рис. 5


Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.

Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!

Это было крайне неприятно – увидеть такое в расчетах!


Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, – результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии – результат эксперимента.

Рис. 6


Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно – квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».

Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.

Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.

В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! – в кванты не верил.

Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание – сама природа заставила.

В двух словах напомню историю с фотоэффектом. Дело было так.

В XIX веке открыли явление фотоэффекта – при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено – вы видели ее на уроках физики.


Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.

Рис. 7


Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет – это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему-то с его частотой. И при достижении какой-то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.

Почему?

Эйнштейн, занявшийся этой проблемой, закрыл вопрос со свойственной ему гениальностью. Он, взяв на вооружение идею Планка о том, что излучение и поглощение энергии происходит порциями, квантами энергии, заявил:

– Ребят! Свет – не волна! То, как он себя ведет при выбивании электронов, говорит о том, что так вести себя могут только частицы. И чем они энергичнее, тем больше энергия выбитого электрона. А энергия световых частиц зависит от их частоты. То есть влияет не количество частиц (интенсивность света), а их качество (частота). Слабенькими частицами хоть уполивайся, у них недостаточно энергии для того, чтобы вырвать электрон из металла. А вот даже одной энергичной частицы достаточно, чтобы вырвать один электрон, то есть реденького потока энергичных частиц света вполне хватит для начала фотоэффекта. Бинго, друзья!

Частицы эти позже назвали фотонами.

И во всем этом была двойная странность. Во-первых, о каких частицах речь, если свет – это волна, что доказано опытным путем!? Во-вторых, если Эйнштейн говорит о частицах, то, черт возьми, какая у частиц может быть частота? Ведь частица – это объект, а не процесс!

Молекула воды – объект. А волны на море – синхронизированный процесс колебания молекул воды – вверх-вниз, вверх-вниз…

Пружина – объект. Колебания пружины – процесс…

По-моему, тут все ясно. Есть же разница между ногами и ходьбой, верно? Ну, какая может быть частота (длина волны) у табуретки?

Однако Эйнштейн был прав, что и подтвердили бесконечные опыты с фотоэффектом. Десять лет некто Роберт Милликен проводил опыты с фотоэффектом, пуляя кванты света на катод. И он был такой не один. После чего физический мир согласился с правотой Эйнштейна. А Милликен, который на основании этих опытов вычислил постоянную Планка и написал: «Я потратил десять лет своей жизни на проверку этого эйнштейновского уравнения 1905 г. и, вопреки всем своим ожиданиям, был вынужден в 1915 г. безоговорочно признать, что его уравнение экспериментально подтверждено, несмотря на всю его несуразность. Ведь это противоречит всему, что мы знаем…»[6]

Таким образом квантовая природа света была доказана: свет – это частицы. Что было доказано с той же неопровержимостью, с которой ранее в опытах с интерференцией было доказано, что свет – это волна.

Свет оказался и волной, и частицей. И объектом, и процессом одновременно.

И тогда физики махнули рукой и решили: а пускай! Пусть будет противоречие. Назовем это корпускулярно-волновым дуализмом. Как только непонятную вещь как-нибудь называешь, она сразу как бы становится понятнее… И будем отныне говорить так: свет – это материальный объект, который можно описать и как частицу, и как волну в зависимости от способа описания и приборного парка. Хотите описать свет как волну – устраивайте эксперименты по дифракции и интерференции. А если хотите описать свет как частицы – фотоэффект вам в руки! Применение двух взаимоисключающих моделей для описания одного природного явления назвали принципом дополнительности.

Но на этом история не закончилась. Вслед за Эйнштейном на сцену выскочил Луи де Бройль со своим номером. Ему пришло в голову удивить публику следующим трюком:

– Так! Идея следующая. Там, в этом микромире, где все такое маленькое и непонятное, световые волны оказались частицами. Так может быть, и частицы тоже обладают свойствами волн, а? Как тебе такое, Макс Планк?

Тоже ведь гениальная идея, согласитесь. Если фотоны обладают свойствами волн и частиц одновременно, почему бы и частицам, электронам, например, не иметь частоты и длины волны?

Позже был проведен аналог двухщелевого эксперимента с пучком электронов. И они исправно нарисовали на экране интерференционную картину. В точности как свет. Хотя всем в ту пору было известно, что электроны – это маленькие отрицательно заряженные шарики, которые кружатся вокруг положительного заряженного ядра атома.

– А вдруг, – пришла в чью-то голову свежая идея, – поток электрончиков, пролетающих в эти щели, синхронно колеблется? Вдруг согласованное движение электронов образует волны в электронном потоке? Ну, так же как образуется звуковая волна в воздухе? И в результате мы видим интерференционную картину? Ась?

Хм. Как это проверить? Да очень просто! Надо запускать в установку электроны по одному. И если после тысяч простреленных через две щели электронов на экране постепенно образуются две засвеченные полосы напротив щелей, тогда электроны – однозначно частицы! А если постепенно, отдельными точечками, нашлепается на экране та же интерференционная картина, значит, они – волны! Точнее, в полете ведут себя как волны, а точками (частицами) становятся, уже ударившись в экран.


Так ведут себя волны. Каждая щель является вторичным источником волн, которые складываются-вычитаются с волнами из соседней щели, образуя красивый интерференционный узор.

Рис. 8


Этот эксперимент был проведен. Электроны пуляли по одному. Они пролетали через установку, шлепались в экран, оставляя каждый после себя точечный след, и постепенно-постепенно на экране нарисовалась интерференционная картина.

Вот тут уже надо было крякнуть, сесть на табуретку, перекрутить портянки, достать кисет с махоркой и вдумчиво перекурить. Что вообще произошло?

Это ведь не просто означало, что электроны в свободном полете вели себя как волны! Их же пускали по одному! И после пролета через щелевую часть установки электроны хлопались на экран, уже проинтерферировав сами с собой, то есть волны складывались и вычитались горбушками и впадинками, оставляя на экране светлые и темные полосы. Но чтобы такой интерференционный рисунок получить с водяными или световыми волнами, нужно, чтобы каждая щель была вторичным источником волн, которые в пространстве за щелевым экраном будут между собой складываться и вычитаться (см. картинку).

Вы еще не поняли?

Еще раз: электроны-то запускали через две щели по одному! Это значит, что один электрон пролетал через обе щели сразу, после каждый щели образовывалось два фронта волны, которые и интерферировали между собой.

Бузу трешь! – как сказал бы дед Щукарь из бессмертного романа Шолохова. (Шутка.)

Но все-таки… Как один электрон одновременно мог пролететь через две щели? Как одну табуретку можно одновременно привезти на девятый этаж сразу на двух лифтах?

Естественно, у физиков возникла идея: а если закрыть одну щель, будет образовываться интерференционная картинка? Закрыли. Не образовывалась. Просто на экране напротив открытой щели, куда пролетали электроны, накапливалась жирная полоса засветки.

А если мы поставим детектор за щелью, чтобы подсмотреть, в какую же из них пролетел электрон на самом деле? Так и сделали. После чего «самое дело» изменилось. Реальность изменилась: интерференционная картинка образовываться перестала. Неужели само по себе наблюдение меняло реальность?

Нет, конечно, с облегчением вздохнули физики! Просто для того, чтобы крошку-электрончик пронаблюдать, его надо как-то засечь, например, облучить квантами. Но это уже физическое воздействие! Оно и меняет картину, превращая электрон как волну, в электрон как частицу. И волновая картинка на экране пропадает.

Фу-ух! Пока что от мистики с наблюдателем, влияющим на вселенную одним фактом наблюдения, удалось избавиться. Но ненадолго.

Ведь оставался необъясненным еще один удивительный момент, когда детектор, установленный только возле одной из щелей, НЕ регистрировал пролетевший в эту щель электрон, то есть электрон пролетал в другую щель, интерференционная картинка пропадала тоже! Но ведь электрон в этом случае не обстреливался детектирующими фотонами, поскольку на второй щели, куда он юркнул, детектора не было! Иными словами, сам факт регистрации как-то превращал электрон-волну в электрон-частицу, словно бы электронное облачко знало, что там, за щелевым экраном, его секут, и потому непредсказуемый волк заранее превращался в послушную овечку. Но как он узнал, что его будут детектировать?

На этот хитрый вопрос ответ нашелся быстро: да никак не узнал! Электронное облако ведь пролетает через две щели одновременно! И поскольку на часть этого облака возле одной щели воздействовали детектирующие фотоны, они и схлопывали волновую функцию, превращая волну в частицу, которая с вероятностью 1/2 проявляла себя или пролетом через правую щель (регистрируем пролет) или пролетом через левую щель (не регистрируем пролет на этой щели). Вот и все!

Глава 3
Неопределенность как принцип

Забегая вперед, хочу сказать, что раз уж речь зашла о корпускулярно-волновом дуализме… Мы привыкли, что квантовые явления при всей их парадоксальности и волнующей таинственности, а также полной непредставимости для человеческого сознания, все-таки нас с вами не касаются. Все эти мутные дела происходят где-то там, в микромире, куда пальцем не долезешь. А нам тут бояться нечего! Электроны, фотоны, протоны – это мельчайшие неделимые частицы вещества, а мы, приличные люди, начинаемся где-то на уровне молекул. Как минимум!

Ну, что ж, атомы и молекулы по сравнению с тем же электроном и вправду настоящие гиганты! Самый маленький атом – атом водорода. Я не буду писать, во сколько раз объем атома больше объема электрона, поскольку гигантские цифры не воспринимаются мозгом. Мозгом воспринимается картинка. И я ее сейчас вербально нарисую: если электрон увеличить до размеров макового зерна (ядро атома при этом вырастет до 4 мм), сам атом увеличится до 400 метров в диаметре! Именно таким будет диаметр электронной орбиты. Можете сами теперь подсчитать объем шара диаметром в 400 м и объем макового зерна, после чего поделить первое на второе. Вот во сколько раз атом больше электрона.

И это самый маленький атом. А если взять атом побольше, например углерод, да сложить 60 атомов углерода, чтобы получить молекулу фуллерена, напоминающую футбольный мяч из атомов, то можно представить себе объем этого сооружения, совершенно гигантского в сравнении с точечкой электрона!

Молекулярный мяч – это уже точно самое настоящее вещество. Объект, а не процесс. Вовсе не волна, не правда ли?.. Так вот, опыт, проведенный с фуллеренами, показал: они тоже волны. Если вас это мало удивило, потому что вы – человек крепкий, уточню, что двухщелевой опыт с фуллеренами показал: они дают на экране интерференционную картину, а это значит, что один такой «мяч» пролетает через две щели одновременно!

– Как такое возможно? – Спросите вы.

А я отвечу:

– Возможно и не такое!

В 2019 году в Венском университете был проведен двухщелевой эксперимент с огромной молекулой грамицидина, состоящей из 15 аминокислот. Аминокислоты содержат от 10 до 50 молекул. Если взять в среднем, то получим четыре с лишним сотни атомов.

(Может возникнуть вопрос: если электронами можно управлять с помощью электромагнитного поля, пуляя их из электронной пушки, то как пулять и с помощью чего управлять электронейтральными молекулами? Тут приходится изощряться! Тонким слоем грамицидина был покрыт краешек быстро вращающегося диска из графита. Затем край диска обстреливали сверхкороткими лазерными импульсами, вышибая молекулы грамицидина, которые потом подхватывались струей аргона и разгонялись до скорости в полкилометра в секунду. С этой скоростью молекулы и летели в мишень. Опыт показал, что длина волны грамицидина составляет 350 фемтометров, то есть 350 × 1015 м.)

Но и это еще не все! В том же самом году, в том же университете провели аналогичный опыт с гигантской молекулой, состоявшей из почти 2000 атомов! И она тоже предсказуемо оказалась волной.

И наконец, настоящим культурным шоком для обывателя может стать известие, что сейчас ученые готовятся провести опыт по выявлению волновых свойств у вируса. Вы можете себе такое представить? Вирус – это уже почти живое существо, состоящее из миллионов молекул.

Это к вопросу о том, где заканчивается квантовый мир и начинается нормальный классический мир, к которому мы привыкли и который описывается законами старика Ньютона, старика Больцмана и старика нашего Максвелла. Этих границ нет! Квантовый мир не заканчивается нигде, мы в нем живем.


У читателя может возникнуть и еще один интересный вопрос. Со школьной скамьи нам известно, что электрон – элементарная, то есть неделимая частица. И действительно, еще никто и никогда не видел половинку электрона. Как же он тогда проходит через две щели одновременно, разве он не делится при этом пополам?

Очень просто: он делает это не в виде частицы. А в виде волны. В виде некоего электронного облачка. Представим себе размазанное в пространстве облачко, которое «кисельным образом» проходит через две рядом расположенные щели. После прохождения щелей волновые «части» каждого «полуэлектрона» начинают интерферировать друг с другом, то есть волны «половинок электрона» складываются и образуют на экране интерференционную картину. Но эта картина физически образуется на экране не волнами, а частицами. В экран шлепается классический электрон (или фотон, если опыт проводится с фотонами), оставляя одну точку засветки, а миллионы этих пятнышек от миллионов электронов и представляют собой полосатый интерференционный узор.

Так электрон – это частица или волна?

Наверное, все-таки волна, раз просачивается одновременно в две щели. Шарик так сделать не сможет. Но в какой момент после пролета щелевого экрана электронное волновое облачко превращается в шарик, в точечную частицу? Сразу после пролета через щели? На пути к регистрирующему экрану? Перед самым ударом в экран? В момент удара?

Правильный ответ: в момент удара при воздействии с веществом экрана.

Причем частица по имени электрон «знает», в какие части регистрирующего экрана он попасть не должен, там всегда остаются темные полоски без электронной засветки. «Знание» это формируется именно из-за волновой интерференции: в тех местах экрана, где электронные волны гасят друг друга, всегда будет темное место, там электрон как частица никогда не образуется.

Иными словами, летящий и не взаимодействующий ни с чем электрон представляет собой волну. А ударившись в материальный экран, это размазанное в пространстве электронное облачко, мгновенно стягивается в точку и становится частицей, оставившей точечный след засветки на экране. Процесс этот называется коллапсом волновой функции или редукцией волновой функции. Оба термина означают одно и тоже – схлопывание волновой функции, то есть превращение волны в частицу, или сотворение из Великой Квантовой Потенции некоей Физической Реальности в виде Конкретных Значений и Определенных Свойств. Причем процесс этот происходит мгновенно, иными словами, все самые отдаленные области электронного облачка мгновенно стягиваются в точку, реализуя электрон как привычную нам частицу. Мгновенно – это значит мгновенно, то есть быстрее скорости света. Как такое может быть? Об этом мы еще поговорим. А сейчас зададимся другим вопросом: а насколько велико это самое электронное облачко, которое пугающе мгновенно стягивается в точку? Может, оно такое крохотное, что и разговаривать не о чем? Ведь кванты маленькие!

Нет. Кванты не маленькие.

Смотрите. Мы ведь говорили уже, что квант неделим. Никто никогда не видел половинку фотона. Это правда. Даже пройдя через две щели, квант остается неделимым и единым. Если полупрозрачное зеркало раздвоило фотон «пополам», и одна «половинка» фотона полетела влево, а другая его «половинка» улетела вправо, все равно он остается одним связным целым, даже если его «половинки» разлетелись на разные концы вселенной.

Квант неделим! Попытка пронаблюдать только левую половинку фотона на одном краю вселенной приведет к тому, что вы увидите не половинку, а целый фотон с вероятностью 50 %. И с такой же вероятностью он материализуется на другом краю вселенной.

Поэтому теоретически квант размеров не имеет. Он безграничен. Широкая публика привыкла к тому, что кванты – это крохотные «создания» микромира. Такое представление пошло со времен столетней давности, когда кванты были обнаружены в микромире. Но современная наука говорит, что кванты вполне могут быть размера, сопоставимого с размером всей наблюдаемой астрономами Вселенной, и это экспериментальный факт, а не голое теоретизирование!


Но даже если не углубляться в космологические дебри, а оставаться в рамках школьного курса, то можно вспомнить ту же шкалу электромагнитных колебаний. Ближе к правому ее концу расположены привычные нам световые колебания, то есть фотоны разных цветов (частот), а также ультрафиолетовое, рентгеновское и гамма-излучение. Частота этих колебаний велика, длина волны микроскопична, и потому наш мозг привычно воспринимает кванты этого излучения как маленькие объекты микромира.

Но с другой стороны электромагнитной шкалы располагаются радиоволны миллиметрового, дециметрового, метрового, километрового и более диапазонов. Представьте себе квант поля с длиной волны в километр или в сто тысяч километров! Согласитесь, это уже не объект микромира!

К тому же формулы, описывающие жизнь квантов, говорят нам о том, что вероятность обнаружить электрон в каком-то весьма отдаленном (от ожидаемого) месте вовсе не равна нулю. А это значит, что электронное облачко летящего электрона размазано в пространстве практически всей вселенной. И хотя вероятность обнаружить электрон (как частицу после замера) на другом краю вселенной ничтожна, поскольку эта вероятность быстро падает с расстоянием, но она никогда не обращается в ноль.

И раз уж мы заговорили о вероятностях, надо сказать пару добрых слов и о них. Тем паче что мы начали повествование со старика Ньютона.

Итак, возвращаемся к Исааку Ньютону с его шишками на голове от яблок и с его ужасным фатальным миром, напоминающим механические часы с шестеренками. В этом мире ничего изменить нельзя: все движения всех его частиц жестко и однозначно обусловлены их массами, скоростями и направлениями движения. Представили себе такое мироздание? В подобном мире даже о времени можно говорить как о некоей условности, этот мир словно существует неизменным во все времена, и «проигрывание» такого мира «вперед» и «назад» во времени даст чистый повтор событий. Абсолютная механика. Полная предсказуемость в теории.

XX век разрушил эту жесткую конструкцию напрочь!

Во-первых, великий Гейзенберг вывел гениальную формулу, показавшую, что никаких точных знаний у нас в принципе быть не может: так устроена природа, она сама о себе не все «знает». Эту формулу по-другому называют «принципом неопределенности Гейзенберга». И означает сей принцип только то, что принципиально невозможно узнать все о частице, а только лишь с некоторой вполне конкретной неопределенностью. Скажем, мы не можем одновременно указать и скорость, и местоположение частицы. Если мы точно узнаем координаты частицы, мы теряем всякую информацию о ее скорости, а если точно узнаем скорость, теряем возможность узнать, где она находится. В механике такое просто невозможно!

Это еще не полное крушение ньютоновской фатальности, но уже шаг в нужном направлении. Потому что весь мир из частиц и состоит, и раз частицы неопределенны в своих координатах и скоростях, значит их будущее, как и будущее мира, предсказать невозможно.

Формула Гейзенберга не столь известна, как знаменитое уравнение Эйнштейна Е=МС2, ее не рисуют на кружках и футболках, но однажды, будучи в Болгарии, я увидел ее на этикетке бутылки с ракией. Выпил с удовольствием!


Вот он, гейзенберговский принцип неопределенности. В этой формуле дельта X – неопределенность координаты частицы, а дельта Р – неопределенность ее импульса (скорости, если хотите). Произведение этих неопределенностей не может быть меньше некоей величины (постоянной Планка). Если неопределенность в положении координаты равна нулю или близка к нулю (то есть координаты определены очень точно), тогда неопределенность импульса будет стремиться к бесконечности.


Когда Гейзенберг впервые явил миру эту формулу, физики поддались соблазну объяснить ее примерно так:

– Ну, конечно, друзья! Иначе и быть не может, ведь мы имеем дело с микромиром, а там все такое маленькое, что плакать хочется! И потому мы воздействуем на измеряемый электрон такими же по размеру штуками, как и он сам, например, бомбардируем фотонами, а значит, неизбежно вносим помеху в измеряемый объект! Измерили местоположение электрона и тем самым изменили его скорость. Поэтому и не узнаем точно, какой она была. Но ведь какой-то она была!

Можно рассудить и по-другому:

– Что такое волны? Это весьма распределенное в пространстве явление! Ну, представьте себе волнение на море. Разве можем мы задать вопрос, где точно находится волна? Этот вопрос просто не имеет смысла! Да везде! Куда ни кинь взгляд – волны до самого горизонта. О какой точной координате можно вообще говорить в таких условиях?

Все эти рассуждения верны, конечно. Но лишь отчасти: проблема оказалась гораздо глубже и фундаментальнее столь простых объяснений. Потому что появилось «во-вторых». И этим «во-вторых» была та самая волновая функция, которую мы уже упоминали, а также уравнение Шрёдингера. Эти математические конструкты описывают поведение квантов.

Не углубляясь в математику, чтобы не распугать читателей, скажем, что эти уравнения, описывающие поведение квантовой системы, не могут предсказать точный результат эксперимента, а лишь вероятность наступления того или иного события.

Самый простой пример на картинке ниже.


Если мы стреляем фотонами в полупрозрачное зеркало, расположенное под углом 45 градусов к оси фотонной пушки, то фотон с вероятностью 1/2 может пролететь зеркало насквозь или с той же вероятностью отразиться от него. То есть с вероятностью выпадения орла или решки у нас сработает либо первый, либо второй детектор.

Рис. 10


Выстреливая единичный фотон, мы принципиально не можем предсказать, куда он попадет, а можем предсказать только вероятность того или иного исхода. Зато можем точно сказать, что при выстреливании огромного числа фотонов они поровну распределятся по обоим детекторам.

Сотни лет физики знали: один и тот же эксперимент, поставленный в одних и тех же условиях, должен давать одинаковый результат. Это ж наука! Это основы! И вдруг в квантовой механике мы получаем при одних и тех же условиях разные результаты: то туда частица шлепается, то сюда. А куда шлепнется, точно предсказать невозможно.

И этот факт вызвал взрыв мозга и настоящую революцию в сознании физиков. Физики к такому не привыкли. Выяснилось, что и в самом деле «Бог играет в кости», по меткому выражению Эйнштейна, то есть сама природа не может предсказать результатов происходящего, во что Эйнштейну, как физику старой закалки, верить не хотелось. Забегая вперед, скажем, что природа действительно оказалась именно такова: в основу мироздания вшита принципиальная случайностность. И это окончательно поставило крест на абсолютизме ньютоновской механики и вывело мир из-под гнета фатализма и тотальной предопределенности всех событий. Открылось окошко для основания свободной воли и, значит, сознания (в механистическом мире Ньютона сознание было совершенно ненужным и даже лишним атрибутом).[7]

Здесь, наверное, нужно сделать небольшой пояснение для дам и гуманитариев. Человечество встречалось со случайностями и во времена Ньютона. Например, при игре в кости. Сама математическая теория вероятности зародилась задолго до появления квантовой механики. Мы все прекрасно знаем, что вероятность выпадения шестерки при броске кубика равна одной шестой. Но разница между случайностью в ньютоновском мире и случайностью квантовой принципиальна! Считается, что, обладай мы полными знаниями о кубике, о поверхности, на которую он упал, обо всех углах, скоростях и усилиях броска, мы могли бы, пользуясь механикой, вычислить результат броска. Просто мы всего этого не знаем, поэтому вынуждены считать результат броска случайным. Правда, насчет кубика – это не однозначный пример, поскольку возможны, наверное, некие «спорные» ситуации при его отскоках на ребре, когда все решает один квант энергии, поэтому обратимся для примера лучше к колоде карт.

Вот автомат в игральном зале казино перетасовал нам колоду карт, которые разложены и лежат вверх рубашками, и мы тянем одну карту. Для нас выбор карты будет случайным, поскольку ни мы, ни тем более тупой автомат не знаем ничего о расположении карт в колоде. И если карт 54, то вероятность вытянуть, скажем, туз пик, равна 1/54.

Однако мы твердо знаем, что карты уже как-то лежат! То есть если мы вытащили даму червей, то эта дама здесь и лежала. В квантовом мире все не так. Там нет значения до измерения, о чем мы еще будет говорить. Там значение творится фактом измерения/наблюдения/воздействия. Фигурально выражаясь, квантовая колода карт не имеет под рубашкой картинок. Картинка возникает только в момент, когда мы переворачиваем карту. Вот чем отличается ньютоновская случайность от квантовой. Вот во что не мог поверить Эйнштейн, полагая наши знания о квантовом мире неполными.

И старика можно понять: ведь случайность нарушает принцип причинности! Если абсолютно одинаковые причины приводят в микромире к разным последствиям, то как жить в таком неопределенном мире, в конце концов, ведь мы все тоже состоим из микрочастиц?..

В общем, мир с появлением квантовой механики стал истинно непредсказуемым. А принцип неопределенности оказался в философском смысле шире, чем его пытались объяснить в первом приближении (мол, измеряя квантовую систему, мы ее меняем, потому и не можем ничего точно о ней узнать)… Да, действительно, измеряя показатели системы, мы и вправду воздействуем на нее! Но это не значит, что у системы до измерения объективно были какие-то показатели!

Это замечание столь важно, что на нем нужно остановиться подробнее.

Глава 4
Как творится реальность

Начиная с 20-х годов прошлого века развитие квантовой механики понеслось вскачь, и на сегодня это одна из самых разработанных и самых проверенных и используемых на практике теорий, с помощью которой решается множество задач. Ее математика безупречна. Но при этом до сих пор остается открытым вопрос: а что стоит за этим математическим аппаратом? Какая физическая реальность? Или физическая нереальность?

Вот смотрите. У нас, допустим, есть две черные коробки – А и Б. И один белый шарик, который лежит в этих коробках. Поскольку шарик один, а коробок две, шарик лежит только в одной из них. Надеюсь, это не слишком сложно для понимания? Как теперь определить, в какой черной коробке лежит белый шарик? Очень просто – открыть и посмотреть! То есть провести эксперимент.

Если мы открыли коробку А, а в ней лежит белый шарик, какой вывод мы сделаем? Что белый шарик и лежал в этой коробке до того, как мы подняли крышку.

А если мы открыли коробку и в ней нет белого шарика? Значит, белый шарик лежит в другой коробке! И он там находился до того, как мы провели эксперимент и открыли пустую коробку.

Это все настолько элементарно, что любые объяснения только затемняют кристальную ясность происходящего.

Белый шарик, если он один, может находиться только в одной из коробок! Баста!

В квантовом мире все не так. Уравнения квантовой механики утверждают: квантовая система находится в суперпозиции до момента измерения. Иными словами, если формулы говорят, что частица после замера может с вероятностью 50 % оказаться в области А и с вероятностью 50 % – в области Б, то до замера она находится одновременно и в области А, и в области Б. Она «размазана» по обеим областям, только потому и может в какой-то из них проявиться. Что и называется суперпозицией состояний. Это как один электрон, пролетающий одновременно через две щели.

Отсюда вытекает, полагал Бор, что квант не обладает определенными свойствами до замера, а эти свойства у него возникают при замере, то есть порождаются самим экспериментатором. И даже спрашивать бессмысленно, были у кванта какие-то определенные свойства или нет до замера. Это вообще не физический вопрос, а философский. А физика – наука конкретная, она имеет дело только с тем, что можно измерить, а если не измерили, то и говорить не о чем! Иными словами, физика имеет дело не с реальностью, а с результатами замеров. Которые по привычке и называет реальностью.

Альберт Эйнштейн в отличие от Нильса Бора с этим никак не мог согласиться. Да, говорил он, из формалистики квантовой механики и вправду вытекает вероятностная природа самого квантового мира. Ну, так это значит, что квантовая механика просто неполна! Недоделанная теория! Просто мы еще не знаем чего-то, каких-то скрытых свойств квантов, которые и определяют, куда улетит этот фотон – влево или вправо. Это только нам фотоны кажутся абсолютно одинаковыми, и потому мы говорим о вероятностях, но на самом деле у них есть какие-то пока еще неизвестные, скрытые от нас параметры, которые и определяют их индивидуальную судьбу – влево фотон улетит или вправо! И надо работать дальше, чтобы придумать такую теорию, которая бы точно и однозначно предсказывала результат, как это всегда и бывало в физике! Иначе зачем нужна такая наука, которая не может предсказать результат или может предсказать его «наполовину», лишь с какой-то долей вероятности?

– У частицы до замера непременно были какие-то свойства: и скорость, и координаты. Не может быть так, чтобы белый шарик лежал одновременно в двух коробках. – Так полагал Эйнштейн. – Квантовая механика неполна!

– Наши представления и привычки, приобретенные нами в результате эволюции в макромире, просто не работают в мире квантовом, где есть только потенции, квантовые возможности, которые реализуются, то есть становятся классической реальностью, лишь в результате замера или, если хотите, наблюдения. – рассуждал Бор. – И с этой точки зрения квантовая механика полна. Полнее не бывает! Полнее просто некуда, мы добрались до базовой основы мироздания[8].

Точка зрения Бора и его корешей носит название копенгагенской интерпретации квантовой механики, всю суть которой можно сформулировать в одном предложении: не надо задаваться философскими вопросами, просто считайте по формулам и получите результат.

Бора поддержал Паули, который предложил:

– А зачем вообще ломать голову о том, существуют у частицы свойства до замера или не существуют, если об этом невозможно узнать, пока не померяешь? А когда померяешь, будешь иметь дело с результатом замера. А спор о том, существовало это свойство раньше или нет, подобен спору средневековых схоластов о том, сколько чертей поместятся на кончике иглы. Переливание из пустого в порожнее!

Философски Паули и Бор были правы. Мы всегда имеем дело только с результатами проверок, экспериментов, тестов. Если бы к этим двум гениям присоединился третий – ваш покорный слуга, то он (я) заметил бы в рассуждениях нашего противника Эйнштейна ошибку в виде одного незримо принимаемого допущения, которого не приметил никто. Эйнштейн утверждал, что и Луна и свойства частиц существуют вне зависимости от того, смотрим мы на них или нет. Но при этом сам термин «существование» не определял, полагая его само собой разумеющимся.

Мы, между тем, на вопрос о существовании уже отвечали: существует – значит проявляет себя. И справедливо вопрошали: а в чьих глазах? Вот физик Джон Уилер однажды гениально заметил, что именно наблюдатель делает мир проявленным[9]. То есть «проявитель» сознания служит одновременно и «закрепителем»: сознание проявляет и фиксирует физический мир, делая его реальным… Что ж, мысль, в сущности, совершенно правильная, учитывая, что классической физической реальностью физики называют то, что мы привыкли видеть и воспринимать.

А Эйнштейн, утверждая, будто Луна существует, даже когда мы на нее не смотрим, по сути, скатывался в религию, делая непроверяемое, а принимаемое только на веру допущение. Но как только его проверяешь и убеждаешься, что Луна тут как тут, снова начинаешь иметь дело не с реальностью, а с результатами проверки, как и учил Бор. А была ли Луна до момента проверки – это дело верований и вообще не стоит разговоров. Просто удобно считать, что была, раз нашлась.

С точки зрения нормального человека, прав, конечно, Эйнштейн: если мы обнаружили шарик в левой коробке, значит он там и лежал до того, как мы открыли крышку. То же самое, по идее, должно быть и в микромире: если мы замерили какую-то характеристику частицы, значит эта характеристика у частицы и была! Ну, так же всегда было! Мы меряем амперметром некий реально существующий ток, амперметр ведь не создает в сети ток своим замером! А в этой вашей квантовой физике получается, что сам замер, сам эксперимент, само наблюдение создает замеряемое свойство, которого раньше не было! Но что значит «не было»! Что это за бред? Наука всю свою историю пыталась найти такие теории и формулы, которые могли предсказать результат, в этом и состоит прогностическая сила науки! Куда упадет снаряд? Выдержит ли эта конструкция нагрузку? Не сгорит ли предохранитель в этой сети?.. А если вы в результате своих исследований пришли к тому, что не можете точно предсказать результат, а только пожимаете плечами, то что же это за наука?

Обидно!

Но ведь эйнштейновское ожидание предсказуемости, то есть твердая вера в то, что белый шарик, обнаруженный в коробке А, лежал в ней и до замера (до открытия крышки), незаметно подталкивает обывателя обратно к фатализму ньютоновского мира. Если Эйнштейн верил в неполноту квантовой механики и ждал точных прогнозов от какой-то новой теории, то он таким образом тащил нас обратно в механистический предсказуемый и внутренне противоречивый мир. Почему противоречивый? Я уже писал: если, обладая огромным массивом знаний, мы просчитаем, что завтра нам на голову упадет кирпич, сможем ли мы не пойти в ту сторону, если из причин следуют только неизбежные жесткие следствия, и только поэтому все-все можно просчитать? Чтобы иметь возможность не пойти, нам нужна какая-то принципиально «непослушная» изменчивость мира, вшитая в саму основу бытия. И такая изменчивость сущест-вует в лице принципиальной непредсказуемости! (Опять забегая вперед, скажу, что в этом случае и «непослушное» сознание должно в своей базе основываться на той же квантовой непредсказуемости.)

Но в эту непредсказуемость Эйнштейн верить упорно не хотел! И придумывал в беседах с Бором на Сольвеевском конгрессе 1927 года массу мысленных экспериментов, которые, с его точки зрения, доказывали, что квантовая механика все же неполна, что свойства частиц существуют у них до замера, а не порождаются замером, что можно вопреки запрету Гейзенберга одновременно узнать и точную координату и скорость частицы.


Спор двух великанов физики – Бора и Эйнштейна – о физической реальности.

Рис. 11


Эйнштейн выкидывал Бору, как козырную карту на стол, один мысленный эксперимент за другим. Некоторые из них были весьма хитроумными, и Бор уходил к себе весьма взволнованным, но, промучившись ночь, он-таки находил ошибку в рассуждениях Эйнштейна.

Однако самый сильный удар Эйнштейн нанес в конце этой публичной баталии. Бор тогда отмахнулся вяло (что потом и сам признавал), и потому можно сказать, что раунд между Традиционным миром и Квантовым миром закончился вничью. Кто же знал, что мысленный эксперимент Эйнштейна, тогда казавшийся невозможным для реализации, через много лет будет выполнен?

Этим мысленным экспериментом, который разработали Эйнштейн и двое его коллег, был знаменитый ЭПР-парадокс. ЭПР – это сокращение от «Эйнштейн, Подольский, Розен» – таковы были фамилии разработчиков парадокса. На троих сообразили. Статья этих трех авторов, опубликованная в 1935 году, прозвучала для физиков всего мира как гром среди ясного неба. К тому времени квантовая механика уже сильно окрепла, расслабилась, а потому удар, ею пропущенный, оказался весьма сокрушительным.

С помощью этого мысленного эксперимента Альберт Эйнштейн, Борис Подольский и Натан Розен доказали (как им показалось), что частица обладает одновременно и определенным положением, и определенным импульсом – что прямо запрещал принцип неопределенности. То есть получалось, что частица существует все-таки в классическом, ньютонианском смысле этого слова, а вовсе не в квантовом, когда объект «размазан» по пространству и точная его характеристика создается измерением, а до измерения частица никаких характеристик не имеет, вернее, имеет все характеристики сразу, то есть находится в суперпозиции свойств (и какое из них выпадет в лотерее реальным шариком из случайностного барабана, никому не известно, даже Господу Богу).

Как рассуждали Эйнштейн и его подельники? Представьте себе, что в результате некоего физического процесса из одного центра разлетаются в разные стороны две квантовые частицы. Поскольку они родились в результате одного процесса, их характеристики связаны друг с другом в силу законов сохранения. Одна частица у нас летит вправо, другая – влево, и скорости их обязаны быть одинаковыми, но мы пока точно не знаем, какими именно.

Когда частицы разлетятся, допустим, на километр или сто километров, мы берем и ловко меряем скорость правой частицы. И поскольку, в силу родства частиц, их скорости должны быть одинаковы, мы таким образом, не производя никаких действий с левой частицей, узнаем ее скорость. Ай, хорошо!.. Мы можем поступить и по-другому: измерить у правой частицы не скорость, а координату и через связанность частиц узнать координату левой частицы.

То есть, не трогая левую частицу, мы косвенным способом узнаем ее координату или скорость. А раз мы частицы даже не касались, но скорость ее все же узнали, значит, скорость эта у частицы была, хотя квантовая механика говорит, что свойство появляется в результате замера. Но мы ее не меряли!..

Это как будто две колоды карт, которые разложены рубашками вверх двумя параллельными рядами, причем разложены соответственно: напротив дамы пик всегда лежит дама пик, напротив крестовой шестерки – крестовая шестерка и т. д. И мы знаем только это условие, но не знаем, где какая карта находится, потому что они лежат, повторюсь, рубашками вверх. И если мы поднимаем одну из 54 карт и видим бубнового валета, мы уже точно знаем, что напротив него лежит валет бубей. И раньше, до замера, он там лежал, хотя мы его не касались – просто по условию разложения двух колод!.. Такова была идея Эйнштейна.

А, между тем, ваша квантовая механика, господин Бор, учит, что если частицу не трогали, то есть никак на нее не воздействовали, то у нее попросту нет никаких определенных характеристик, они все «размазаны». А тут мы, зная, что характеристики двух частиц связаны (запутаны, говорят физики в таких случаях), и, измерив скорость одной из них, автоматом узнаем скорость другой, а значит, эта скорость у нее есть! И это еще не все! Мы ведь таким образом и координату можем узнать. Таким образом мы получили, что частица, над которой не проводились никакие измерения и воздействия, имеет обе характеристики – и скорость, и координату. Вопреки вашему поганому принципу неопределенности! Ха-ха-ха!

Этот нездоровый смех квантовым физикам решительно не понравился. Неужели самая проверенная и самая работающая на практике теория – квантовая – на самом деле неполна? – задумались они.

Через много лет, один английский физик по фамилии Белл придумал мысленный эксперимент, из коего вывел формулу, получившую в физике его имя, – «неравенство Белла», согласно которой (формуле) можно поставить реальный физический опыт и проверить, кто прав – Бор или Эйнштейн.

Чтобы не растерять читателей из-за долгого и муторного объяснения статистических закономерностей, я не буду пускаться в принципы построения неравенства Белла. Просто скажу, что еще в далеком 1964 году Белл, который, похоже, придерживался эйнштейновских взглядов, хотя и не особо это озвучивал, поскольку к тому времени они уже считались в физике неприличными, вывел математическое выражение, которое могло бы доказать, есть у частиц в микромире какие-то скрытые параметры или их конкретные свойства возникают только после замера. Тогда проверить неравенство Белла экспериментальным путем было невозможно. Но через пару десятилетий неравенство Белла было проверено опытным путем – и проверено неоднократно, после чего отсутствие скрытых параметров и полнота квантовой механики были доказаны.

Квантовая теория безупречна. Ее математика безупречна. И только та самая физическая реальность в эту математику почему-то не укладывалась. Реальность эту математику ломала.

– Почему, – спросите вы, – если реальность в виде эксперимента квантовую механику как раз подтвердила? Что тогда означает ваша фраза «реальность в квантовую механику не укладывалась»?

Часть 2. Иллюзорность реальности

Волны пробегают, исчезая без следа,

Катится слепая, неразумная вода,

Долгие-предолгие бега из ниоткуда в никуда.

А. Иващенко, Г. Васильев

Глава 1
Странные квантовые эксперименты

Давайте же наконец признаемся, что именно так сильно взбесило творца теории относительности в квантовой механике и почему он столь упорствовал в ее неприятии! Ну, ведь не косный же дурачок был Эйнштейн! Что ему мешало проявить тот же безграничный физический либерализм, что и Бору: взять и пригласить в свое мыследопущение, в свой внутренний физический мир играющего в кости бога – мировую случайность?

Но гениальный мозг Эйнштейна сразу уловил, в чем главная беда квантовой механики с ее непредсказуемостью. Эта страшная беда состояла в ее нелокальности! Эйнштейн моментально смекнул, раньше многих, что квантовая механика убивает физическую реальность.

Что это значит? О-о, это требует осмысления!

Мы с вами люди тертые, нас на мякине не проведешь, мы понимаем, что никакого колдовства, чудес и магии не бывает. Силой воли дверь не откроешь, нужно подойти к ней и толкнуть. Или палкой дотянуться. На худой конец подойдет и полевое воздействие на расстоянии – как между магнитом и скрепкой – тут важно дотянуться до объекта воздействия веществом или полем. А если предмет воздействия от тебя в миллионе световых лет, то как ты на него повлияешь? Ладно, не будем брать космические масштабы… Если в ста километрах находится радиоуправляемая мина, которую вам нужно взорвать, вы должны послать радиосигнал. И когда он долетит до мины со скоростью света, мина взорвется. Но не раньше. Сигнал должен дойти! Скорость света – самое быстрое, что может быть, учил Эйнштейн. Природа так устроена, что ничего быстрее скорости света не летает. 300 тысяч километров в секунду – это предел для распространения любого сигнала.

Теория относительности была многократно проверена, и с тем, что ничто в мире, никакой сигнал на свете не может перемещаться быстрее света, никто из физиков давно не спорит. Это на сегодня твердо установленный факт.

Магии не бывает, волшебное воздействие на расстоянии – силой мысли, одним только голым желанием или с помощью магических штучек – невозможно. Никакого дальнодействия не существует. Только близкодействие: подойти и толкнуть или послать управляющий полевой сигнал.

А в квантовой механике Эйнштейн опытным глазом снайпера сразу углядел дальнодействие, которое даже назвал «жутким». Он, кажется, первым увидел то, чего не видел и не осознавал о ту пору еще никто в мире. И вот как раз разоблачению этого «жуткого дальнодействия» и был посвящен придуманный им ЭПР-парадокс.

Следите за мыслью великого физика!.. Если Бор и его банда утверждают, что классическая физическая реальность (то есть частицы со своими конкретными свойствами) возникает из Великой Непредсказуемой Квантовой Потенции с помощью акта наблюдения/замера, то получается, что две запутанные частицы, которые разлетелись на миллион километров, как-то незримо остаются связаны друг с другом, раз измерение одной частицы мгновенно творит тоже самое свойство у другой частицы, которую никто не трогал и которая находится в миллионе километров отсюда! Мгновенно! Быстрее скорости света!

Собственно, весь мысленный эксперимент с ЭПР-парадоксом был просто развернутым и расширенным описанием обычной и привычной уже к тому времени физикам редукции волновой функции, когда «размазанное» по всему пространству волновое облачко при воздействии на него вдруг мгновенно стягивается в точку. В каком именно месте стянется, предсказать невозможно.

Эйнштейн, Подольский и Розен наивно полагали, что их мысленный эксперимент ловко привел квантовую физику к противоречию, а любителей копенгагенской интерпретации к проигрышной альтернативе: либо квантовая механика неполна, либо существует то самое «жуткое дальнодействие», по сути – чистая магия. Телепортация!

Эта троица в 1935 году и подумать не могла, что когда-нибудь техника дойдет до такого уровня, что их мысленный эксперимент можно будет реализовать. И уже после появления неравенства Белла первым поставил эксперимент по проверке этого неравенства Ален Аспект, подтвердивший: да, неравенство Белла нарушается, а это значит, что:

– никаких скрытых переменных не существует, дорогой Эйнштейн;

– квантовая механика полна, дорогой Эйнштейн;

– мгновенное дальнодействие существует, дорогой Эйнштейн.

Подобные опыты были многократно повторены и позднее, причем иногда их так и называют – опыты с квантовой телепортацией.

Вот краткое описание одного из таких опытов, проведенных в Женеве в 2008 году. Два сцепленных или запутанных между собой фотона, свойства которых взаимосвязаны, рассылаются по оптоволоконным кабелям в разные стороны (в данном случае фотоны разлетелись друг от друга на 18 км). После чего у одного из фотонов замеряется спиральность. Не углубляясь в детали того, что такое спиральность, скажем лишь, что она может быть либо +1, либо –1. Причем, поскольку наши фотоны «родственны», то если у левого спиральность –1, то у правого +1 (и наоборот), поскольку в сумме их спиральность должна равняться нулю.

Квантовая механика гласит, а опыт Аспекта по проверке неравенства Белла подтверждает, что в полете фотон обладает сразу всеми свойствами, то есть находится в суперпозиции свойств – имеет и спиральность +1 в потенции, и -1 в потенции. И только физический замер присваивает фотону какое-то конкретное свойство. То есть если мы намерили у левого фотона +1, то в то же самое мгновение у правого, находящегося в 18 км от него, возникает свойство -1. Которого раньше не было, поскольку правый фотон также находился в суперпозиции свойств.

Позже на Канарских островах фотоны растащили вообще по разным островам, расстояние между которыми достигало 144 км. С тем же результатом: произошла «телепортации» свойств одного фотона другому, и произошла она мгновенно, то есть со скоростью, в десятки тысяч раз превышающей скорость света.

Был также проведен и прямой опыт по мгновенной телепортации квантовых свойств от частицы А к частице С через посредство частицы В.

И ничего в этом страшного для Эйнштейна нет, потому что передается не информация, а состояние. Поясняя широкой публике этот феномен передачи с бесконечной скоростью, везде пишут – и пишут правильно! – что таким вот мгновенным образом нельзя передавать информацию и создавать на этом свойстве средства мгновенной связи.


Для людей, не очень понимающих тонкости квантовой механики, все сказанное необязательно представляется удивительным. Они могут сказать:

– А что тут такого? Просто замерив в одном месте значение, мы сразу узнали, что происходит в тысячах километров. Ну и что? Представьте, что какой-то шутник разделил пару носков и разослал их своим друзьям на разные континенты. Тогда, открыв в Америке свою посылку и увидев там левый носок, я мгновенно узнаю, что в Австралию пришла посылка с правым носком. Ну и что тут удивительного?

А то здесь удивительного, что аналогия с носками не проходит. Она в корне ошибочна. Я в который уже раз хочу повторить важнейшую вещь: в случае с носками мы знаем, что в посылке до замера уже лежал либо левый, либо правый носок. А фотон находится в суперпозиции свойств, то есть одновременно имеет все возможные значения и никакого конкретного, реального. Его реальность создается замером.

Чтобы яснее продемонстрировать эту парадоксальность квантовой механики, гениальный Шрёдингер, имя коего носят уравнение и кот, придумал свой знаменитый мысленный эксперимент с мяукающим млекопитающим, о котором мы поговорим ниже. А сейчас продолжим рассмотрение разных квантовых экспериментов, чтобы попривыкнуть малость к необычностям квантовой механики.

Самый простой квантовый эксперимент мы уже знаем, его рисунок был дан выше – с полупрозрачным зеркалом и понятным результатом: 50 на 50. Давайте теперь чуть-чуть усложним схему.


Несмотря на появление дополнительных зеркал, принципиально тут ничего не поменялось – фотоны по-прежнему ведут себя как частицы с вероятностью выпадения орла или решки – или проникая сквозь полупрозрачное зеркало, или отражаясь от него и попадая в первый или второй детекторы. То есть летят только по одному из двух возможных путей.

Рис. 12


Уважаемый Нильс Бор учил, подняв вверх указательный палец: квантовые объекты обладают свойствами и волн, и частиц одновременно, и какую сторону медали мы увидим, зависит лишь от экспериментальной установки… В связи с этим возникает вопрос: а можем мы внести какие-то изменения в нарисованную выше установку, чтобы увидеть не корпускулярные, а волновые свойства тех же фотонов?

Можем! Вот, пожалуйста…


Поставим на пути пересечения лучей еще одно полупрозрачное зеркало. Причем, меняя настройки установки (сдвигая на полволны фазу на разных плечах фотонных маршрутов), мы можем добиться того, что все фотоны будут попадать только в один детектор, а в другой – никогда. Почему? Потому что волны, попадая на второе полупрозрачное зеркало, в результате сдвига по фазе суммируются так, что в сторону одного детектора они складываются, а в сторону второго – гасятся. Что прекрасно демонстрирует нам не корпускулярную, а волновую природу света. То есть получается, что фотон, как волна, летит по обоим путям сразу и интерферирует сам с собой.

Рис. 13


Наверняка, вам это уже не удивительно, тем более что Бор все объяснил: наблюдаемое свойство зависит от экспериментальной установки.

Но вот в чем не замечаемый многими парадокс… Когда фотон «решает», как ему нужно себя повести, чтобы удовлетворить экспериментатора – по одному пути лететь как частица, или по двум как волна? В какой момент им принимается это решение? Тут ведь вот какая закавыка: когда фотон прилетает на первое полупрозрачное зеркало, он ведь еще не знает, что происходит впереди на его пути – стоит там второе полупрозрачное зеркало или нет. Если оно есть, все фотоны послушно полетят по двум путям одновременно как волны, и на втором полупрозрачном зеркале сложатся сами с собой, дав все прилеты только в один детектор. Если же второго полупрозрачного зеркала нет, фотоны еще на первом полупрозрачном зеркале должны будут случайно выбирать только один путь и шлепаться равновероятно то в один детектор, то в другой.

Они что, обладают даром предвидения? Или им из будущего сигнал приходит, как надо действовать?

А ведь этот эксперимент можно раздуть до космических масштабов! Физик Уилер предложил следующий мысленный эксперимент. Если в качестве прибора использовать галактику, за которой спряталась звезда, излучающая фотоны в сторону Земли, то за счет так называемого гравитационного линзирования фотоны обогнут галактику с обеих сторон и полетят дальше. Если теперь на их пути поставить полупрозрачное зеркало, то окажется, что фотон шел по двум путям сразу – слева и справа от галактики. А если не ставить, получается, что он шел только по одному пути. И свой выбор, как передвигаться, фотон сделал, выходит, сотни миллионов лет назад, когда подлетал к гравитирующей линзе галактики. Но тогда на Земле еще жили динозавры, не было никаких ученых, которые через сотню-другую миллионов лет будут решать – ставить им зеркало или нет.


Космический вариант эксперимента с отложенным (на полмиллиарда лет) выбором.

Рис. 14


Неужели ученые влияют своим современным решением на прошлое фотона? Нет, конечно! Равно как не влияют на прошлое фотонов и другие опыты – широко известные лабораторные эксперименты с отложенным выбором и эксперименты с квантовым ластиком, о которых в популярной прессе часто пишут, будто «ученые доказали, что будущее влияет на прошлое».

Разумеется, не влияет! Хотя иллюзия такая создается. Но это именно иллюзия, вызванная однобоким пониманием квантовой механики, когда наивный экспериментатор всерьез полагает, будто фотон и вправду принимает решение, как ему передвигаться: в виде частицы по одной из двух траекторий или по двум путям сразу в виде волны.

Так что же происходит на самом деле? Как в действительности летят фотоны – по двум путям или по одному?

На самом деле фотоны летят по всем возможным путям сразу. А происходит при этом уже известная нам квантовая нелокальность. Пролетев по всем путям и столкнувшись с чем-то реальным, то есть классическим, объект под названием квант мгновенно стягивается в точку в непредсказуемом, но вполне конкретном месте. Даже если перед столкновением имел размеры в половину вселенной.

– Как это – в половину вселенной!? – спросите вы.

Да очень просто. Представьте себе, что квант, разделенный полупрозрачным зеркалом, полетел в разных направлениях по двум путям одновременно. И разлетелся на миллиард световых лет. После чего одна его «половинка» хлопнулась обо что-то. Все! Выбор сделан! Та, вторая «половинка», исчезает или, если хотите, «стягивается» в ту точку, в которой фотон реализовался как частица.

Почему слово «половинка» взято в кавычки? Потому что половинки кванта не бывает. Квант неделим. И даже разлетевшись на миллиард миллиардов километров он представляет собой не два независимых кусочка себя, а единый объект. Который мгновенно схлопывается практически в точку. Причем, квант можно растащить не на два «кусочка», а на сколько угодно «частей», раскидав их полупрозрачными зеркалами в разные углы вселенной.


Я долго думал: давать в этой суперпопулярной книге квантовые опыты с отложенным выбором и стиранием квантовой информации или не усложнять текст. Но опыты эти настолько на слуху и так бурно обсуждаются публикой, интересующейся квантовой механикой, что я решил немного о них рассказать.

Итак, начнем плясать от экспериментов с отложенным выбором. Их идея состоит вот в чем: а давайте уже после того, как фотон «принял решение» стать частицей и идти по одному пути или остаться волной и двигаться по обоим путям, внесем в установку изменение! Допустим, у нас установка рассчитана на регистрацию частиц, а после того, как квант в нее вошел, мы ему на пути подлянку устроим – вставим полупрозрачное зеркало, чтобы зарегистрировать его как волну!

Долгое время такой опыт не представлялось возможным осуществить чисто технически, потому что свет слишком быстр и, как только он входит в начало установки, через мгновение из нее выходит с готовым результатом. Но потом хитромудрость человеческая позволила извернуться и такой опыт провести. С понятным результатом: если свет входит в установку для частичного (корпускулярного) замера, и уже после прохода им первого полупрозрачного зеркала экспериментаторы подло меняли условия, чтобы сбить свет с толку, и ставили второе полупрозрачное зеркало, фотон словно бы тоже менял свое решение, послушно показывая интерференцию.

Разновидностью этого опыта является опыт с так называемым квантовым ластиком. Он основан на запутывании квантов (создании фотонов с «родственными» свойствами), получении квантовых характеристик и последующем стирании этой информации внутри установки. Звучит непонятно, завлекательно и весьма интригующе, поэтому гранты на такие эксперименты получить можно, но смысла в них немного, потому как великий Бор уже все нам объяснил по этому поводу.

В чем же заключается этот «отложенный выбор с ластиком»? Схема установки показана ниже. Она непроста, и, если вам не хочется с ней разбираться, смело можете пропустить этот кусок книги, ничего по смыслу не потеряете.


Итак. Слева лазером подается фотон на две щели. Далее у него два пути – верхний и нижний. Но сразу после экрана установлен кристалл бета-бората бария, который обладает интересным свойством: из одного фотона делает два с вдвое меньшими энергиями (вдвое меньшей частотой). Соответственно два фотонных потока расщепляются на четыре. Верхняя пара «лучей» направляется в главный датчик – D0. По нему определяется интерференционная картина либо ее отсутствие. Нижняя пара «лучей» с помощью призмы направляется на полупрозрачные зеркала и от них либо отражается (с вероятностью 50 %), попадая в детекторы D4 и D3, либо проходит насквозь и с помощью обычных зеркал скрещивается на третьем полупрозрачном зеркале, задача которого – «смешать информацию», то есть сделать срабатывание датчиков D1 и D2 «непонятным». В смысле при срабатывании этих датчиков непонятно, откуда в них пришел луч – от нижней щели или от верхней, потому что с равной вероятностью третье полупрозрачное зеркало может как отразить фотон, так и пропустить.

Рис. 15


В чем прикол эксперимента? Кристалл бета-бората дает нам два спутанных ортогонально поляризованных фотона. Фотоны, идущие на главный детектор, называются сигнальными, а идущие в нижнюю часть установки – контрольными.

Из схемы ясно, что если срабатывает детектор D3, значит, фотон прилетел из нижней щели. Если D4 – из верхней. А вот срабатывание D1 и D2 ни о чем не говорит. Видно также, что нижний путь из обоих щелей длиннее верхнего (до главного детектора), то есть вниз сигнал попадает после срабатывания D0. (Физики даже прикинули, на сколько позже – на 8 наносекунд.)

И что же получается? Сначала разделившийся на двух щелях исходный фотон «расчетверяется» на кристалле, затем срабатывает датчик D0 (с него потом снимается информация, был ли этот фотон волной, то есть прошел ли он через обе щели, внеся вклад в интерференционную картинку, либо он как частица пролетел только через одну щель и внес свой вклад в корпускулярную картину – за это различение отвечает специальный электронный счетчик совпадений). А потом, после срабатывания D0, срабатывают датчики контрольных фотонов.

Датчики D1 и D2 специально поставлены, чтобы убрать информацию о том, через какую щель пролетел фотон. То есть мы эту информацию запросто могли бы получить, если бы не ставили всех этих полупрозрачных зеркал, а поставили вместо них просто два датчика D3 и D4. Но схема усложнена специально для уничтожения информации. И когда датчики D1 и D2 срабатывают, это означает, по идее, что мы в этом случае ничего не знаем о пути прохождения фотона, а значит, он имеет право оставаться волной и, стало быть, запутанный с ним фотон чуть ранее шлепнулся о главный датчик D0 интерференционно. Такова была идея.

Так и оказалось! Если информация о пути прохождения фотона после срабатывания датчика D0 стиралась, то ранее, чем это произошло, фотон, еще не зная о том, что информация о нем в будущем сотрется, смело позволял себе остаться волной, словно получал сигнал из будущего о том, как сработают полупрозрачные зеркала – скроют от исследователей информацию о пути прохождения фотона или нет.

Разумеется, это «обратновременное» влияние – иллюзия. На которую и клюют разные корреспонденты. Фактически все происходит так, как и должно происходить, – именно первое попадание в главный датчик и определяет дальнейшую судьбу сцепленного фотона, сдвигая вероятность его фиксации теми или иными нижними датчиками. Вот и все.

Глава 2
Самая волнительная функция

Судьбу квантовой системы определяют два математических выражения: волновая функция и уравнение Шрёдингера. В них и отражается вероятностная природа квантового мира. А также самая великая тайна квантовой вселенной: как и почему происходит коллапс волновой функции (редукция волновой функции в другой терминологии).

Вы уже знаете, что это такое.

Это процесс, при котором размазанный по вселенной квант вдруг неожиданно решает схлопнуться, превратив вероятность своего существования в реальность. Квантовые уравнения определяют только вероятность нахождения того же электрона в том или ином месте, а замер (воздействие) присваивает электрону реальное время и место. В этом и состоит физический смысл волновой функции, которую обозначают греческой буквой «пси» – ψ.


Теперь, немного попривыкнув к вероятностной природе мира, разберемся, что же не так в этом самом коллапсе и почему некоторые физики говорят, что здесь каким-то образом замешано сознание?


Вот электрон до замера. На картинке показана вероятность его обнаружения. Собственно говоря, волновая функция – это волна вероятности обнаружения частицы.

Рис. 16


Все дело в математическом аппарате квантовой физики. В том, что линейные уравнения квантовой механики не предполагают никакого коллапса волновой функции. Согласно математической формалистике, никакой редукции волновой функции происходить просто не может! Понимаю, что каждая формула в научно-популярной книжке, как говорят знающие люди, вдвое сокращает число читателей, поэтому у нас с вами будут тут игрушечные, упрощенные формулы. Формулы как бы понарошку, но в обрамлении совершенно непогрешимой математической логики.

Вернемся к ранее использованному прекрасному примеру. Вот есть у нас два ящика, обитых черным бархатом. И одна красивая, сверкающая, отполированная, белая, словно бильярдный шар из слоновой кости, частица, которая может по результатам эксперимента оказаться только в одном из ящиков. Ну, просто потому что реальные частицы в нашем реальном мире не могут находиться одновременно в двух местах. Это основа физического реализма. Каковой реализм так самоотверженно пытался защитить Эйнштейн (заодно с пристегнутым к нему фатализмом, о чем старик, видимо, не догадывался). Но так и не защитил: микромир оказался в своей основе квантовым, то есть принципиально неопределенным, и лишь на уровне макромира он выглядит привычно-реальным, твердым и надежным.

Но мы помним, что красивая белая бильярдная частица окажется в одном из черных ящиков только после замера, то есть после того, как мы проведем опыт по обнаружению частицы: откроем крышку черной коробки, заглянем туда и увидим в каком-то ящике эдакую красоту. Теперь внимание, уж извините, но задам читателю контрольный вопрос:

– А где была частица до этого?

Вы уже знаете ответ! Квантовая механика как одна из самых доказанных и тысячекратно проверенных областей физики с ее прекрасным математическим формализмом утверждает (и это утверждение доказано эмпирически, то есть экспериментальным путем – опытами по проверке неравенства Белла), что до замера частица не находилась нигде конкретно. Она была «размазана» в пространстве и находилась одновременно в обеих коробках, то есть ее «трепетание» одновременно жило в двух местах. Иными словами, «частица» пребывала в состоянии, именуемом суперпозицией, то есть реальной частицей не была. Слово «суперпозиция» – просто синоним слова «сумма». То есть «частица», еще не будучи настоящей частицей, пребывала в состоянии волны или размазанного в пространстве облачка и ее состояние математически описывалось как сумма всех возможных состояний.

Обозначим нахождение частицы в левой коробке значком ψ1, а в правой – ψ2. Вероятность частицы оказаться в левой коробке обозначим как Р1, а в правой – Р2. Предположим, эти вероятности равны, но в данном случае для нас это неважно.

Тогда общее состояние системы до замера будет записано формулой:

Ψ = Р1 ψ1 + Р2 ψ2,

что означает: с вероятностью Рчастица окажется в левой коробке, а с вероятностью Р– в правой. Это и есть сумма состояний. Суперпозиция[10].


А что будет после замера?

А после замера по какой-то неведомой и не вытекающей из квантовой механики причине состояние системы запишется как:

Ψ = ψ1 или Ψ = ψ2,

то есть нечто эфемерное и размазанное превратится в реальную частицу, лежащую в левом или правом ящике. А куда же денется еще один член формулы?

Редукция выскакивает как черт из табакерки и ломает всю математику, хотя из самой линейной математики, повторюсь, этого никак не следует. Но это следует из реальности, нас окружающей.

Или все-таки нам редукция только мерещится, ведь из математической физики она никак не вытекает? Либо, напротив, ничего не мерещится, а просто квантовая механика хромает, она недоработана, неполна?

На этот вопрос мы уже отвечали – полнее некуда. За сто лет не было обнаружено ни одного факта, который бы противоречил квантовой механике. Она всегда выигрывает у своих оспаривателей. Более того, она ежедневно проверяется практикой. Именно на квантовой механике, точнее, на обсчитываемых ею квантовых эффектах работают современные устройства. Квантовая механика давно уже не теоретические разглагольствования физиков, а надежный рабочий инструмент инженеров. Все последние полвека нас буквально окружают приборы, основанные на квантовых эффектах: транзисторы и микрочипы, резонансные туннельные диоды и лазеры, туннельные микроскопы, знакомые всем устройства с аббревиатурами МРТ и GPS, силовые микроскопы (которые позволяют манипулировать отдельными атомами). Сюда же надо отнести квантовую криптографию и квантовую информатику (которая, правда, пока еще находится в эмбриональном состоянии). По оценкам некоторых экономистов, до трети ВВП развитых стран связано с технологиями, которые были бы невозможны без квантовой механики.

В общем, инструмент это рабочий, надежный, и почему он ломается в момент измерения и допускает коллапс, то есть отстрел куска формулы, непонятно. Это может показаться ерундой – в конце концов, что такое математика, она же как бы не существует! Опытная физическая реальность важнее абстрактных математических придумок! Впрочем, о «существовании» и «реальности» математики мы еще поговорим, а равно и о том, что именно голая математика, по-видимому, и лежит в базисе физического мира, то есть разговор о разных гранях существования и бытия у нас впереди. Но вообще, если в работающей и непротиворечивой теории существует такая неожиданная вещь, как произвольное выкидывание формул в помойку и директивно-командное указание – «внимание, теперь остается только один кусок уравнения!» – это вызывает смутные подозрения. Что-то здесь явно не так!

А где «здесь»? В какой момент мы должны отказаться от великолепного формализма, чтобы сказать: вот именно в этот момент начинается реальность, а Великая Неопределенность квантовой механики заканчивается самым постыдным (для математики) образом?

Может быть, коллапс волновой функции происходит в момент взаимодействия квантовой системы с макроприбором? Велик соблазн сказать, что так и есть. Маленький нежный волнительный «микромирчик» не выдерживает столкновения с весомым, грубым, зримым макромиром. И убивается об него, бедняжка. Но…

Но ведь любой большой прибор состоит из микрочастиц. И если мы будем последовательными парнями, то можем продолжить играть в наши физические формулы. Что нам мешает включить в квантовую систему и прибор, также состоящий из квантов? По уму, квантовая частица, вступив во взаимодействие с другими частицами (прибором) должна запутаться с ними. И у них должна образоваться общая судьба в виде общей волновой функции.

Предположим, мы меряем, в какой черной коробке оказалась белая частица, с помощью физического прибора – какого-нибудь регистратора со стрелкой или фотофиксатора. Тогда, если частица окажется в левой коробке, состояние прибора, указавшего стрелкой влево, обозначим как Ф1, если в правой – Ф2. Ну, а состояние прибора до замера обозначим Ф(стрелка по центру шкалы). Тогда состояние всей системы до замера запишется так:

1 ψ1 + Р2 ψ2) Ф0 = Р1 ψ1 Ф+ Р2 ψ2 Ф0.

Что мы тут видим? Ту же суперпозицию из двух возможных состояний, только с включенным в систему прибором, который пока еще не сработал. А когда сработает, система будет описываться так:

Ψ = Р1 ψ1 Ф1 + Р2 ψ2 Ф2.

Первое слагаемое – частица с вероятностью Р1 окажется в состоянии ψ1, заставив при этом прибор указать стрелкой на левый ящик (Ф1). Второе слагаемое – частица с вероятностью Р2 окажется в правом ящике (ψ2), заставив прибор принять состояние Ф2 (его стрелка отклонилась вправо).

Ну, и где вы тут видите какую-то редукцию? Как была сумма, то есть суперпозиция вариантов, так и осталась!

А зачем, кстати, мы включили в схему макроприбор, фиксирующий состояние? Почему обесчеловечили ситуацию? Мы ведь прекрасно можем открыть коробку и сами посмотреть – чего там творится. Соответственно, физическим прибором можно вполне посчитать и человеческий глаз. И мозг, в котором происходит обработка и фиксация информации. И как тогда будет выглядеть формула, если Ф1 и Фобозначают не разные состояния прибора со стрелкой, а разные состояния мозга с его разными биофизическими реакциями, фиксирующими тот или иной вариант? Да точно также!

Р1 ψ1 Ф1 + Р2 ψ2 Ф2.

Чтобы продемонстрировать тот факт, что квантовую неопределенность (суперпозицию) можно вытащить из микромира в реальный мир, Эрвин Шрёдингер и придумал свой знаменитый мысленный эксперимент, получивший название «кот Шрёдингера». Вы наверняка про этот эксперимент знаете, он описан в тысячах популярных книг и даже попал на футболки и кружки вместе со знаменитой формулой Эйнштейна.

Итак. У нас есть большой черный ящик, в котором сидит кот. Его туда посадил сам Шрёдингер, загадочно улыбаясь. А также приладил к ящику хитрое устройство. В его составе атом, который в течение некоего срока может распасться с вероятностью 1/2. Если он распадается, прибор это улавливает и приводит в действие молоток, разбивающий ампулу с синильной кислотой, убивающей кота.

Как нам по прошествии указанного срока узнать, кот жив или мертв? Состояние атома описывается суммой, то есть с точки зрения квантовой механики атом находится в состоянии суперпозиции: он одновременно и распавшийся и нераспавшийся. Конкретизирует это состояние, то есть вводит его в нашу привычную реальность (по сути, сделает реальным) только замер. Поскольку «сигнальной лампой» у нас в эксперименте является состояние кота, мы должны открыть крышку и посмотреть – жив кот или нет. Если жив – атом еще не распался. Если мертв – распался.

Однако, поскольку состояние кота напрямую связано (запутано) с состоянием атома, получается, что до проведения замера мы вынуждены описывать и состояние кота тоже как суперпозицию «кот жив» + «кот мертв». Но это же абсурд!



Ведь на самом деле кот не может быть одновременно и живым и мертвым! Это подсказывает нам простая логика макромира!

И вот здесь, друзья мои, я должен вам признаться, что испытал сейчас сильное желание взять слова «на самом деле» в кавычки. Потому как в такой ситуации уже непонятно, что представляет собой это «самое дело». Что такое «реальность»? Есть реальность в узком смысле – та, которую защищал Эйнштейн. Это реальность макромира с привычной нам определенностью положений, траекторий, скоростей. И есть гораздо бо́льшая реальность квантового мира, которая включает в себя нашу привычную «механическую реальность», как большая матрешка маленькую. Об этих двух реальностях мы еще поговорим. А пока закончим фокусы с черными ящиками.

Для того, чтобы примириться с математическим обломом, был придуман постулат редукции фон Неймана[11]. Он заключается в том, что эволюцию изолированной квантовой системы, которая «не коснулась макромира», нужно описывать линейными уравнениями квантовой механики, а когда коснулась, смело отбрасывать те члены уравнения волновой функции, которые в натуре не наблюдаются. И не переживать по этому поводу.

Ладно, переживать не будем. Хотя неприятный осадочек остался…

Ведь это что у нас получается, если вдуматься: как в случае с котом, так и в случае с красивой частицей в одном из черных ящиков? В теории – та же суперпозиция, то же запутанное состояние, только в него теперь включились прибор, глаз, мозг и весь мир, потому что мир, в котором частица оказалась слева, это совсем не тот же мир, в котором частица оказалась справа. Особенно, если на карту поставлено что-то серьезное, например, ядерная война, зависящая от этого выбора.

Так почему же мы всегда видим только одну реальность? Куда девается второй член формулы, и куда девается второй мир?

Совершенно все равно, что находится в воображаемом ящике: белый шар, черный кот или толстый бегемот, вопросы остаются: как так получается, что квантовый мир не допускает редукции, а мы ее наблюдаем? Неужели сам факт наблюдения каким-то образом влияет на это? Но ведь наблюдение есть функция сознания…

Чтобы избавиться от этого квантового парадокса американский физик Хью Эверетт еще в 1957 году предложил решить эту проблему настолько радикально, что никто из тогдашних физиков всерьез его интерпретацию квантовой механики не принял. А сейчас ее разделяют все больше физиков[12], и носит она название «многомировая интерпретация Эверетта» или эвереттика. Вы наверняка о ней слышали, как и о шрёдингеровском коте.


Почему мы вообще говорим о каких-то интерпретациях теории? Да потому что с появлением квантовой механики в науке сложилась уникальная ситуация: прежде, когда физики получали формулы, описывающие какие-то явления, у них не вызывало никаких вопросов их толкование, поскольку формулы описывали реальный мир. И только квантовая механика вызывает множество самых разных размышлений, что же все-таки кроется за ее стройным формализмом? Многие физики нынче всерьез задумываются: а что, черт побери, значат эти наши прекрасно работающие формулы? Что за ними стоит? Какая такая реальность или нереальность? Можем ли мы вообще ее как-то описать и представить, или бессмысленно даже задаваться такими вопросами? В самом деле, работают и работают формулы, к чему мудрствовать?

Но ведь интересно же! Интересно, как «на самом деле» устроен мир. Есть ли некая реальность, которая существует помимо нас, когда мы не замеряем этот мир, когда мы его не наблюдаем, превращая тем самым в классическую, привычную реальность, ведь мы живем в мире «постоянного замера», мы трогаем мир ежесекундно? Физик Уилсон, напомню, говорил, что наблюдатель нужен вселенной для проявления ее существования. Молодец…

И потому Эверетт, одним из первых задумавшись о том, что же напрямую вытекает из квантовой формалистики, предложил:

– Ребята! В это сложно поверить, но получается, что на самом деле никакой редукции не существует! Реализуются сразу все возможные варианты одновременно. Кот одновременно и жив и мертв.

Многомировую интерпретацию Эверетта часто трактуют так, что в момент выбора вселенная раздваивается, и в одной вселенной кот мертв, а в другой – жив. Сознание же проскальзывает только в одну из классических вселенных и видит либо мертвого кота, либо живого. А вообще вселенных бесконечное множество, каждая из которых отличается от соседней «на один квант».

Это наивное представление, потому что из ниоткуда такая грандиозная масса, равная массе нашей вселенной, возникнуть, конечно, не может. Поэтому вселенная не раздваивается в буквальном смысле. Она просто существует. И все в ней происходит одновременно, здесь, сейчас и сразу. И только наше сознание наблюдает один-единственный вариант развития событий.

Это сложно понять без дальнейшей доработки и проработки, поэтому на помощь Эверетту пришел советско-российский физик Михаил Менский, который развил взгляды Эверетта, и теперь их совместный взгляд называется расширенной концепцией Эверетта-Менского. А после того как к ней подключился ваш покорный слуга, я предлагаю называть это со всей присущей мне скромностью концепцией Эверетта-Менского-Никонова. Ни много ни мало!

Свою удивительную концепцию физик Менский, с коим (и его концепцией) я вас познакомлю позже, разработал в начале 2000-х годов и опубликовал в журнале «Успехи физических наук» (УФН), где она и попалась мне на глаза. Не все были с Менским согласны. Скажем, лауреат нобелевской премии Виталий Гинзбург, возглавлявший тогда «УФН», с Менским решительно не соглашался! Хотя и публиковал его работы.

Мне в жизни повезло. Я был лично знаком и с Виталием Лазаревичем Гинзбургом, и с Михаилом Борисовичем Менским, поэтому с интересом наблюдал за их дискуссией и, улыбаясь, выслушивал горячие высказывания Гинзбурга на этот счет. А с Менским просто часами обсуждал его концепцию.

В чем же был не согласен нобелевский лауреат Гинзбург с многомировой интерпретацией квантовой механики Эверетта-Менского? Однажды, когда я позвонил ему, чтобы поинтересоваться, как он распорядится миллионом долларов нобелевской премии, полученной им на старости лет (мне правда было очень интересно), разговор вскоре зашел и о Менском, точнее, его взглядах.

– Я, конечно, опубликовал его в «Успехах…», – сказал Гинзбург, – потому что это никакая не лженаука. У Эверетта и Менского все математически безупречно. Но я с Менским решительно не согласен! Потому что я не понимаю, при чем тут сознание!

Гинзбург был человеком удивительной судьбы и настоящим сыном своего времени. Я был просто счастлив, что мне довелось слушать рассказы о его удивительной жизни при Сталине. И я понимаю, что время наложило на отца русской водородной бомбы свой неизгладимый отпечаток – Гинзбург был атеистом до мозга костей. Как и я, кстати.

А не понимал атеист Гинзбург вот чего (предоставлю слово ему самому):

– Слушайте, система коллапсирует вне зависимости от того, смотрим мы на нее или не смотрим. Ну, и при чем тут сознание?

Иными словами, Гинзбург полагал, как и подавляющее число физиков, как и подавляющее число нормальных людей, как и Эйнштейн, что Луна существует даже тогда, когда мы на нее не смотрим. То есть существует объективно. Что наш мир реален. То бишь существует вне зависимости от того, наблюдает его кто-то или нет. Кот или жив, или мертв, а не находится в суперпозиции – вне зависимости от того, поднял наблюдатель крышку ящика или нет. Редукция волновой функции объективна.

Но ведь это ни что иное, как еще одна разновидность религии – вот чего не понимал великий Гинзбург. Ведь для того, чтобы проверить реальность мира, то есть его существование вне наблюдателя, нужен… проверяющий. То есть наблюдатель. Кто-то должен провести эксперимент, посмотреть на Луну и сказать: «Вот она!» И далее сделать вывод, уже никак, строго говоря, не вытекающий из опыта (наблюдения): «А раз она тут, значит, она тут и была до того, как я посмотрел!»

Но квантовая механика уже убедила нас в том, что это не всегда так. Или всегда не так?

Глава 3
Эвереттика алкоголика Хью

Будучи на отдыхе в австрийской деревеньке Альпбах – хотя горные лыжи разве можно назвать отдыхом, там так наломаешься! – я, разумеется, после спусков не преминул заглянуть на местное кладбище у церковки, чтобы посетить совершенно неприметную могилу Эрвина Шрёдингера, расположенную у самого края, возле кладбищенской ограды. Из этой могилы, право слово, можно было бы сделать целый туристический аттракцион, водрузив на нее памятник в виде каких-нибудь вложенных друг в друга черно-белых мраморно-гранитных шрёдингеровских котов, олицетворяющих кота живого и мертвого, чем и привлечь туристов. Но не догадались австрийцы! Поэтому я просто молча постоял перед скромной могилой нобелевского лауреата, а вам рассказываю эту историю только для того, чтобы вы не ругали меня за столь фривольный заголовок этой главки. Я почитаю гениев! А XX век, ставший веком физики, породил целую плеяду гениев, стоявших у истоков и разрабатывавших квантовую механику.

Одним из таких гениев был коллега Шрёдингера Хью Эверетт. Причем гением совершенно недооцененным, потому что именно он впервые в истории точных наук ввел сознание наблюдателя в ранг физического параметра. До Эверетта на протяжении всей истории науки ученые чурались, по сути, самих себя, старательно выводя сознание за скобки изучаемого мира. Мол, есть объективный мир и есть изучающее его сознание, как бы лежащее вне мира и не оказывающее на него никакого влияния.

А Эверетт честно сказал: постулат фон Неймана о редукции не нужен, ибо никакой редукции не происходит, она никак не вытекает из законов нашего мира. Есть только кажимость редукции, не существующая в реальном физическом мире, а почему-то существующая только в нашем сознании. Иными словами, весь тот мир, который мы называем реальным, есть кажимость нашего сознания, а в действительности существует только квантовый мир, в котором происходит все сразу… Примерно так.

То есть тот мир, что мы видим вокруг, – иллюзия, а тот, что не видим и увидеть не можем, – настоящая реальность.

Мириады вселенных Эверетта существуют в вечной суперпозиции. И только сознание почему-то существует не в суперпозиции, а проскальзывает лишь в одну классическую реальность. Почему? Эверетт в ответ только пожимал плечами. И был прав: он сделал из математического формализма неумолимый логический вывод о множественности миров и о том, что никакой редукции нет. Это напрямую вытекало из формул квантовой механики. А уж почему мы редукцию видим и осознаем, это пусть разбираются те, кто изучает сознание…

Вообще говоря, идею множественности миров человечество выдумало давно. Эта идея возникла несколько тысяч лет где-то на востоке – в горах Тибета или на равнинах Индии. И уже оттуда, по-видимому, переместилась в солнечную Элладу. О многомирии говорили Будда и философы древней Греции. Не потому ли великие физики XX века, столкнувшись с парадоксами квантовой механики, обратили свое внимание на восточную философию? Не был исключением и продолжатель дела Эверетта физик Михаил Менский, его также плющило от религиозной философии не по-детски.

Кстати, великие физики могли бы обратить свое внимание не только на восточные, но и на западные учения. Скажем, на книги Карлоса Кастанеды, в которых он излагал древнее учение американских индейцев, точнее, индейских шаманов. Правда, индейцы со своими шаманами пришли в Америку, как мы знаем, по Берингову перешейку в незапамятные времена, так что свое учение, которому бог весть сколько тысяч лет, они могли принести на запад с востока, из Старого Света – из Сибири, Лапландии, Алтая…

Шаманизм основан на измененных состояниях сознания, именно из состояний транса шаманы и черпали свои картины мироустройства. И именно такие состояния сознания лежат в основе мировоззренческой картины Менского, о чем мы еще поговорим позже, как я и обещал. А сейчас, раз уж речь зашла о Кастанеде, позволю себе познакомить читателя со странными представлениями древнеиндейских шаманов из племени яки. И простите меня за длинную цитату. Ведь эта цитата – чистой воды эвереттика, жалко только, что антрополог Кастанеда, записавший сказанное со всей тщательностью этнографа, не знал физики и не опознал нарисованной ему физической картины мира!

Итак, в нижеследующем эпизоде автор книги американский антрополог бразильского происхождения Карлос Кастанеда беседует в местном ресторанчике с колдуном индейского племени яки, и тот описывает ему, как на самом деле устроен мир. Думаю, читатель, уже обладая достаточными знаниями о квантовом мире, сам разберется, что такое тональ, и что такое нагваль в терминологии шаманов; другими словами, какой из этих терминов обозначает реальный мир Эйнштейна и Ньютона, а что – великая квантовая потенция, из которой творится реальность нашего бытия.

«– Я собираюсь рассказать тебе о тонале и нагвале. Это мой тональ, – сказал дон Хуан, потерев руками грудь.

– Твой костюм?

– Моя личность! Тональ – это организатор мира, – продолжал он. – Наверное, лучшим способом описания его работы будет сказать, что на нем лежит задача приведения хаоса мира в порядок… Тональ – это все, что мы знаем, и это включает не только нас как личности, но и все в нашем мире. Можно сказать, что тональ – это все, что встречает глаз. Мы начинаем растить его с момента рождения. Но тональ создает мир, только образно говоря. Он не может создать или изменить ничего, и тем не менее он делает мир, потому что его функция состоит в том, чтобы судить, свидетельствовать и оценивать (наблюдать, быть наблюдателем – А.Н.). Я говорю, что тональ делает мир, потому что он свидетельствует и оценивает его… Очень странным образом тональ является творцом, который не творит ни единой вещи, другими словами, тональ создает законы, по которым он воспринимает мир, так что, образно говоря, он творит мир.

Тональ – это остров, – далее объяснил он. – лучший способ описать его, это сказать, что тональ – вот это.

До Хуан очертил рукой середину стола.

– Мы можем сказать, что тональ как столешница этого стола, остров, и на этом острове мы имеем все. Этот остров фактически мир. Есть личные тонали для каждого из нас, и есть коллективный тональ для всех нас в любое данное время, который мы можем назвать тоналем времен.

Он показал на ряд столов в ресторане.

– Взгляни, каждый стол имеет одни и те же очертания. Определенные предметы есть на каждом из них. Индивидуально они, однако, отличаются один от другого. За одними столами больше людей, чем за другими, на них разная пища, разная посуда, различная атмосфера, и, однако, мы должны согласиться, что все столы в ресторане очень похожи. Та же самая вещь происходит с тоналем. Мы можем сказать, что тональ времен это то, что делает нас похожими точно так же, как все столы в этом ресторане похожи. Каждый стол тем не менее это индивидуальный случай, точно так же как личный тональ каждого из нас. Однако, следует иметь в виду тот важный момент, что все, что мы знаем о нас самих и о нашем мире, находится на острове тоналя. Понимаешь, о чем я говорю?

– Если тональ это все, что мы знаем о нас и нашем мире, что же такое нагваль?

– Нагваль – это та часть нас, с которой мы вообще не имеем никакого дела.

– Прости, я не понял.

– Нагваль – это та часть нас, для которой нет никакого описания. Нет слов, нет названий, нет чувств, нет знания.

– Не говоришь ли ты, что нагваль – это ум?

– Нет, ум – это предмет на столе, ум – это часть тоналя. Скажем так, что ум – это чилийский соус.

Он взял бутылку соуса и поставил ее передо мной.

– Может нагваль – душа?

– Нет, душа тоже на столе. Скажем, душа – это пепельница.

– Может это мысли людей?

– Нет, мысли тоже на столе. Мысли – как столовое серебро. Он взял вилку и положил ее рядом с чилийским соусом и пепельницей.

Я продолжал перечислять возможные способы описания того, о чем он говорит: чистый интеллект, психика, энергия, жизненная сила, бессмертие, принцип жизни. Для всего, что я называл, он нашел предмет на столе как противовес и ставил его передо мной, пока все предметы на столе не были собраны в одну кучу…

– Если нагваль не является ни одной из тех вещей, которые я перечислил, то, может быть, ты сможешь рассказать мне о его местоположении. Где он?

Дон Хуан сделал широкий жест и показал на область за границами стола. Он провел рукой, как если бы ее тыльной стороной очищал воображаемую поверхность, которая продолжалась за краями стола.

– Нагваль там, – сказал он. – Там! Он окружает остров. Нагваль там, где обитает сила. Мы чувствуем с самого момента рождения, что есть две части нас самих. В момент рождения и некоторое время спустя мы являемся целиком нагвалем… Затем тональ начинает развиваться и становится совершенно необходимым для нашего функционирования. Настолько необходимым, что он замутняет сияние нагваля. Он захлестывает его. С того момента как мы становимся целиком тоналем, мы уже ничего больше не делаем, как только взращиваем его…

Тональ начинается с рождением и кончается со смертью. Но нагваль не кончается никогда. Нагваль не имеет предела»[13]

Самые сметливые читатели уже поняли: тональ – это весь окружающий нас реальный мир, включая нас самих, нашу личность, которая в этом мире выросла и сформировалась. И одновременно сформировала сама этот воспринимаемый нами договорной мир, про который вне наблюдения и наблюдателя мы сказать ничего не можем (просто некому говорить). А нагваль – это неописуемый квантовый океан потенции и всевозможности, в котором нет ничего реального, но только он один по-настоящему реален! Из этого океана возможностей возникаем мы и окукливаемся в то, что по привычке называем реальным миром, который окружает каждого из нас коконом личного восприятия. Вот как описывает это старый индеец:

«Маги говорят, что мы находимся внутри пузыря. Это тот пузырь, в который мы были помещены в момент своего рождения. Сначала пузырь открыт, но затем он начинает закрываться, пока не запаяет нас внутри себя. Этот пузырь является нашим восприятием. Мы живем внутри этого пузыря всю свою жизнь. А то, что мы видим на его круглых стенах, является нашим собственным отражением».

– А вы читали Кастанеду? – спросил я однажды Менского, когда в очередной раз мы сидели в кафе Дома ученых на Пречистенке и, как обычно, разговаривали про странности квантовой механики.

Оказалось, читал. Но книг у Кастанеды много и, видимо, до нужной – той, где говорится о тонале и нагвале, Михаил Борисович так и не добрался. Но, по сути, доктор физических наук говорил о том же самом, что и старый индеец из племени яки.

Так чем же дополнил добрый Менский концепцию Эверетта? И как вписал сознание в свою картину мира?

Физик-теоретик Менский пошел на радикальный шаг. Он сказал, что разделение альтернатив, которое мы называем коллапсом волновой функции – это и есть сознание. И скромно назвал данный теоретический конструкт расширенной концепцией Эверетта, а я, отдавая должное этому замечательному человеку, называю сию идею концепцией Эверетта-Менского.

Менский, как вы уже поняли, отождествил сознание и редукцию волновой функции. Он заявил буквально следующее: наш мир – квантовый в своей основе, а в квантовом мире редукции нет, она есть только в сознании. Собственно говоря, сознание и есть редукция, именно поэтому мы и видим только один вариант развития квантовых событий и не видим остальных.

Более того, по Менскому, сознание не является функцией мозга. Оно даже не принадлежит мозгу. Оно принадлежит миру в целом, а аппарат мозга сознание просто использует – как сложно устроенный радиоприемник использует радиоволны, извлекая из электромагнитного океана то, на что настроен.

– В таком случае возникает вопрос, а сознание одно или сознаний много? – спросил я однажды Менского, и тот, помнится, затруднился с ответом. Но если подумать…

Часть 3. Если сильно подумать

Если бы не я, кто бы слышал гром,

Видел муравья, млел перед костром?

Не было б, наверное, ни тверди, ни ночи, ни дня,

Если бы не я…

Георгий Васильев

Глава 1
Ломоть сознания

Откуда вообще берется сознание у материи? И почему некоторых физиков выносит при раздумьях о сознании чуть ли не в религию? Давайте останемся твердыми материалистами, атеистами и позитивистами и просто начнем рассуждать про квантовую механику с этих здравых позиций, может, нас тоже вынесет в мистику или религию?

Наверное, никто не сомневается, что мозг и сознание как-то связаны. Ученые, а также образованная публика справедливо полагают, что сознание порождается мозгом. По науке, сознание есть отражение мира высокоорганизованной материей. Способность к отражению вообще является свойством материи на всех уровнях ее организации. Физическая материя имеет свойство отражения, и лучший пример тут – оптика с ее знакомым нам со школьной скамьи законом «угол падения равен углу отражения». Бывает отражение на уровне химии. Есть отражение на уровне биохимии и биологии, когда реплицируется (копируется), отражаясь в оригинале, молекула ДНК. Есть примитивные реакции одноклеточных на свет, к которому они ползут, выпуская свои ложноножки. Наконец, есть отражение мира в специальной «аналитической железе», именуемой мозгом, которая для того и существует, чтобы управлять телом и спасать его в зависимости от ситуаций внешнего мира.

Это понятно. Но это ничего не объясняет.

Что есть сознание как таковое? Почему я вижу и ощущаю целый мир? Ведь физические сигналы и физические реакции на них – это одно, а ощущения от сигналов – это совершенно другое.

– А шумит ли лес, в котором никого нет? – классический вопрос философии. Ответ на который таков:

– Нет, не шумит! Звуки, шум – это наши ощущения от звуковых волн определенных (воспринимаемых ухом) частот. Нет слушателя – нет шума. А есть только акустические колебания, которые никто не слышит.

– А существует ли отражение в зеркале, если в комнате никого нет? – Второй вопрос из той же серии философских коанов. И ответ на него тот же:

– Нет. Изображения в зеркале нет, хотя зеркало по-прежнему продолжает отражать электромагнитные волны. Но нет линзы зрачка, которая может эти отраженные волны преломить и выстроить перевернутое изображение на экранчике сетчатки глаза.

– А существует ли объективно в природе, то есть независимо от нас, красное? Или желтое?

– Нет. В природе есть только электромагнитные колебания с длиной волны в 700 нанометров, которые мы воспринимаем как красный цвет. Причем еще важнее вопрос: а мое «красное» точно такое же, как «красное» другого человека? И вот на этот вопрос ответа уже нет. Потому что мы не можем вытащить из головы свои ощущения, положить их на стол и сравнить с чужими. Одинаково мы воспринимаем одну и ту же волну или нет – бог весть. Мы можем только сравнить длины волн и их словесную маркировку («красное»), но совпадает ли мое красное с твоим красным, читатель, сказать принципиально невозможно.

Странная штука, эти самоосознаваемые ощущения!

Зачем они понадобились природе и эволюции? Почему отражательные процессы в головном мозге, эти аналитические расчеты в моем биологическом компьютере не происходят «в темноте» – как у обычного компьютера, который исправно считает и с этой точки зрения обладает недюжинным интеллектом (может выиграть в шахматы у гроссмейстера), но при этом «живет» в «полной черноте безмыслия», то есть не обладает сознанием? Почему он может так существовать, а мы нет?

Откуда вообще набирается сознание в мозгу? У взрослого оно есть. У ребенка оно есть. Но в какой момент у материи, скроенной из неживых атомов, появляется сознание? И откуда оно берется? Оно же не включается сразу внезапно и в некоей законченной полноте, например, в момент рождения. Оно как-то постепенно накапливается у младенца.

Есть редкие уникумы, которые помнят себя в младенчестве, в момент рождения и даже раньше – в утробе. Сделаем тогда еще шаг назад и спросим себя – а у сгустка делящихся клеток в матке или просто у оплодотворенной яйцеклетки есть какое-то первичное сознание?

Хочется ответить, что у одноклеточных сознания нет. Но тогда вновь встает тот же вопрос: а в какой же момент оно появляется у эмбриона человека? С двадцати клеток? С миллиона? С миллиарда? А может, сознание как некая первичная сущность этого мира имманентно присуща материи? И сознание не выпрыгивает как чертик из табакерки, а просто «сгущается» по мере роста и усложнения материального объекта?

Менский сформулировад, что сознание – это просто разделение альтернатив как таковое. И потому в каждом классическом мире – свое сознание, свой наблюдатель. Точнее, сознание, по Менскому, одно на все миры, но «компонента сознания» своя в каждом классическом мире. И наше Я – лишь компонента мирового сознания.[14]

Я пошел дальше Менского и сформулировал еще четче, что такое сознание. Сознание – это не просто туманное «разделение альтернатив». Сознание, по Никонову, это и есть классический физический мир, который мы воспринимаем. То есть весь воспринимаемый мир вокруг нас и есть сознание!

То, что вы видите и осознаете вокруг себя, включая самого себя, и есть сущность вашего сознания с центроосновой в виде вашего Я. Сознание не может не воспринимать ничего, тогда его попросту нет. Сознанию, чтобы проявиться (для самого себя), нужно что-то «пережевывать»! Что-то – это окружающий мир. Без мира нет сознания. Из него-то сознание и складывается. То, что мы воспринимаем, и есть мы. А воспринимаем мы классическую реальность. Твердую. Конкретную. И при этом иллюзорную, поскольку воспринимаем мы не фактическую реальность, а наши представления о ней и наши ощущения от нее. Повторюсь: мы живем в мире собственного восприятия, ничего не зная о том, что происходит за границами нашего пузыря. В квантовой же реальности, находящейся за границами этого пузыря, ничего «твердого» нет. Она принципиально невыражаема в «терминах» наших ощущений.

Если сознанию нечего «пережевывать», оно распадается, ибо только поступающие извне мировые сигналы наполняют и формируют его. Распад, растворение сознания и человеческого Я хорошо наблюдается в сурдокамерах, вы наверняка слышали о них. Там сознание растворяется, разваливается на осколки, поскольку исчезает сам внешний мир, который является главным существом сознания.

Сурдокамера – это камера сенсорной депривации, то есть устройство, которое отсекает сознание от всех внешних сигналов. Она была придумана с целью ответа на вопрос, может ли существовать «голое сознание», то есть в состоянии ли психика функционировать в «бестелесной среде».

Депривационную камеру изобрел американский нейробиолог Джон Лилли, который весьма интересовался проблемами мышления и сознания. Это был очень интересный дядька с лицом сумасшедшего ученого, чем-то неуловимо напоминающий Эммета Брауна из фильма «Назад в будущее». Лилли был весьма многогранной личностью, к нему в гости частенько захаживал нобелевский лауреат по физике Ричард Фейнман, который также интересовался проблемами сознания, а о квантовой механике сказал следующее: «Если вы думаете, что понимаете квантовую механику, тогда вы не понимаете квантовую механику… Квантовую механику не понимает никто»[15].

Так вот, Джон Лилли изобрел и построил первую камеру, которая отсекала от мозга 90 % поступающих в него сигналов. Он назвал ее флотационным баком. Флотационный бак представляет собой большой звукоизолированный бак с крышкой, в который заливается теплая соленая вода.

Человек плавает в этом баке в полной темноте, в полной тишине, тактильные и тепловые ощущения тоже практически обнулены, поскольку вода в баке равна температуре тела, которое пребывает на поверхности раствора английской соли практически в невесомости. Иными словами, все внешние сигналы от органов чувств обрезаны, поскольку на «датчики» они просто не подаются. Понятно, что мы не можем отрезать внутренние сигналы, поступающие в мозг из тела, но они и так не шибко представлены в сознании, которое ориентировано в основном на внешний мир.

И вот этого хватает, чтобы сознание, оставшись без внешнего мира, начало рассыпаться. Поначалу человеку в такой камере весьма комфортно. Минут пятнадцать. Мозг отдыхает, человек релаксирует. А потом постепенно начинаются галлюцинации. Чтобы спастись от пустоты небытия, мозг начинает активно достраивать мир, взрываясь цветным бредом. Любую мысль в сурдокамере трудно удержать, некоторые испытуемые теряли сознание – сознание без внешнего мира просто отключалось.

Сам Джон Лилли неоднократно погружался в свою камеру и по результатам экспериментов написал: «…произошло много такого, что заставило меня поставить радикальные вопросы о самой природе реальности и различных форм восприятия. Тогда я понял, что интерпретировать все новые переживания внутри камеры только как проекции было самонадеянным»

Но самым, на мой взгляд, интересным мировоззренческим выводом Лилли был такой:

«После десяти лет исследований в камере я сформулировал рабочее правило: любое убеждение либо является истинным, либо становится истинным в сознании только в пределах экспериментально определенных границ. Сами же эти границы, в свою очередь, – тоже убеждения, которые необходимо преодолеть! Границы убеждений субъекта определяют границы его возможных переживаний… Если вы верите, что в вашем теле, в ваших взаимоотношениях с другими людьми, в политических институтах и во вселенной существует неизвестное, – вы максимально свободны».

Иными словами, границы реального и достижимого есть всего лишь косная убежденность в них, а имея веру с гречишное зерно, вы можете двигать горы. Вот только где взять эту веру, если каждый из нас с младых ногтей убежден: ходить по воде и уж тем более двигать горы одним желанием попросту невозможно, магии и колдовства не бывает, дальнодействия не существует, в мире есть определенные жесткие законы физики, мир тверд и прочен. Ничего не поделаешь, таков наш мир. Который – мы.

Не о том ли самом говорил и шаман из племени яки: человек рождается без границ – бескрайним нагвалем, великой безграничной возможностью, а потом окукливается в пузырь границ, договоренностей и убеждений, которые и составляют его мир. А по факту являются отражением на экране пузыря его восприятия.

Меж тем, иногда внутренняя убежденность бывает столь сильна, что побеждает реальность, сама становясь ею. Как это объясняет физик Менский, мы увидим ниже… А пока несколько примеров.

Однажды Юрий Горный – человек удивительных способностей, но при этом отчаянный материалист и атеист – предсказал совершенно нетривиальный результат футбольного матча. Он был настолько уверен в счете, что даже поспорил на деньги и выиграл. На мой вопрос, как он умудрился угадать столь странный и ниоткуда не вытекающий результат, ответил:

– Просто была дикая уверенность, что именно так и будет. Я не знаю, откуда она пришла.

Второй пример. Когда я был маленький, школьники делали дротики из булавки, четырех спичек, ниток, изоленты и бумажки, которая складывалась в виде четырехлопастного хвостовика и служила оперением. Летали эти дротики не очень хорошо, и я, как сейчас помню, поставив на диване несколько пластмассовых игрушек, включая Чебурашку и Крокодила Гену, метал в них свое самопальное оружие. Дротик летал куда угодно, только не туда, куда целился маленький Сашечка. Но очень хотелось попасть, и после какого-то броска я вдруг словно слился с этим дротиком, почувствовав странную непоколебимую убежденность, что вот сейчас я совершенно точно попаду в желтый вращающийся пластмассовый глаз с черным зрачком Крокодила Гены. И попал.

Удивительным было не то, что попал, это могло быть простой случайностью. Удивительным и трудно описуемым было это необыкновенное странное чувство непоколебимой убежденности в том, что вот сейчас произойдет то, что должно произойти. Я это чувство запомнил на всю жизнь. Измененное состояние сознания.

Бывают такие удивительные состояния невероятной убежденности в том, что все случится именно так, а не иначе! И я с такими феноменами сталкивался, и другие люди. И каждый раз эта странная «дикая уверенность» брала верх над невозможностью. Точнее, над маловероятностью. Как и почему это получается по Менскому, мы опять-таки увидим позже, а равно поймем, отчего ключевую роль в этом играет эмоциональная вовлеченность.

А пока замечу, возвращаясь к теме, что депривация может не быть настолько полной, как в камере Джона Лилли, порой достаточно частичной – такой, например, как у космонавтов на МКС. По понятным причинам при Советской власти космонавты не очень распространялись о том, какие штуки выкидывало их сознание во время пребывания на орбите, чтобы их не сочли сумасшедшими и не поперли из отряда космонавтов, и тогда прощай высокие зарплаты, дефицитные продукты, финские сапоги для жены, звания Героев Советского Союза и внеочередные автомобили «Волга». Но потом времена изменились, «Волги» потеряли актуальность вместе с Советским Союзом, и некоторые из космонавтов начали делиться рассказами, как их плющило на орбите.

Первым, насколько мне известно, про это поведал публике космонавт Сергей Кричевский. Он рассказал, что с его коллегой приключилось следующее: в одном из полетов тот вдруг превратился в животное. И не просто в животное, он буквально стал динозавром. Причем, об этом свидетельствовали все его органы чувств. Он видел, слышал и чувствовал, как переступает своими лапами с перепонками и когтями, пробираясь через растительность. Он словно подключился к какому-то общему информационному полю и поймал чужую передачу.

Отождествление космонавта с этим ящером было исключительно полным. Вот как рассказ коллеги передает Кричевский, сделавший об этом феномене доклад в Новосибирске: «Слияние его “я” с биологической сущностью древнего ящера было настолько полным, что все ощущения этого, казалось бы, чужеродного для него организма воспринимались им как его собственные. Кожей спины он чувствовал, как вздыбливаются роговые пластины на хребте. О пронзительном крике, вырвавшемся из пасти, он мог сказать: “Это был мой крик…”».


https://www.kp.ru/daily/23579.4/44499/


Однажды «КП» поделилась подобного рода откровениями космонавтов, вернувшихся с орбиты. В статье, в частности, приведены следующие интересные воспоминания космонавта Владислава Волкова, который смотрел в иллюминатор: «Внизу летела земная ночь. И вдруг из этой ночи донесся… лай собаки. А потом стал отчетливо слышен плач ребенка! И какие-то голоса. Объяснить все это невозможно. Почувствовать – да!»

А руководитель ансамбля электроинструментов Вячеслав Мещерин, концерт которого прослушал Юрий Гагарин, рассказывал, как первый космонавт признался ему, что во время полета в его голове звучала очень похожая музыка.

Георгий Гречко поделился, как во время пролета над Магеллановым проливом, где погибло множество кораблей, вдруг ощутил состояние опасности. Я намеренно немного неуклюже сформулировал последнее предложение – вместо «ощутил опасность» или «возникло чувство опасности» написал «ощутил состояние». Я хочу, чтобы слово «состояние» вы запомнили, оно нам в дальнейшем пригодится.

У других космонавтов были аналогичные видения: кому-то казалось, что он попал в другое время и другую цивилизацию. Но один необ

Скачать книгу

© Никонов А. П., текст

© ООО «Издательство АСТ»

От автора. С надеждой на понимание

Вы держите в руках заключительную книгу трилогии. Трилогии, впрочем, весьма формальной, все три книги вполне самостоятельны и связаны между собой только наукой, тайнами и некоторыми героями. Первая книга – «Невозможное в науке» является научно-популярным детективом и посвящена попытке раскрыть некоторые таинственные явления, которые до сей поры научной разгадки не имели. Вторая книга – «Антинаучная физика» родилась в процессе размышления над природой сознания и стала сборником необъяснимых случаев, к которым наука вообще не подступала и даже само их существование отрицает. Между тем количество наблюдавших эти странные явления и ставших свидетелями необъяснимых происшествий слишком велико, чтобы от них просто отмахнуться. Поэтому в данной книге автор не только использует подходящие свидетельства, но и вольно применяет к этим происшествиям способ, который наука когда-то применила к изучению феномена шаровой молнии: если уж нельзя изучать саму шаровую молнию (в силу ее редкости и невозможности воспроизведения в лаборатории), будем изучать свидетельские показания о ней, чтобы набрать статистику. Если показания свидетелей о размерах, светимости, долгоживучести и других характеристиках шаровой молнии лягут на кривую нормального распределения, значит, мы имеем дело с природным явлением… Эх, вот бы кто-нибудь когда-нибудь всерьез принял этот подход к тем явлениям, которые я поэтично назвал «разрывами в самой ткани реальности»!

Дарю науке идею!

Ну, а мы с вами приступим к освоению нового материла.

«Сознание – это иллюзия реальности. А реальность – это иллюзия сознания».

Будда Шакьямуни, лично автору

«Нет ничего более интуитивно понятного и более непонятного при ближайшем рассмотрении, чем физическая реальность. Потому что она целиком располагается в сознании, а сознание находится в ней».

Александр Никонов, лично Будде

Потеря мира. Вместо пролога

Долго думал, с чего начать книгу на столь сложную, но дико интересную тему – про кванты. Начну, пожалуй, вот с чего…

Как-то один знакомый психотерапевт за чашкой чая бросил загадочную фразу о том, что человек может быть «разотождествлен со своими чувствами». Я тогда просто отмахнулся от этой фразы: ну, как такое может быть? Как можно не чувствовать чувства, если они есть? Абсурд! Вечно эти «мозгоправы» что-нибудь придумают, чтобы брать по 100 долларов в час с несчастных граждан. Ну, как это вообще возможно – не ощущать собственных чувств и эмоций?

Но потом узнал, что такое действительно бывает. Проводились следующие эксперименты: человека погружали в гипнотический сон, внушали ему какую-нибудь страшную ситуацию, чтобы он испытал сильный испуг, например, что за ним гонится медведь. И человек дико пугался. А потом щелчком пальцев его из состояния транса выводили.

– Как вы себя чувствуете? – спрашивает гипнотизер.

– Нормально, – говорит человек. А самого трясет от страха, сердце колотится, зрачки огромные, лицо белое как мел.

«Нормально» он себя чувствовал, потому что сидел в кабинете, где бояться было нечего. Тихий свет, удобное кресло… Но его тело находилось в состоянии стресса благодаря выброшенным в кровь гормонам.

То есть тело боялось, а человек свой страх не осознавал. Такое, кстати, бывает не только после гипноза, но и «наяву»: когда человека гложет чувство вины или страха, а мозг от этого чувства отказался, чтобы не страдать, и его не осознает. Но тело-то продолжает работать в форсажном режиме, постепенно «перегорая» и нарабатывая соматические проблемы. Задача психотерапевта в данном случае – воссоединить человека с его чувством, помочь осознать его, пережить, выработать и идти дальше, чтобы начался процесс самовосстановления организма, уже поврежденного и накопившего дисфункции из-за перманентного стресса.

Это очень тонкий момент, между прочим. Трудный. Я имею в виду не сам процесс работы психотерапевта по воссоединению тела и разума, а то, что для общего понимания ситуации этот момент довольно сложен. Философски непрост. Как и квантовая механика, кстати.

Смотрите. Вот пошла телесная реакция: впрыснут в кровоток целый коктейль веществ, которые должны реализовать в сознании страх, для чего они и предназначены. И тело показывает все признаки страха: кровь отливает от кожных покровов, зрачки расширяются, мышцы находятся в тонусе. А сам человек страха на испытывает. Между телом и сознанием образовался разрыв. Расшунтировало.

Так иногда человек не чувствует даже боли. Есть серьезное ранение, сигнал идет, а сознание боли не ощущает.

А бывает наоборот, человек чувствует, что нога болит, а болеть нечему: нога ампутирована. Это называется фантомная боль.

Почему материальные сигналы есть, а в реальности человек боли и страха не испытывает, или обратная ситуация: материального сигнала нет, а боль чувствуется? И что такое в данном случае «реальность»? Какая реальность более реальна – внешняя или внутренняя?

Что в данном случае реальность – испытываемое сознанием ощущение или материальные компоненты сигнала (гормоны, электрические импульсы, бегущие по нервам)?

Мы за триста лет существования науки настолько привыкли к так называемой объективности мира и эфемерности сознания, его обманчивости и иллюзорности, что нам легче признать реальными «твердые предметы», чем собственные ощущения. Ощущения могут обманывать, мозг может галлюцинировать, а табуретка – она и есть табуретка. Твердая и никуда не денется.

Но ведь иных инструментов восприятия твердого мира, кроме наших ощущений, у сознания нет. Как верно заметил однажды великий француз Рене Декарт, «я мыслю, следовательно, я существую. Только это по-настоящему проверяемо. Мыслю – существую. А если не мыслю – некому и существовать. То есть проверяемое существование всегда персонально. А значит, необъективно, ведь персоналия – это субъект, по определению склонный к иллюзиям.

Кстати, а что значит «существует»?

И еще вопрос: а иллюзия существует?

Существовать – значит иметь свойства и через них как-то проявлять себя в этом мире, что понятно. Но в чьих глазах? И если нет ничьих глаз, если нет наблюдателя, как установить, существует ли предмет или мир вообще? И кто будет это устанавливать?

Еще хотелось бы выяснить, бывает ли «объективная иллюзия» или это оксюморон?

Существует ряд оптических иллюзий, которые любят приводить авторы популярных книжек по физике. С одной стороны, это и вправду иллюзии, то есть чистая кажимость, с другой, они кажутся всем людях, а стало быть, их вполне можно назвать «объективными иллюзиями». Самые известные и ходовые примеры – ниже.

Рис. 1

Рис. 2

При взгляде на вторую картинку кажется, что клетки А и В разного оттенка. На самом деле оттенок серого у этих клеток совершенно одинаков. Но иллюзия сильнейшая, потому что мозг достраивает реальность по своим представлениям о ней, используя и комбинируя прежние знания о том, что:

• шахматные клетки равномерно чередуются,

• они разные по цвету,

• тень должна затемнять.

При взгляде же на первую картинку кажется, будто нижний отрезок длиннее верхнего. Но если мы возьмем твердую честную линейку и измерим оба отрезка, то убедимся в их равной длине. Ура! Наука восторжествовала над несовершенством наших чувств!

Но ведь убедиться в равной длине отрезков при взгляде на линейку нам тоже помогли наши чувства! Никакого другого инструмента, кроме чувств, у нашего сознания для познания мира нет. Мы живем в мире чувств и ощущений. Для нас только этот иллюзорный мир и реален. Ничего другого для нас нет, мы ведь видим не внешний мир, а только его восприятие нашими органами чувств, и каков мир «на самом деле», мы не знаем. Мы даже не знаем, есть ли он, можем только предполагать, постулировать его наличие, строго говоря. Единственное, в чем мы твердо можем удостовериться, так это в наличии собственных ощущений и мыслей. Как наш друг Декарт.

Тем не менее на тонкие вопросы ощущений наука до начала XX века не обращала внимания, беззаботно отмахиваясь от них. К чему вся эта бессмысленная схоластика и пустое философствование, если вот он, реальный мир вокруг нас?! Упадешь – набьешь шишку, так тебе и надо! Уравнения Ньютона прекрасно работают, угол падения равен углу отражения, Земля притягивает, чего еще желать?

И только в XX веке физики начали «чесать репу», а президент Лондонского общества физиков Артур Эддингтон после всех триумфальных успехов квантовой науки начала прошлого века признал, что единственное, что мы действительно знаем об окружающей реальности, состоит в том, что часть ее обладает сознанием; да и то знаем это лишь потому, что непосредственно осознаем свое сознание.

Но что это вообще за вопрос такой дурацкий – «существует ли реальность»? Да вот она – вокруг нас, шишки набивает! И что такое реальность, каждому школьнику прекрасно известно. Материя! Отсюда и материализм. Вон дедушка Ленин учил пионеров, что «материя есть объективная реальность, данная нам в ощущении»[1]. Я лично это со школьной скамьи помню, ночью подними…

Но обратите внимание, что ведь и в этом классическом и вполне материалистическом определении вдруг неожиданно вылезают ощущения. И, чтобы избавиться от этого «идеализма», материалистическая философия расставила приоритеты: материя первична, а сознание – продукт сложно организованной материи, и оно вторично, оно возникло в результате эволюции. Нормально. Правда, догмат о вторичности – чисто религиозный и ниоткуда не вытекающий, но он настолько вошел в плоть и кровь современной науки и западной цивилизации, что нами даже не замечается. А ведь это – чистой воды аксиоматика, то есть недоказуемое предположение, принимаемое на веру, как и само существование мира за пределами нашего сознания.

Но, в общем, это работает. Точнее, работало до поры до времени…

Как я уже сказал, до начала XX века физика изучала мир в отрыве от сознания. То есть в изучаемом наукой мире сознания как бы не было, оно было словно «вне мира» и как раз занималось постижением мира. При этом оставалось неясным, является ли сознание частью мира, а значит, вносит ли помеху в его изучение. Примерно, как электрическое сопротивление амперметра, вносящее собой помеху в измерение электрического тока (амперметр ведь не меряет силу тока в изучаемой цепи, он меряет силу тока в цепи с амперметром). С одной стороны, разумеется, сознание – это часть мира, а как иначе! С другой, философия говорила: есть материальный мир, а есть мир идеальный – это мир наших мыслей, и он совершенно нематериален.

Я до сих пор помню ту страницу из учебника марксистской философии, где говорилось про критику разных оппортунистических философий. Там премудрые марксисты, сами будучи материалистами, критиковали в том числе так называемых вульгарных материалистов, которые уверяли, будто «мысль материальна». Кстати, эту наиглупейшую фразу, которую я взял в кавычки, до сих пор часто приходится слышать от экзальтированных и особо духовных барышень, склонных к эзотерике. Они являются любителями восточных практик, верят в бога и при этом самым парадоксальным образом повторяют чушь самых примитивных материалистов про материальность мысли!..

Идею о том, что мысль материальна, отважные марксистско-ленинские философы разбивали простейшим аргументом:

– Мысль, хоть и продукт человеческого тела, не материальна, ведь ее нельзя собрать в пробирку, как желчь, также выделяемую телом.

Логично, что ж…

Получалось следующее: есть мир материи и есть наш внутренний мир мыслей и ощущений. «Однако, материя первична, не забывайте!» – строго поднимали вверх палец марксисты. А тех, кто про это забывал, сбрасывали с колоколен.

Физики такого не допускали! Они своих оппонентов с высоты не кидали, но, правда, и философией в массе своей не сильно увлекались за некоторым небольшим исключением, о котором мы еще поговорим. А остальным вполне хватало математики.

Но в XX веке на арену вышла квантовая механика и за ручку вывела на сцену общественного внимания те самые коварные вопросы, которые раньше скромно стояли за занавесом. И главными из них оказались вопросы реальности и сознания. Наконец-то физика, изучающая мир, вплотную столкнулась с сознанием, ранее не замечаемым, хотя и бывшем у всех на виду, ведь именно оно, сознание, и изучало мир, вмещая его в себя. Но при этом притворялось, что его как бы нет и мир нужно изучать «объективно», без учета субъективности, присущей сознанию. И вот теперь сознание само стало фактором, в который физика уперлась.

Это было своего рода мировоззренческой катастрофой. Недаром тьма-тьмущая великих физиков XX века, столкнувшись с проблемой интерпретации квантовой механики, то есть желая понять ее физический смысл, ударилась в мистицизм и изучение восточной философии. И какие это были физики! Столпы науки! Настоящие титаны, творившие науку о квантах: Бор, Гейзенберг, Планк, Паули, Йордан, Дирак, Борн, Эверетт, Шрёдингер и даже Эйнштейн – все они морщили лбы, пытаясь понять, что же они такое сотворили и насколько изменился в глазах ученых сам вопрос о существовании физической реальности.

Вот, например, что пишут российские публикаторы, представляя нашему читателю одну из философских работ Шрёдингера: «Существенно то, что все создатели квантовой механики, в том числе и Э. Шрёдингер, наряду с естественнонаучными исследованиями, вынуждены были размышлять над философскими проблемами, поставленными новой физикой… естественнонаучная проблематика привела их к переосмыслению фундаментальных философских понятий, таких, как «реальность», «мир», «действительность», «сознание», «познающий субъект», «нравственный закон» и др.»[2].

На этом, пожалуй, можно было бы и закончить пролог, но, поскольку в нем я припомнил свои школьные годы и дедушку Ленина, с него я, пожалуй, и начну первую часть книги. Воздадим должное старику, его гопническим повадкам в философии и его неистовой материалистической нетерпимости. В конце концов, я родился и вырос в те годы, когда любой диплом и любую диссертацию нужно было начинать с цитат из основоположников, будь они неладны, с отсылок к очередному съезду партии, работам Ленина и прочей мерзости.

Тряхну стариной! Главное, чтобы старина не отвалилась…

Часть 1. Ледокол реальности

Будто бы на ниточке, навитой на гвозде,

Ползает планета по небесной борозде

В сумрачном безмолвии,

в холодной беспредельной пустоте.

А. Иващенко, Г. Васильев

Глава 1

Ленин и квантовая механика

Интересно, что открытие радиоактивности и электрона, рождение квантовой механики и теории относительности пришлись на эпоху становления Ильича нашего, Ульянова-Ленина. Вот тут бы мне и привести какую-нибудь цитату Ленина о квантовой механике, но в голову приходит только его изречение про электрон, который, с точки зрения всезнающего дедушки, «также неисчерпаем, как и атом».[3]

Критикуя всякие буржуазные и потому весьма реакционные и вредные для пролетариата теории (у рабочего человека от них может голова сломаться), неистовый Ильич на голубом глазу полагал, будто существует объективная истина, и один только этот догмат безошибочно относит весь марксизм-ленинизм к религии и выносит за рамки науки. Наука ведь не ищет истину, она строит модели – такова философия современной научной мысли. И, кстати, это понимание сложилось только после появления эйнштейновской относительности и оформления квантовой механики, а до того физики вообще и Эйнштейн, в частности, искали именно Истину и веровали в нее. Эйнштейн так до конца и не согласился с завершенностью квантовой механики и эфемерностью физической реальности и упорно продолжал искать твердую Истину, забыв, что все относительно.

Впрочем, в философию мы особо углубляться не станем, и вождя мирового пролетариата я упомянул здесь только вот по какой причине…

Поскольку речь у нас в книге пойдет о сознании, я бы хотел обратить внимание почтенной публики на следующий интересный момент: мало кто знает, но в физике мысленные эксперименты порой могут играть роль не меньшую, а иногда и большую, чем эксперименты лабораторные, осуществленные в железе. Мы с этим парадоксом на примере великих мысленных экспериментов (в том числе придуманных автором этой книги) еще столкнемся не раз в дальнейшем, а пока расскажу об одном великом мысленном эксперименте физика Эрнста Маха. Того самого Маха, именем которого названа безразмерная величина скорости в гидродинамике и газодинамике (т. н. «число Маха»). Того самого Маха, философия которого настолько возмутила Ленина, что подвигла написать работу, которую в мое время изучали в школе на уроках обществоведения. Ее давали школьникам, поскольку сия работа считалась знаковой в коммунистической философии, и называлась она «Материализм и эмпириокритицизм. Критические заметки об одной реакционной философии».

Эмпириокритицизм – это второе название махизма. Соответственно, в своей работе дедушка Ленин бесстрашно бичевал Маха и его философию. Мах был известным физиком и членом Венской императорской академии наук. Ленин был неудавшимся юристом, физикой никогда не занимался, но решил старого физика поучить. И зря. Потому что Мах был совсем не прост! Именно идеи Маха побудили Эйнштейна создать две свои теории относительности – специальную и общую, о чем мало кто знает. Причем, создавая общую теорию относительности, Эйнштейн даже написал Маху письмо о том, что его, Маха, принципы непременно восторжествуют в новой теории Эйнштейна. Потому что именно Мах впервые отказался от ньютоновского пространственного абсолютизма и принял принцип релятивизма (относительности).

За что же невзлюбил Ленин Маха? Ведь Мах был вполне себе рационалистом и позитивистом, то есть считал, что знание должно быть эмпирическим, а мир надо изучать экспериментально, да физик и не мог не быть позитивистом! Правда, он говорил и о важности мысленного эксперимента. А вообще взгляды Маха, так взбесившие Ленина и весь мировой пролетариат, были реакцией великого физика на кризис в физике, постепенно сложившийся к концу XIX века.

Однако нефизик Ленин специально в 1908 году приехал в Лондон, чтобы расправиться с Махом путем написания своего философского труда. И наскоро расправился, используя такие сильные аргументы и выражения, как «безмозглая философия Маха», «нелепая и реакционная теория», «учено-философская тарабарщина», «профессорская галиматья», «претенциозный вздор» и т. п. Резкий был мужик!

Лезть в ленинскую философскую скучищу, слегка разбавленную ругательствами, мы не будем, поскольку книжка наша посвящена не столько философии, сколько физике и вообще мы приличные люди. Поэтому, наступив на Ленина, поговорим далее про Маха и его мысленный опыт, мощно качнувший физику того времени и давший Эйнштейну путеводный пинок к научному бессмертию, а Ленину в итоге – повод для пролетарской ярости.

Разговор придется начать с ведра. И с Ньютона. И с абсолютной безысходности бытия, от которой ломит зубы…

Мне, честно говоря, удивительно, что примерно с восемнадцатого века параллельно бурному развитию науки по Европе семимильными шагами начал распространяться атеизм. Понятно, что развитым интеллектуалам той поры библейские сказки и малограмотные проповедники уже казались смешными, поэтому французские философы-просветители начали религию всячески высмеивать. Но ведь строго говоря, физика XVII–XIX веков не оставляла атеистам никакой надежды! Мы, люди современности, привыкли, что наука противостоит религии и всячески ее разоблачает. Но, если вдуматься, ведь нет ничего страшнее и религиознее ньютоновской физики! Она ведь фатальна. Точнее, фаталистична.

Ньютоновская физика совершенно кошмарна и абсолютно безальтернативна, если вдуматься. Она не только не оставляет человеку свободной воли, но и самым парадоксальным образом научно доказывает существование бога, с одной стороны, а с другой – противоречит основным догматам христианства, которое постулирует свободу воли. Мол, бог дал человеку свободу самим решать, например, куда пойти: налево или направо.

Ньютоновская механика, которую все мы проходили в школе как базу, как первую ступеньку в доме физики, изучала мир твердых тел и их столкновений. Вспомните школьные уроки: шарики на деревянных желобах, параболические траектории на страницах учебника, три закона Ньютона плюс его же закон всемирного тяготения. Скорости, импульсы, моменты количества движения. То, что сейчас проходят дети, когда-то постигали мудрые дяди в париках. И когда прекрасное здание ньютоновской механики было выстроено и проверено практикой, оказалось, что мир – это часы, точнее, огромный часовой механизм с неизменными «шестеренками», который подчиняется железным законам механики. И если бы мы знали координаты и импульсы (скорость и массу) всех частиц во вселенной, то могли бы с любой точностью предсказать будущее на сколь угодно большой срок, будь у нас соответствующие вычислительные мощности. И восстановить прошлое тоже могли бы, запустив уравнения в обратную сторону.

То есть мир трагически фатален.

Впервые я столкнулся со словом «фаталист» на уроке литературы. Так называлась глава в романе Лермонтова «Герой нашего времени», которую мы проходили. Я тогда не знал значения этого слова, а когда узнал, по-детски тяжело задумался. Ведь слово «фаталист» обозначало странного человека, который верит в то, что все в мире предопределено и ничего изменить нельзя. С ньютоновской механикой у меня это тогда никак в голове не пересекалось. Мне чудилась какая-то невидимая книга, в которой неизвестно чья невидимая рука записала невидимыми чернилами невидимый мировой текст, от которого никакие события никоим образом не могли отклониться. Что написано, то и сбудется. Аминь.

А почему? Ведь люди говорят о какой-то свободной воле! Она тоже прописана в невидимых анналах? Тогда какая же это свобода?

Однако именно такая картина вытекала из физики XIX века, которую студенты учили в эпоху Лермонтова, наверняка не отдавая себе отчета в том, что из нее прямо вытекает тотальная детерминированность мира, состоящего из частиц, поскольку все частицы подчиняются законам механики. А раз так, мир фатален! Так говорит наука!

Но при этом возникало два вопроса.

Первый. Ну, если мы, допустим, пусть и теоретически, но можем просчитать и предсказать как будущее, так и прошлое, получается, что предопределен был и этот расчет? А если он покажет какие-то нехорошие события в скором будущем, то почему мы не можем их предотвратить? Например, получив расчетное предсказание, просто взять и не пойти в ту сторону, где на голову упадет кирпич? Или мы непременно туда попремся?.. И дело тут не в том, что нам неоткуда узнать координаты и импульсы всех частиц мироздания и нет мощностей для такого просчета, тут дело в самом принципе: если можно просчитать и узнать, почему нельзя изменить? Что помешает-то повернуть влево, а не вправо? Мы же не бессознательные автоматы, и, если нам скажут: пойдешь направо – умрешь, почему бы, осознав это, не свернуть налево? Получается, что в ньютоновском мире не может быть сознания, а только чистый автоматизм?

Вопрос второй. Мы видим усложнение в мире. В нем существуют немыслимо сложные системы типа организмов. В нем строятся дома там, где раньше их не было. Вон паровоз еще изобрели. Получается, что это все тоже следствие простых механических столкновений частиц, из которых состоим мы и все вокруг? Но это значит, что есть какая-то заранее заданная программа, то есть кто-то таким образом толкнул в изначальный момент все частицы вселенной, чтобы в результате всех последующих соударений их друг с другом получались все более сложные системы. И кто же этот Великий Программист?

Недаром Ньютон верил в бога.

А что есть бог? Бог есть Абсолют. Нечто вечное и неизменное. И то, что исходит от Абсолюта, имеет абсолютные характеристики. Значит, есть абсолютная (истинная) правда, абсолютное Зло и абсолютное Добро с больших букв, абсолютные точки отсчета и пр. И естественно, эта абсолютистская точка зрения привела Ньютона к появлению Абсолюта и в его научной парадигме.

Что же явилось таким Абсолютом в ньютоновской физике? Масса? Скорость? Направление? Все это могло меняться, а тела – перемещаться друг относительно друга. И про относительность скорости науке было известно еще со времен Галилея. Именно Галилей открыл, что в инерциальных системах отсчета никаким образом нельзя определить, находясь внутри системы, движется она или нет. Инерциальная, напомню, это такая система, которая покоится или движется равномерно и прямолинейно. Получается, что движение неотличимо от неподвижности, поскольку движение относительно, а не абсолютно. Если вы утверждаете, что движетесь, вам всегда нужно указать, относительно чего. То же самое, если вы скажете, что покоитесь, вам всегда нужно уточнять, относительно чего. И при движении всегда можно найти такую систему отсчета, относительно которой вы не движетесь, потому равномерное и прямолинейное движение и неотличимо от покоя. Все окей!

А криволинейное? А неравномерное?

Вот на этом-то Ньютон и выскочил из галилеевской относительности! Да, действительно, если человек сидит в закрытой вагонетке, он никакими экспериментами не сможет узнать, движется ли он равномерно и прямолинейно по рельсам или вагонетка стоит на месте. Никакими! А вот для того, чтобы узнать про ускоренное или криволинейное движение, ему даже экспериментов проводить не надо, он узнает об этом просто по своим внутренним ощущениям. Тело само подскажет: если вагонетка будет ускоряться, человека вдавит в кресло; если она затормозит, тело бросит вперед; а если начнет поворачивать или двигаться по окружности, его накренит и прижмет к поручням кресла.

Разве не странно? Ведь движение относительно, и, приняв за систему отсчета (систему координат) саму движущуюся вагонетку, мы с полным правом заявим, что она покоится. В теории! А на практике тело сразу скажет вам, что ни черта подобного, ишь как кидает и в кресло вжимает, не иначе мы на американских горках носимся!

Но почему? Куда вдруг делась относительность движения? Отчего движение с набором скорости или по кривой отличается от движения без изменения скорости и по прямой? Что делает ускоренное движение «абсолютным»?

Ньютон сел под яблоней и, не обращая более никакого внимания на хлопающие по макушке яблоки, поскольку всемирный закон тяготения был уже открыт, зажмурил глаза и представил себе ведро на веревке. И мы сейчас сделаем то же самое, немного напрягшись.

Итак, ведро. С водой. На веревке. Если ведро попридержать, а веревку закрутить вдоль оси, как резинку, приводящую в движение пропеллер фанерного самолетика, а потом отпустить, веревка начнет раскручивать ведро.

Сначала будет раскручиваться только само ведро, а уровень воды в нем будет горизонтальным. Потом стенки ведра постепенно приведут во вращение весь массив воды, и вскоре вода будет вращаться как единое целое с ведром, а ее угловая скорость сравняется со скоростью стенок ведра. При этом поверхность воды примет вогнутую форму. Вы примерно такую наблюдали, когда ложечкой сахар в чае размешивали, только здесь не ложка раскручивает воду, а стенки сосуда.

Ну, а затем произойдет понятный обратный процесс – веревка закрутится в другую сторону до предела, в какой-то момент ведро замрет на мгновение и начнет крутиться в другую сторону. Вода же по инерции будет еще некоторое время крутиться в прежнем направлении, сохраняя воронку на поверхности. Постепенно стенки ведра затормозят воду, по мере этого торможения поверхность воды будет терять свою вогнутость, в какой-то момент массив воды остановится, поверхность примет ровную горизонтальную форму, а затем, увлекаемая стенками, вода начнет крутиться в другом направлении вслед за ведром, а поверхность станет все больше выгибаться.

– Что все это значит? – задумался Ньютон. – Выгибание поверхности воды центробежными силами однозначно показывает нам: вода крутится. Но относительно чего она движется при этом? Относительно ведра? Нет! Когда скорости воды и ведра сравниваются, вода относительно ведра не движется, но имеет вогнутую форму. А вот когда скорости стенок ведра и воды максимально разнятся и вода движется относительно ведра, ее поверхность как раз гладкая и горизонтальная.

Значит, не в ведре дело. Не его нужно брать в качестве системы отсчета. Значит, истинное кручение воды, о котором однозначно свидетельствует образовавшаяся на поверхности воды воронка, происходит относительно чего-то другого. Чего? Что является той абсолютной системой координат, движение относительно которой выгибает воду в ведре?

Ньютон вздохнул, снял парик, почесал побитую яблоками макушку и решил, что та абсолютная и невидимая глазу координатная сетка, относительно которой крутится ведро и которая заставляет воду выгибаться, это пустое пространство.

– Пустое пространство есть абсолютная система невидимых божественных координат! – сказал Исаак наш Ньютон, как отрезал. – Это сцена, на которой материя разыгрывает свой спектакль!

Сильно. Но непонятно.

Что такое пустое пространство? Это же ничего! И как ничего может выгибать воду? Чем? Как пустое пространство воздействует на реальный материальный объект?

К тому же оставался неясным еще один вопрос: если пространство действительно существует как самостоятельная объективная сущность, почему оно воздействует силовым способом только на тела, изменяющие скорость, а на равномерно движущиеся не воздействует? Почему, если абсолютная неподвижная сетка координат, именуемая пространством, действительно существует в реальности, по ней нельзя засечь равномерное движение? Почему только ускоренное? Тут, уж извините, или трусы наденьте, или крестик снимите; или сетка есть, и мы относительно нее меряем скорость, или здесь какая-то натяжечка у вас произошла, дорогой Исаак!

– А может ли вообще существовать пространство без материи? Имеет ли оно вообще какой-то физический смысл отдельно от материи, как самостоятельная сущность? – задумался Мах. Не является ли пространство без материи такой же нелепостью, как алфавит без букв, шахматы без фигур или лед без воды?

И дальше Мах провел свой знаменитый мысленный эксперимент, который смелостью мысли потряс физиков той эпохи, заставив их разделиться на два лагеря.[4]

Представим себе, предположил Мах, что мы имеем некое тело – то же ведро с водой, например, висящее в безбрежном космосе, где вокруг только далекие звезды. И оно начинает вращаться. Как определить, относительно чего оно вращается? Да очень просто – относительно звезд! Если это тело не ведро, а человек, то он увидит, как вокруг него закружилась звездная сфера. И неважно, сколько там звезд – много или мало, да хоть бы всего одна, все равно мы увидим свое вращение.

А если звезд нет?

Если наша воображаемая вселенная абсолютно пуста? Как тогда засечь вращение? Как определить, вращается наше тело или нет, если вокруг ничего, никаких зацепок? В этом случае утверждение про вращение просто не будет иметь смысла! В этом случае вращение просто неотличимо от невращения. И значит, вода в нашем ведре выгибаться не будет (оно же не вращается, по сути), а если это наше тело в скафандре, наши раскинутые руки не будет растаскивать центробежная сила в разные стороны.

А это значит, по мнению Маха, что центробежная сила образуется не пустым пространством, относительно которого мы вращаемся, а всей материей вселенной, всеми теми миллиардами звезд вселенной, которые гравитируют и относительно которых вращается наша масса.

Это была богатая идея! Мах отказался от ненаблюдаемой и неощущаемой координатной сетки пространства, связав пространство с материей в один неразрывный комплекс. Он убрал недвижный мифический Абсолют и заменил его относительностью вселенской материи, заявив: «А если бы во вселенной была всего одна звезда, вода в нашем ведре выгнулась бы совсем-совсем-совсем чуть-чуть, ничтожно мало!»

– Елки-палки! – от неожиданности крякнули тогда физики всего мира и Ленин. И крепко задумались. Идея всем понравилась (кроме Ленина). Она очень понравилась и Эйнштейну.

– Что-то в этом есть, – подумал тогда молодой и смелый работник патентного бюро в Берне. Результат его раздумий нам всем теперь известен и многократно подтвержден экспериментально: две теории относительности как с куста! А началось все с антиленинских идей Маха (что конкретно не понравилось Ленину во взглядах австрийского физика, мы увидим далее).

В дальнейшем уже сам Эйнштейн предложил несколько удивительных мысленных экспериментов, которые сломали физикам головы, причем, один их них был через много лет экспериментально проверен, что самому Эйнштейну представлялось невозможным.

И если Мах связал пространство с материей, то Эйнштейн позже эту связь углубил и показал, как именно они связаны (через искривление пространства массой), а также связал пространство со временем в один пространственно-временной континуум, вслед за Махом раскачав ломом относительности божественный абсолютизм Ньютона. Но это оказались только цветочки. Квантовые ягодки были впереди! Именно квантовая механика демонтировала фатализм ньютоновской механики и отодвинула в сторону бога, определив, что запросто можно обойтись и без него, а заодно поставила вопрос о самом существовании физической реальности.

Глава 2

Сплошное волнение

Вы хорошо представили себе этот мир ньютоновской механики, похожий на неумолимые часы с шестеренками? До боли представили? До ужаса? Мир, в котором ничего нельзя изменить, в котором все происходит с механической предопределенностью, а из причины следует однозначное неизменяемое следствие…

Откуда бы взялся этот мир, столь законченный, завершенный и совершенный, как заведенный брегет с крышкой, забытый на каминной полке? И зачем в таком мире сознание, если и так произойдет все, что должно произойти – с убийственной неизбежностью механической шестерни? В таком мире сознание просто бы не возникло за ненадобностью. Впрочем, о сознании мы еще поговорим…

Все, что окружало Ньютона и физиков его эпохи, – это твердые тела, а также жидкости и газ, также состоящие из атомов, то есть опять-таки твердых неделимых частичек, подчиняющихся законам механики. Две только вещи были непонятными в этом механическом мире: притягивание бумажек натертым о шерсть янтарем и свет.

Свет – это вообще что такое?

Вопрос, конечно, интересный для XVII века. Ньютон считал, что свет – это корпускулы, то есть крохотные частички, испускаемые источником света. Если весь мир состоит из частичек, то почему бы и свету ими не быть? Отражение света от зеркала (угол падения равен углу отражения) – это упругий отскок частичек. Причем частички эти разного размера, полагал Ньютон. Те, что побольше, воспринимаются нами как красный цвет (свет); те, что поменьше – иных цветов радуги. Самые маленькие – голубой и фиолетовый. А смесь разнокалиберных частичек в равной пропорции дает белый цвет (свет). Гениально! И практически в точку даже по размерам.

Но была и другая точка зрения на такое загадочное и вместе с тем обыденное явление, как свет. Некоторые физики небезосновательно думали, что свет – это волна. Эту точку зрения разделял Гюйгенс.

Мысль смелая, поскольку весь механистический ньютоновский мир состоит из частичек, и в нем наблюдается такое явление, как волны, состоящие из коллективного согласованного движения частичек среды, то почему бы свету не быть такими волнами, а? Волны на море – лучший пример согласованного движения частичек среды. Звуковые волны – тоже неплохой. Разница между ними только в том, что морские волны – поперечные, а звуковые – продольные, но это непринципиальное отличие. Главное, что математическая теория волновых колебаний у физиков была. Физики – народ ушлый, они изучали и отдельные физические тела, упруго сталкивающиеся, и их коллективное поведение, которое удобнее было описывать волновыми уравнениями.

Но вопрос тем не менее оставался: все-таки свет – это поток отдельных частиц, летящих прямо, как горошины, или это волновые колебания некоей упругой среды, состоящей из частиц, наподобие звуковых волн в воздухе? И что это за среда?.. А среда, полагал Гюйгенс, это некий все собой заполняющий мировой эфир, который подозрительно напоминал ньютоновское пространство, только был не пустым местом.[5] Может, этот гипотетический мировой эфир и есть та самая абсолютная система координат?

Пока в среде физиков шли эти терки, мимо прокрался Томас Юнг и в 1801 году, в наполеоновскую эпоху, с помощью простейших опытов доказал:

– Ребята! Свет – это волны. Теперь, что хотите, то и делайте! – И сатанински расхохотался.

Пусть читатель извинит меня за мою прямоту, но я рассказываю все, как было. Пусть также искушенный читатель извинит меня за дальнейшие всем известные еще со школьной скамьи подробности, которые излагаются во многих научно-популярных книгах по физике и даже мною в разных книгах были изложены неоднократно. Я имею в виду описания легендарных двухщелевых экспериментов, которые мне снова придется описать и в этой книге тоже. Я же не могу отсылать читателя к другим источникам прямо в середине интересного рассказа. Наверняка есть люди, для которых это внове, ибо они плохо учились в школе, поэтому здесь я еще раз изложу ситуацию с самых азов – так, чтобы поняли даже девочки и двоечники. Мне это удастся легко! Потому что автор обладает редким талантом излагать сложные вещи простым языком. Так что следите за мыслью!..

Двухщелевые эксперименты стали самыми известными экспериментами в физике. Именно они перевернули мир…

Волны, как и любая физическая реальность, имеют свойства, присущие только им… Вообще, давайте разберемся, в чем принципиальное отличие волн от других физических штук типа табуретки или Луны. Луна и табуретка – это физические тела, то есть объекты. Если их швырнуть, они полетят по какой-то траектории. Луну даже швырять не надо, она и так летает вокруг Земли по эллипсовидной орбите.

А волна – это не объект. Волна – это процесс. Процесс согласованного движения мириадов частиц среды, в результате которого по среде бегут те самые волны сгущений или разряжений (в случае продольных волн) или пиков и впадин (в случае волн поперечных).

И процесс распространения волны имеет свои свойства. Волны обладают свойствами рефракции, дифракции и интерференции. То есть они могут огибать препятствия и складываться друг с другом. Там, где складываются горбушки волн, получается волна удвоенной амплитуды (высоты), а если горб встречается с впадинкой – они компенсируют друг друга. И волна гаснет. Ну, и еще, как всякому известно, волны характеризуются частотой (число колебаний в единицу времени) и длиной волны (расстояние между соседними горбами).

Понятно, что у объектов всего этого нет: ни частоты, ни длины волны, ни интерференции – две табуретки не начнут складываться, чтобы при встрече друг с другом образовать табуретку вдвое большего размера.

Хитрый, как сто чертей, Томас Юнг пропустил луч света через две расположенные рядом прорези в светонепроницаемой шторке, и на экране за шторкой образовалась чудесная интерференционная картина.

Если бы свет был частицами, картина на экране была такой.

Рис. 3

А она – вот такая. Волны интерферируют, образуя интерференционную картинку.

Рис. 4

Все! Баста! Разговор окончен! Таким вот простым способом была неопровержимо доказана волновая природа света. Расходимся…

Позже выяснилось, что свет – это электромагнитная волна. И теперь в каждом школьном классе висит чудесная цветная шкала электромагнитных колебаний, начиная от радиоволн и заканчивая жестким гамма-излучением. И примерно в середине этой шкалы есть маленький участок оптического диапазона. Тот самый свет.

Опыт Юнга был поставлен в 1801 году, и весь долгий девятнадцатый век наука знала: свет – это волны. Наверное, колебания некоего светоносного эфира, который мы раньше считали пустотой. Максвелл разработал теорию электромагнетизма, расписав формулы, которые нынче учат в школах и институтах. И все было прекрасно и удивительно в науке физике, которая, базируясь на ньютоновской механике, включала в себя также электродинамику и термодинамику (науку о распространении тепла).

Все было просто превосходно – до тех пор пока не случилась та самая катастрофа.

Вы, скорее всего, даже вспомните ее название из школьного курса. Поскольку то, что случилось, воспринималось именно как крах, физики отразили свои переживания в самом названии проблемы – «ультрафиолетовая катастрофа». Под зданием физики рванула настоящая бомба!

Поначалу не все физики поняли масштабы бедствия. Ньютонианская картина мира, дополненная теорией электромагнетизма Максвелла и термодинамикой Больцмана энд К0, была столь прекрасна, величественна и непротиворечива, что в храме физики к началу XX века заиграла органная музыка и воцарилось чинное благолепие. Что подчеркивается следующим историческим диалогом, который приводят многие авторы научно-популярных книг по физике (и я не исключение, потому вновь прошу прощения у тех, кто знает, о чем пойдет речь).

Диалог этот состоялся в 1874 году в стенах Мюнхенского университета между молодым человеком, выбиравшим свою жизненную стезю, и профессором физики Филиппом Жоли. Юноша колебался, какой путь выбрать – стать физиком или музыкантом. Он писал музыкальные пьесы, отлично играл на рояле и имел хороший голос. Но физика его интересовала тоже, и в математике парень разбирался отлично. Старенький профессор окинул взглядом студента и сказал:

– Молодой человек! Физика как наука кончилась: она практически завершена. Осталось сделать пару мелких уточнений, на которые вам, наверное, не стоит тратить жизнь.

– Да я в мировые звезды и не рвусь. – Ответил юноша. – Меня устраивают мелочи. Сделаю пару уточнений!

Звали этого молодого человека Макс Планк. В 1947 году «Нью-Йорк Таймс» назвала его одним из самых величайших гигантов мысли в истории цивилизации наряду с Эйнштейном и Архимедом. На надгробии этого человека вместо дат рождения и смерти выбито число, которое в физике называется «постоянная Планка». Это главная константа квантового мира…

Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла…

Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.

А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы – это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был – физика! Планк стоял в самом ее передовом ряду и не было никого первее.

Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?

Дырочек было две. Первая – несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка – та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.

Что такое абсолютно черное тело?

Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике – абсолютно черное тело (АЧТ). По определению, АЧТ – это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ – это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!

Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.

Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.

Рис. 5

Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.

Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!

Это было крайне неприятно – увидеть такое в расчетах!

Зависимость энергии, излучаемой АЧТ, от длины излучаемых волн и температуры его нагрева. Крайняя правая линия, улетающая в бесконечность, – результат теоретического предсказания классической теории для тела, нагретого до температуры 5000 К. Прочие линии – результат эксперимента.

Рис. 6

Эту нелепицу устранил Макс Планк, сделав допущение, что энергия из АЧТ не льется сплошным волновым потоком, а излучается «поштучно», порционно – квантами. Квант есть маленькая неделимая порция. Причем энергия кванта пропорциональна его частоте, а коэффициентом пропорциональности служит некая величина, которую потом назвали «постоянной Планка».

Оформив это свое предположение математически, Планк внес поправки в формулы, и они дали прекрасное совпадение с экспериментом.

Сам Планк в свое предположение о квантах не верил. Ему казалось, что когда-нибудь его вынужденное допущение будет устранено. Однажды Планк гулял со своим сыном-подростком (которого через много лет казнил Гитлер) и на вопрос мальчика, чем отец занимается, ответил, что он или сделал открытие на уровне Исаака Ньютона, или занимается какой-то странной нелепицей.

В общем, Макс Планк, стоявший у истоков квантовой физики, человек, с которого кантовая физика началась! – в кванты не верил.

Вторым человеком, заложившим краеугольный камень в квантовую физику, был Эйнштейн со своей работой по фотоэффекту. И ему квантовая физика жутко не нравилась! Но он, как и Планк, был вынужден строить ее здание – сама природа заставила.

В двух словах напомню историю с фотоэффектом. Дело было так.

В XIX веке открыли явление фотоэффекта – при облучении металла светом из металла начинают выбиваться электроны. Картинка ниже наверняка покажется вам знакомой, и немудрено – вы видели ее на уроках физики.

Световой поток вышибает электроны из катода лампы, и под действием электрического поля они устремляются к аноду, замыкая цепь.

Рис. 7

Как рассуждали представители классической физики эпохи стимпанка? Ну, если свет – это волна, то поливая световым потоком металл, как из шланга, мы постепенно накачиваем электроны энергией, и когда электрон накопит энергию, достаточную для того, чтобы оторваться от ядра атома, он вылетит. Стало быть, чем интенсивнее мы «поливаем» электроны, тем больше будет фотоэффект. А от цвета света, то есть от частоты излучения, эффект зависеть не должен. Однако результат эксперимента оказался полностью противоположным. Оказалось, энергия вылетающих электронов связана не с интенсивностью света (ярче, темнее), а почему-то с его частотой. И при достижении какой-то критически низкой частоты, электроны переставали выбиваться даже при высочайшей интенсивности светового потока.

Почему?

Эйнштейн, занявшийся этой проблемой, закрыл вопрос со свойственной ему гениальностью. Он, взяв на вооружение идею Планка о том, что излучение и поглощение энергии происходит порциями, квантами энергии, заявил:

– Ребят! Свет – не волна! То, как он себя ведет при выбивании электронов, говорит о том, что так вести себя могут только частицы. И чем они энергичнее, тем больше энергия выбитого электрона. А энергия световых частиц зависит от их частоты. То есть влияет не количество частиц (интенсивность света), а их качество (частота). Слабенькими частицами хоть уполивайся, у них недостаточно энергии для того, чтобы вырвать электрон из металла. А вот даже одной энергичной частицы достаточно, чтобы вырвать один электрон, то есть реденького потока энергичных частиц света вполне хватит для начала фотоэффекта. Бинго, друзья!

Частицы эти позже назвали фотонами.

И во всем этом была двойная странность. Во-первых, о каких частицах речь, если свет – это волна, что доказано опытным путем!? Во-вторых, если Эйнштейн говорит о частицах, то, черт возьми, какая у частиц может быть частота? Ведь частица – это объект, а не процесс!

Молекула воды – объект. А волны на море – синхронизированный процесс колебания молекул воды – вверх-вниз, вверх-вниз…

Пружина – объект. Колебания пружины – процесс…

По-моему, тут все ясно. Есть же разница между ногами и ходьбой, верно? Ну, какая может быть частота (длина волны) у табуретки?

Однако Эйнштейн был прав, что и подтвердили бесконечные опыты с фотоэффектом. Десять лет некто Роберт Милликен проводил опыты с фотоэффектом, пуляя кванты света на катод. И он был такой не один. После чего физический мир согласился с правотой Эйнштейна. А Милликен, который на основании этих опытов вычислил постоянную Планка и написал: «Я потратил десять лет своей жизни на проверку этого эйнштейновского уравнения 1905 г. и, вопреки всем своим ожиданиям, был вынужден в 1915 г. безоговорочно признать, что его уравнение экспериментально подтверждено, несмотря на всю его несуразность. Ведь это противоречит всему, что мы знаем…»[6]

Таким образом квантовая природа света была доказана: свет – это частицы. Что было доказано с той же неопровержимостью, с которой ранее в опытах с интерференцией было доказано, что свет – это волна.

Свет оказался и волной, и частицей. И объектом, и процессом одновременно.

И тогда физики махнули рукой и решили: а пускай! Пусть будет противоречие. Назовем это корпускулярно-волновым дуализмом. Как только непонятную вещь как-нибудь называешь, она сразу как бы становится понятнее… И будем отныне говорить так: свет – это материальный объект, который можно описать и как частицу, и как волну в зависимости от способа описания и приборного парка. Хотите описать свет как волну – устраивайте эксперименты по дифракции и интерференции. А если хотите описать свет как частицы – фотоэффект вам в руки! Применение двух взаимоисключающих моделей для описания одного природного явления назвали принципом дополнительности.

Но на этом история не закончилась. Вслед за Эйнштейном на сцену выскочил Луи де Бройль со своим номером. Ему пришло в голову удивить публику следующим трюком:

– Так! Идея следующая. Там, в этом микромире, где все такое маленькое и непонятное, световые волны оказались частицами. Так может быть, и частицы тоже обладают свойствами волн, а? Как тебе такое, Макс Планк?

Тоже ведь гениальная идея, согласитесь. Если фотоны обладают свойствами волн и частиц одновременно, почему бы и частицам, электронам, например, не иметь частоты и длины волны?

Позже был проведен аналог двухщелевого эксперимента с пучком электронов. И они исправно нарисовали на экране интерференционную картину. В точности как свет. Хотя всем в ту пору было известно, что электроны – это маленькие отрицательно заряженные шарики, которые кружатся вокруг положительного заряженного ядра атома.

– А вдруг, – пришла в чью-то голову свежая идея, – поток электрончиков, пролетающих в эти щели, синхронно колеблется? Вдруг согласованное движение электронов образует волны в электронном потоке? Ну, так же как образуется звуковая волна в воздухе? И в результате мы видим интерференционную картину? Ась?

Хм. Как это проверить? Да очень просто! Надо запускать в установку электроны по одному. И если после тысяч простреленных через две щели электронов на экране постепенно образуются две засвеченные полосы напротив щелей, тогда электроны – однозначно частицы! А если постепенно, отдельными точечками, нашлепается на экране та же интерференционная картина, значит, они – волны! Точнее, в полете ведут себя как волны, а точками (частицами) становятся, уже ударившись в экран.

Так ведут себя волны. Каждая щель является вторичным источником волн, которые складываются-вычитаются с волнами из соседней щели, образуя красивый интерференционный узор.

Рис. 8

Этот эксперимент был проведен. Электроны пуляли по одному. Они пролетали через установку, шлепались в экран, оставляя каждый после себя точечный след, и постепенно-постепенно на экране нарисовалась интерференционная картина.

Вот тут уже надо было крякнуть, сесть на табуретку, перекрутить портянки, достать кисет с махоркой и вдумчиво перекурить. Что вообще произошло?

Это ведь не просто означало, что электроны в свободном полете вели себя как волны! Их же пускали по одному! И после пролета через щелевую часть установки электроны хлопались на экран, уже проинтерферировав сами с собой, то есть волны складывались и вычитались горбушками и впадинками, оставляя на экране светлые и темные полосы. Но чтобы такой интерференционный рисунок получить с водяными или световыми волнами, нужно, чтобы каждая щель была вторичным источником волн, которые в пространстве за щелевым экраном будут между собой складываться и вычитаться (см. картинку).

Вы еще не поняли?

Еще раз: электроны-то запускали через две щели по одному! Это значит, что один электрон пролетал через обе щели сразу, после каждый щели образовывалось два фронта волны, которые и интерферировали между собой.

Бузу трешь! – как сказал бы дед Щукарь из бессмертного романа Шолохова. (Шутка.)

Но все-таки… Как один электрон одновременно мог пролететь через две щели? Как одну табуретку можно одновременно привезти на девятый этаж сразу на двух лифтах?

Естественно, у физиков возникла идея: а если закрыть одну щель, будет образовываться интерференционная картинка? Закрыли. Не образовывалась. Просто на экране напротив открытой щели, куда пролетали электроны, накапливалась жирная полоса засветки.

А если мы поставим детектор за щелью, чтобы подсмотреть, в какую же из них пролетел электрон на самом деле? Так и сделали. После чего «самое дело» изменилось. Реальность изменилась: интерференционная картинка образовываться перестала. Неужели само по себе наблюдение меняло реальность?

Нет, конечно, с облегчением вздохнули физики! Просто для того, чтобы крошку-электрончик пронаблюдать, его надо как-то засечь, например, облучить квантами. Но это уже физическое воздействие! Оно и меняет картину, превращая электрон как волну, в электрон как частицу. И волновая картинка на экране пропадает.

Фу-ух! Пока что от мистики с наблюдателем, влияющим на вселенную одним фактом наблюдения, удалось избавиться. Но ненадолго.

Ведь оставался необъясненным еще один удивительный момент, когда детектор, установленный только возле одной из щелей, НЕ регистрировал пролетевший в эту щель электрон, то есть электрон пролетал в другую щель, интерференционная картинка пропадала тоже! Но ведь электрон в этом случае не обстреливался детектирующими фотонами, поскольку на второй щели, куда он юркнул, детектора не было! Иными словами, сам факт регистрации как-то превращал электрон-волну в электрон-частицу, словно бы электронное облачко знало, что там, за щелевым экраном, его секут, и потому непредсказуемый волк заранее превращался в послушную овечку. Но как он узнал, что его будут детектировать?

На этот хитрый вопрос ответ нашелся быстро: да никак не узнал! Электронное облако ведь пролетает через две щели одновременно! И поскольку на часть этого облака возле одной щели воздействовали детектирующие фотоны, они и схлопывали волновую функцию, превращая волну в частицу, которая с вероятностью 1/2 проявляла себя или пролетом через правую щель (регистрируем пролет) или пролетом через левую щель (не регистрируем пролет на этой щели). Вот и все!

Глава 3

Неопределенность как принцип

Забегая вперед, хочу сказать, что раз уж речь зашла о корпускулярно-волновом дуализме… Мы привыкли, что квантовые явления при всей их парадоксальности и волнующей таинственности, а также полной непредставимости для человеческого сознания, все-таки нас с вами не касаются. Все эти мутные дела происходят где-то там, в микромире, куда пальцем не долезешь. А нам тут бояться нечего! Электроны, фотоны, протоны – это мельчайшие неделимые частицы вещества, а мы, приличные люди, начинаемся где-то на уровне молекул. Как минимум!

Ну, что ж, атомы и молекулы по сравнению с тем же электроном и вправду настоящие гиганты! Самый маленький атом – атом водорода. Я не буду писать, во сколько раз объем атома больше объема электрона, поскольку гигантские цифры не воспринимаются мозгом. Мозгом воспринимается картинка. И я ее сейчас вербально нарисую: если электрон увеличить до размеров макового зерна (ядро атома при этом вырастет до 4 мм), сам атом увеличится до 400 метров в диаметре! Именно таким будет диаметр электронной орбиты. Можете сами теперь подсчитать объем шара диаметром в 400 м и объем макового зерна, после чего поделить первое на второе. Вот во сколько раз атом больше электрона.

И это самый маленький атом. А если взять атом побольше, например углерод, да сложить 60 атомов углерода, чтобы получить молекулу фуллерена, напоминающую футбольный мяч из атомов, то можно представить себе объем этого сооружения, совершенно гигантского в сравнении с точечкой электрона!

Молекулярный мяч – это уже точно самое настоящее вещество. Объект, а не процесс. Вовсе не волна, не правда ли?.. Так вот, опыт, проведенный с фуллеренами, показал: они тоже волны. Если вас это мало удивило, потому что вы – человек крепкий, уточню, что двухщелевой опыт с фуллеренами показал: они дают на экране интерференционную картину, а это значит, что один такой «мяч» пролетает через две щели одновременно!

– Как такое возможно? – Спросите вы.

А я отвечу:

– Возможно и не такое!

В 2019 году в Венском университете был проведен двухщелевой эксперимент с огромной молекулой грамицидина, состоящей из 15 аминокислот. Аминокислоты содержат от 10 до 50 молекул. Если взять в среднем, то получим четыре с лишним сотни атомов.

(Может возникнуть вопрос: если электронами можно управлять с помощью электромагнитного поля, пуляя их из электронной пушки, то как пулять и с помощью чего управлять электронейтральными молекулами? Тут приходится изощряться! Тонким слоем грамицидина был покрыт краешек быстро вращающегося диска из графита. Затем край диска обстреливали сверхкороткими лазерными импульсами, вышибая молекулы грамицидина, которые потом подхватывались струей аргона и разгонялись до скорости в полкилометра в секунду. С этой скоростью молекулы и летели в мишень. Опыт показал, что длина волны грамицидина составляет 350 фемтометров, то есть 350 × 1015 м.)

Но и это еще не все! В том же самом году, в том же университете провели аналогичный опыт с гигантской молекулой, состоявшей из почти 2000 атомов! И она тоже предсказуемо оказалась волной.

1 В.И. Ленин. Материализм и эмпириокритицизм. – М.: Звено, 1909.
2 К.А. Томилин. Предисловие к публикации Э. Шрёдингера. – «Поиски пути», 1925.
3 В.И. Ленин. Материализм и эмпириокритицизм. – М.: Звено, 1909.
4 Не нужно недооценивать силу мысленных экспериментов. Иногда в физике они играют роль едва ли не большую, чем эксперименты натурные. Так, например, Галилей открыл, что тяжелые и легкие тела падают с одинаковой скоростью благодаря мысленному эксперименту, а вовсе не благодаря швырянию предметов с Пизанской башни, о чем гласит легенда, но чему нет никаких достоверных сведений. Раньше считалось, что тяжелые вещи летят к земле быстрее легких. Галилей опроверг эти идущие еще со времен Аристотеля заблуждения следующим рассуждением. Допустим, мы разделим тяжелое тело на две неравные части. Тогда получается, что более тяжелый кусок прилетит вниз быстрее легкого. А если мы свяжем их веревкой, тогда при падении легкая часть будет тормозить тяжелую, а тяжелая ускорять легкую, и как тогда должно упасть тело – с некоей средней скоростью или, как если бы мы его не разделяли вовсе, ведь мы его соединили обратно веревкой?! А мы можем и не веревкой связать, а просто легкое тело положить сверху на тяжелое! Да и вообще не заморачиваться с разделением, а просто считать, что любое тяжелое тело состоит из тысяч легких, слепленных вместе, при этом легкие должны падать медленнее, чем одно тяжелое, но ведь они вместе одно тяжелое и составляют! Приходим к абсурду, а значит, все тела – и легкие, и тяжелые – падают на землю с одинаковой скоростью. Если конечно, им не мешает воздух» (Г. Галилей, трактат «О движении», 1590).
5 Х. Гюйгенс. Трактат о свете, 1698.
6 М. Планк. Революция в микромире. Квантовая теория. – М.: ДеАгостини, 2012.
Скачать книгу