Кулинарная наука, или Научная кулинария бесплатное чтение

Федор Сокирянский, Илья Лазерсон
Кулинарная наука, или Научная кулинария

ЭТА КНИГА СТАНЕТ НЕ ТОЛЬКО ОТПРАВНОЙ ТОЧКОЙ В ВАШЕМ УВЛЕКАТЕЛЬНОМ ПУТЕШЕСТВИИ В МИР ФИЗИКИ И ХИМИИ ПИЩЕВЫХ ПРОДУКТОВ, но и позволит УСОВЕРШЕНСТВОВАТЬ ПРАКТИЧЕСКИЕ КУЛИНАРНЫЕ НАВЫКИ И МАСТЕРСТВО. ЖЕЛАЕМ ВАМ ПОБОЛЬШЕ НОВЫХ КУЛИНАРНЫХ СВЕРШЕНИЙ И ГАСТРОНОМИЧЕСКИХ ОТКРЫТИЙ.

И ПОМНИТЕ: САМЫЙ КОРОТКИЙ ПУТЬ К КУЛИНАРНОЙ НАУКЕ ЛЕЖИТ ЧЕРЕЗ НАУЧНУЮ КУЛИНАРИЮ!

Предисловие

Вы держите в руках довольно необычную книгу о кулинарии. Вопреки возможным ожиданиям читателя, в ней нет кулинарных рецептов, пошаговых инструкций по приготовлению блюд, списков ингредиентов и красивых фотографий. В отличие от большинства кулинарных изданий, отвечающих на вопрос «Как готовить те или иные блюда?», данная книга отвечает на вопрос «Почему те или иные блюда готовятся тем или иным образом?».

Кулинарная наука открывает удивительный мир химических и физических явлений, происходящих в процессе приготовления пищи. В книге рассказывается о составе и свойствах продуктов питания, особенностях их приготовления, хранения и подачи, о новых способах кулинарной обработки пищевых продуктов с использованием привычной бытовой техники и стандартного кухонного инвентаря.

Научная кулинария – это совершенно новый подход к приготовлению пищи, получивший распространение за рубежом и у нас всего несколько лет назад. Суть его заключается в применении базовых знаний химии и физики для создания новых кулинарных блюд, с учетом сочетаемости исходных продуктов, их вкуса, цвета, аромата, консистенции, плотности, кислотности, растворимости и других свойств. В ресторанном бизнесе это кулинарное течение получило название «молекулярная гастрономия», в книге используется термин «научная кулинария». Научная кулинария – это мир неожиданных открытий о давно известных и любимых нами фруктах и овощах, мясе и рыбе, хлебе и сладостях.

Как известно, любая природная материя состоит из молекул и атомов. Но знаете ли вы, что вкус жареной говядины формируется более чем 600 видами различных молекул? Приходило ли вам в голову, что из одного куриного яйца можно взбить 1 кубический метр пены?! Что из куриного бульона готовится прекрасное фруктовое желе? А за вкус приготовленных продуктов «отвечает» одна химическая реакция – реакция Майяра? Вы хотите знать, почему пельмени всплывают из воды при варке, почему яблоки темнеют при нарезке, почему нельзя снимать накипь с бульона и зачем жарить рис перед отвариванием? Если вас интересуют ответы на эти вопросы – эта книга для вас, а если у вас есть дети-подростки, то и для них.

Прилавки магазинов ломятся от огромных количеств разнообразных «лакомств» промышленного производства в соблазнительных ярких упаковках. Реклама в средствах массовой информации назойливо (на грани агрессии) призывает к их употреблению. Устоять трудно. Напор торговцев и рекламщиков воздействует: у детей и подростков формируется не совсем верная модель пищевого поведения. Газированные напитки, снеки и сладости вытеснили из детского рациона питания традиционные полезные и вкусные продукты. Родителям порой тяжело убедить ребенка есть «правильную» пищу и отказаться от столь притягательных, но вредных продуктов. В отличие от зарубежных стран в наших школах пока еще серьезно не обучают правильному и здоровому питанию. Любой ребенок от природы наделен чувством любопытства и жаждой познания всего нового. Задайтесь вопросом, много ли знают наши дети о еде, продуктах питания и способах их приготовления? К сожалению, почти ничего. Эта книга может стать первым шагом в формировании живого и осознанного интереса к кулинарии и продуктам питания у вашего ребенка.

Мы убеждены, что книга «Кулинарная наука, или Научная кулинария», будет интересна и взрослым, и школьникам, и домохозяйкам, и профессионалам. Она откроет читателю поразительный мир пищевых продуктов и кулинарии в неожиданном аспекте.

Часть I Просто о сложном: состав основных категорий пищевых продуктов и химико-физические изменения продукта в процессах его приготовления, обработки и хранения

Глава 1 Углеводы, белки, жиры, вода – основа продуктов

Простые углеводы

Вся еда, которую мы употребляем в пищу, содержит три основные группы молекул: сахара, белки и жиры. Молекулы сахаров состоят из атомов углерода, водорода и кислорода. Многих из сахаров называются углеводами, поскольку они состоят из перечисленных выше атомов. Строго говоря, сахара включают в себя не только углеводы, но и многие другие соединения – крахмал и даже целлюлозу (главную составляющую деревьев!).

Множество соединенных между собой единиц сахара называются полисахаридами, а в другом физическом состоянии, без контакта с водой и возможностью соединяться с ее молекулами, – моносахаридами. Нам, кулинарам, хорошо известны такие моносахариды, как глюкоза, фруктоза и галактоза. Некоторые из них мы используем в процессе приготовления пищи буквально каждый день.

Глюкоза, фруктоза и галактоза имеют одинаковую химическую формулу (С6Н12O6), но расположение атомов в данных сахарах отличается в каждом конкретном случае, что влияет на главное – вкус этих веществ.

Моносахариды – глюкоза, фруктоза и галактоза

В чем содержатся эти вещества?

Глюкоза и фруктоза присутствуют во многих фруктах и в меде, а также в смеси с другими сахарами. Галактоза же – в неферментированных молочных продуктах.

Сладкие фрукты и овощи (морковь и свекла) содержат довольно много сахаров. Фруктоза – самая сладкая из всех трех видов сахаров, на втором месте по сладости находится глюкоза.

Однако, если нагревать фруктозу до 60 °C, например, при варке вишневого варенья, готовое лакомство окажется кислым. Этот феномен объясняется тем, что при достижении данной температуры, сладость фруктозы снижается ровно в два раза. Именно поэтому знающие хозяйки, употребляя фруктозу с чаем, кладут в чашку всегда на 2–3 ложки больше, нежели обычного сахара рафинада. А вот глюкоза в чистом виде вообще не применяется в качестве подсластителя, так как она еще менее сладкая, чем фруктоза.

Если быть совсем точным, нужно отметить, что ни один из перечисленных сахаров в кулинарии не применяется в чистом виде. Обычно используется дисахарид – их «старший брат», состоящий из более крупных молекул сахара.

Дисахариды – сахароза, лактоза и мальтоза

В кулинарии и пищевой промышленности известны три вида дисахаридов: сахароза, лактоза и мальтоза.

Поговорим о каждом из них в отдельности.

Сахароза состоит из химического соединения двух моносахаридов – глюкозы и фруктозы. Именно этот продукт мы знаем как обычный столовый кусковой сахар-рафинад, или сахарный песок. Этот второй (после фруктозы) по сладости сахар обычно используется для приготовления конфет, поскольку он имеет приятный вкус даже при высоких концентрациях, а также обладает интересными формообразующими (текстурными) свойствами. Концентрация сахара в любом продукте очень важна. Мало кто знает, что при высоких концентрациях всеми любимый коричневый тростниковый сахар становится горьким.

Лактоза состоит из соединенных вместе остатков (остатки – термин органической химии, см. глоссарий) глюкозы и галактозы. Она редко встречается в кулинарии в чистом виде, но содержится в молоке. Лактоза гораздо менее сладкая, чем сахароза, поэтому никогда не используется в качестве подсластителя.

Мальтоза состоит из двух объединенных молекул остатков глюкозы, более всего содержится в ячмене. Аромат пива, кроме зависимости от прочих исходных ингредиентов, определяется наличием мальтозы в этом продукте.

Вместе моносахариды и дисахариды образуют группу углеводов, известную в органической химии как «простые сахара». Их называют «простыми», потому что они легко разрушаются и усваиваются организмом. Кстати, это объясняет и немедленный всплеск энергии, который мы чувствуем после употребления сахаров. Например, чай с сахаром бодрит гораздо больше, чем без него. Присутствие сахаридов, наравне с кофеином, во многих сладких газировках также объясняет их тонизирующие (непродолжительные) свойства.

В разгар напряженного рабочего дня попробуйте съесть кусочек сахара-рафинада. Вы моментально почувствуете большой прилив сил и энергии.

Врачи-диетологи любят повторять: «Гораздо более важно не то, что мы едим, а как мы эту еду перевариваем». В процессе пищеварения молекулы сахара разрушаются под действием пищеварительных ферментов. Организм некоторых людей не вырабатывает фермент лактазы, который отвечает за переваривание лактозы, обычно встречающейся в молоке. Такие люди страдают от особой болезни – лактозной непереносимости или лактозной недостаточности. Их организм не может переваривать лактозу, или молочные продукты, с ее содержанием. Это наследственное заболевание сегодня уже эффективно лечится новейшими медицинскими средствами. Большинство крупных производителей молока выпускают специальные марки молочных продуктов без лактозы, кстати, их можно пить и тем, кто страдает сахарным диабетом.

Кристаллизация сахара

Что такое кристаллизация сахара? Мы видим кусочек сахара только благодаря процессу кристаллизации сахаров. Молекулы сахара в безводном пространстве хорошо притягиваются друг к другу. Стоит только нанести капельку воды из пипетки на кусочек сахара, и мы увидим, как медленно кристаллические цепочки начнут разрушаться, а сахар «таять» на глазах. Когда миллионы молекул дисахаридов присоединяются друг к другу и преобразуются в кристалл – сахар становится видимым.

Кристаллы сахара всегда значительно отличаются по размеру: от малейших (сахарная пудра) до весьма крупных (сахарный песок).

Растворимость сахаров

Присутствие так называемых «ОН-групп» сахаров делает простые сахара легко растворимыми в воде. В воде ОН-группы связываются преимущественно свободными молекулами воды. Сам же кристалл сахара разрушается, и его частички равномерно распределяются в водной среде. Это можно увидеть в прозрачном стакане с водой, опустив в нее кубик сахара и медленно перемешав.

Как же растворяются сахара? Как определить, сколько сахара добавлять в сироп для ягодного морса, а сколько для приготовления карамели? Какие процессы происходят при растворении сахара в холодной или кипящей воде?

Ответим на эти вопросы исчерпывающе.

В науке считается, что сахар «растворяется», то есть крупные кристаллы многократно дробятся на более мелкие и притягиваются к молекулам воды, постепенно становясь невидимыми.

А сколько сахара вообще можно растворить в жидкости? Оказывается, что можно растворить в воде ровно столько сахара, сколько потребуется для того, чтобы не дать возможности молекулам воды двигаться хаотично. Иными словами, в определенном количестве воды всегда можно растворить лишь четко определенное количество сахара.

Фруктоза – самая растворимая из всех простых сахаров. Ее можно растворить в количестве воды, равном четверти ее исходного объема. Сахароза также неплохо растворяется в воде. Она вторая по растворимости и может раствориться в количестве жидкости, равной половине исходного объема сахарозы и образовать густой раствор. А вот глюкоза чуть менее растворима, и поэтому из нее не получится густой сахарный раствор.

К сожалению, фруктоза довольно дорога и редко доступна в продаже, именно поэтому ее редко используют для варки варений и сиропов. Хотя, если вам позволяют средства и все-таки удалось найти этот «чудо-сахар», стоит использовать именно его для приготовления фруктово-ягодных заготовок. Фруктоза чрезвычайно полезна.

Вернемся к растворимости сахаров. Итак, после определенного момента сахар невозможно дальше растворять в уже сладком растворе, потому что в нем попросту «заканчиваются» молекулы воды, доступные для связи с новыми молекулами досыпаемого в емкость сахара. В этот момент сахар остается в кристаллической форме и больше не будет растворяться. Такой раствор сахара называют «насыщенным».

В отличие от сложных углеводов, белков и жиров, сахара состоят из маленьких и стабильных молекул, к тому же чрезвычайно устойчивых к теплу. Смесь сахара и воды может быть нагрета до температуры кипения без ущерба для структуры сахара. Как только сироп закипает, молекулы воды равномерно испаряются из смеси, а раствор становится все более и более концентрированным. При этом молекулы сахара начнут связываться между собой и образовывать твердые кристаллы.

Твердые кристаллы сахара есть не что иное как любимые всеми детьми карамельные леденцы на палочке!

Хозяйка, которая использует сахар при варке сиропов и варенья, должна помнить, что температура кипения раствора сахара всегда будет выше 100 °C. Это объясняется тем, что в процессе связывания молекул сахара и воды, тепло необходимо не только для того, чтобы разорвать связи молекул воды друг с другом, но и для существенного увеличения скорости их движения.

Советы кулинарам:

♦ Сахарный сироп следует нагревать немного выше той температуры, когда вода начинает превращаться в газ (пар).

Есть простой кулинарный закон: «Чем более концентрированный раствор сахара, тем выше температура его кипения».

По мере того как сироп нагревают, вода испаряется все интенсивнее, и раствор становится все более и более концентрированным, соответственно увеличивается температура его кипения. Например, раствор с концентрацией сахара в 90 % закипит при температуре 125 °C.

Если сироп нагревать до достаточно высокой температуры (до момента, когда вся вода испарится из сахарного раствора), сахар постепенно начинает приобретать характерный «карамельный» вкус, из-за того что молекулы сахара начали разрушаться. Моносахариды – химически активные вещества. При их нагревании до относительно высоких температур атомы из молекул начинают интенсивно вырываться наружу. При этом образуются новые молекулы уже с совершенно другой структурой атомов. Вновь образованные молекулы обусловливают как широкий спектр вкусов продукта с содержанием сахара, так и его коричневый цвет.

В кондитерском деле вышеупомянутый процесс известен под названием «карамелизация». Чем больше карамель нагревается, тем более коричневой она становится.

Кулинарный закон:

♦ Чем сильнее нагреть карамель, тем менее сладкой она будет.

Это обстоятельство связано с тем, что молекулы, «отвечающие» за сладкий вкус карамели, в процессе нагрева полностью разрушаются.

Очень важно вовремя убрать карамель с огня, как только она приобретет требуемый нежно-коричневый цвет. В противном случае она станет темной и горькой.

Обычный сахар карамелизируется при температуре 170 °C, а глюкоза – уже при 150 °C.

Если вы хотите приготовить карамель из фруктозы, то сотейник или сковороду нужно нагреть всего до температуры 105 °C.

Советы кулинарам:

♦ Контролируйте температуру нагрева карамели с помощью кондитерского термометра или используйте кастрюли с крышками-термометрами.

♦ Для приготовления карамели, сиропов и варенья используйте сахарозу (сахар-песок).

Добавляйте в сиропы и карамель белки (сливки или молоко). Аминокислоты, содержащиеся в них, позволят вам добиться разнообразных оттенков вкуса и запаха.

Если вы хотите уменьшить кристаллизацию варенья, сиропа или карамели – добавьте каплю лимонного сока. Когда сахароза нагревается с присутствием кислоты, она распадается на монокомпоненты сахара. В кулинарии этот процесс называется «инверсия». Инверсия часто используется профессиональными кондитерами при приготовлении сладостей для уменьшения кристаллизации.

Сахара используются не только как «подсластители». Они также могут уменьшить горечь или кислоту либо подчеркнуть иные вкусовые свойства продукта. Мастера паназиатской кулинарии почти ни одно блюда не готовят без сахара. Сочетайте сахар с кислотой и используйте его в маринадах к мясу и рыбе. При жарке этих продуктов именно сахар позволит вам добиться фантастического вкуса блюд. Помните, сахара выступают основными компонентами в реакции Майяра, только они обеспечивают вкус и аромат горячих блюд. При этом не злоупотребляйте количеством такой «специи».

Сложные углеводы – полисахариды

Сложные углеводы отличаются от простых лишь тем, что в них содержится гораздо больше молекул сахара и они формируют длинные молекулярные цепочки. Эта группа углеводов известна как полисахариды.

Сложные углеводы очень плохо усваиваются человеческим организмом. Существует огромное количество продуктов, насыщенных углеводами, которые просто физически не усваиваются пищеварительной системой млекопитающих и удаляются из организма почти без изменений. К таким углеводам, например, относится целлюлоза.

Сложные углеводы синтезируются растениями и находятся в растительных источниках. Сложные углеводы подразделяются на две основные группы – волокна и крахмал. Волокна – основные составляющие стенок клеток, а крахмал находится внутри клетки. Эти группы имеют различные свойства, и, несмотря на то, что обе они являются сложными углеводами, все же будут рассматриваться нами как отдельные группы.

Волокна – целлюлоза, пектин, гемицеллюлоза

Основные типы волокон, которые находятся в стенках клетки, – это целлюлоза, пектин и гемицеллюлоза. Каждое из них имеет несколько отличное строение, что отражается на том, как они ведут себя при нагреве и изменении pH (кислотности).

Кулинара должно интересовать то, что клеточные стенки растений играют важную роль в определении текстуры (формы поверхности) овощей и фруктов. Понимание того, как реагирует каждый из компонентов клеточных стенок на высокую температуру или pH, очень полезно для того, чтобы контролировать изменения внешнего вида овощей и фруктов в процессе приготовления пищи. Например, пектин действует как клей, удерживая вместе стенки клеток и, таким образом, играет важную роль в определении внешнего вида фруктов и овощей.

В свою очередь целлюлоза состоит из длинных прямых цепочек молекул глюкозы. Отсутствие боковых цепей позволяет молекулам целлюлозы лежать плотно друг к другу и образовывать очень жесткие структуры. Вы, конечно, помните, что целлюлоза – это основа деревьев.

В отличие от других волокон целлюлоза не подвержена химическому распаду под влиянием тепла или pH. Содержание целлюлозы в древесине и других растительных материалах – соломе, шелухе семян, кукурузных кочерыжках и т. п. составляет 13–43 %. Именно поэтому некоторые стеблевые растения крайне тяжелы в размягчении в процессе кулинарной обработки.

Теперь рассмотрим другой вид сложного углевода – крахмал.

Крахмал

Крахмал, в том или ином количестве, содержится почти во всех овощах. Есть два основных вида молекул крахмала, которые содержатся в овощах: амилоза и амилопектин. Они формируются из длинных цепочек молекул глюкозы и отличаются тем, каким образом эти молекулы глюкозы связаны вместе.

Крахмал, который содержится в пище, часто включает в себя смесь этих двух молекул, но обычно амилопектин составляет большую часть крахмала (от 70 до 85 %). Точное соотношение амилозы и амилопектина зависит от источника, из которого добывается крахмал, а так как молекулы амилозы и амилопектина ведут себя по-разному, то и крахмалы, полученные из различных источников, ведут себя иначе.

В кулинарии крахмалы применяются в качестве загустителей. В воде или иной жидкости длинные молекулы крахмала рассеиваются равномерно, и потому молекулы жидкости уже не двигаются интенсивно вокруг друг друга, жидкость будет течь не очень легко и станет гуще.

При соблюдении необходимых условий молекулы крахмала образуют «сеть», которая загустит жидкость до состояния геля. Аналогично этому ведут себя и денатурированные белки (речь о них пойдет ниже), которые могут быть использованы для удержания воды в пище, делая ее сочнее.

С течением времени «сеть» будет становиться крепче и крепче, так как будут образовываться новые связи, в результате гель начнет вытеснять воду (процесс называется «синерезис»). Крахмал – это производное от растительной ткани, где молекулы крахмала собраны в гранулы, очень тесно связанные вместе. Разрушить эти гранулы и высвободить крахмал можно только через нагрев ткани.

Белки

Как и другие основные компоненты продуктов питания, белки – это крупные молекулы, состоящие из повторяющихся меньших частичек остатков аминокислот. Однако, в отличие от составляющих других пищевых групп, они содержат атомы азота, углерода, водорода и кислорода.

Есть около двадцати различных аминокислот, обычно встречающихся в белках. Белки состоят из длинных цепей этих аминокислот, которые удерживаются вместе сильными связями, называемыми «пептидными связями». Их строение похоже на бусы. В этой аналогии «бусинки» представляют собой аминокислоты, а «шнурок» – связи между ними.

Так как существует множество различных аминокислот, каждая из которых может быть составляющей любой из других аминокислот, то и самих белков существует великое множество.

В кулинарии белки представлены в основном в мясных и рыбных продуктах, а также в яйцах, и в меньшей степени – в семенах.

Как известно, мясо животных на 75 % состоит из воды. Белки почти не существуют в природе без связи с водой. Некоторые аминокислоты содержатся внутри белков и как бы спрятаны в их оболочке. Другие аминокислоты находятся на поверхности и связаны с молекулами воды.

При этом белки имеют различные электрические заряды. Некоторые из них сильно связаны друг с другом, а некоторые – нет. Кулинарам очень важно понимать такую особенность белков, для того чтобы понять, почему одни виды продуктов питания более плотные, а другие – рыхлые, почему некоторые продукты прозрачны, а другие – нет.

Например, яичный белок прозрачен, потому что зазоры между цепями его белков пропускают свет.

Гидрофильные и гидрофобные группы белков

Белки делятся на две группы по принципу «особого отношения» с водой. Выделяют гидрофильные и гидрофобные группы белков. Ввиду того что белковые цепочки достаточно плотно свернуты в клубок, внутри него удерживается значительное количество воды. Когда белок разрушается, вода с большим содержанием белка выделяется наружу. Такая «вода» в пище называется ни чем иным, как «соком» блюда или продукта.

Во время приготовления пищи протекают физические и химические процессы, которые приводят к различным метаболическим изменениям белков.

Два наиважнейших процесса в кулинарии, описанные в органической химии, о которых настоящий кулинар должен знать почти все, – это «денатурация» и «коагуляция» белков.

Рассмотрим эти важнейшие кулинарные процессы подробнее.

Денатурация белков

Довольно слабые связи, которые удерживают трехмерную структуру белка, могут быть вполне легко разрушены. Для этого необходимо просто нагреть продукт, содержащий белок, или добавить немного кислоты (лимонной или уксуса), или приложить некоторое механическое усилие (например, прижать к сковороде или перемешать в кастрюле).

По мере того как связи, удерживающие белок в сложенном виде, разрушаются, белки разворачиваются в длинные цепочки, и защищенные ранее внутри белка аминокислоты попросту «вываливаются» наружу. Этот процесс и называется «денатурацией».

Кулинарный закон:

♦ Желудок человека гораздо легче переваривает денатурированные белки, чем любые другие.

Это означает, что сырая рыба (в суши и роллах) переваривается гораздо хуже, чем запеченная. Пища, приготовленная на огне, либо с добавлением соли и кислоты, переваривается гораздо лучше, чем сырая, соленая, вяленая или незначительно термически обработанная!

Быстрее всего белки денатурируются температурой, нежели кислотой, солью или путем механического воздействия, потому приготовить мясо можно гораздо быстрее на огне, нежели замариновав или законсервировав его (сушеное, вяленое мясо).

Денатурированные белки имеют много полезных функций в современном процессе приготовления пищи. В этой книге мы не раз еще вернемся к процессу денатурации белков. Они не только лучше перевариваются, чем сырые белки (их группы более доступны для переваривания ферментами), они – гораздо полезнее.

Как известно, яйца выступают простейшим источником белков, но усваиваются организмом гораздо хуже, чем денатурированные белки мяса или рыбы. Это связано с тем, что мясо, рыба и растительные источники содержат белки в сочетании с большим количеством других молекул (крахмала, жиров и др.).

Белки также выполняют другую, важнейшую в кулинарии, роль – они выступают естественными эмульгаторами.

В обычном блендере невозможно однородно смешать воду и масло (или жир). Подобная смесь будет очень нестабильна, точнее – стабильна в течение очень короткого промежутка времени. Речь идет о приготовлении банальных заправок для салатов. Почему в таких смесях происходит процесс расслоения фаз?

Смесь жиров и воды не будет стабильной до тех пор, пока в ней есть так называемые поверхностно-активные молекулы. В жироводяной смеси они стремятся окружить капли жиров, поместить внутрь себя гидрофобные части и оставить для контакта с водой лишь свои гидрофильные части.

Обычные белки в своем естественном состоянии имеют снаружи лишь гидрофильные части и потому не могут быть поверхностно-активными молекулами. Тем не менее, как говорилось выше, денатурированные белки обнажают как гидрофильные, так и гидрофобные группы, и могут выступать как поверхностно-активные молекулы для стабилизации жироводяной смеси.

Например, смесь уксуса, воды и масла может быть вполне устойчивой, если в смеси присутствуют яичные белки (например, в майонезе). После того как белки взбиты, они денатурированы и готовы к стабилизации масляных капель в смеси. Белки являются натуральными пенообразователями.

Мы знаем, что при приготовлении белкового крема воздух добавляется в жидкость механическим взбиванием его венчиком. Но далеко не все воздушно-жидкостные смеси являются стабильными. Например, когда взбивается чистая вода, воздушные пузырьки в смеси не могут быть стабильными, они быстро поднимаются на поверхность, будучи менее плотными, чем вода, а затем улетучиваются.

Однако, когда взбивается жидкость, содержащая белки (например, яичные белки), то воздух может быть стабильно включен в смесь. Хотя пузырьки воздуха являются гораздо менее плотным, чем сама жидкость (вода или молоко), они уже никуда не исчезнут. Это происходит потому, что в процессе взбивания яичных белков они денатурируются, их гидрофобные и гидрофильные части становятся доступными, гидрофильные взаимодействуют с водой, а гидрофобные – с воздухом.

Белки являются также незаменимыми загустителями, о чем подробно пойдет речь в последующих главах книги.

Кровь животных тоже, как и яичные желтки, наполнена различными белками.

В высокой гастрономии лучшим загустителем считается именно кровь, полученная при первичной обжарке мяса. Хестон Блюменталь – величайший английский шеф-повар, считает этот загуститель самым лучшим для приготовления соусов и подливок.

Яичный желток – это самый распространенный загуститель в кондитерском деле.

Белки обладают свойствами загустителей из-за того, что, разрушаясь даже при слабом нагреве, они разворачиваются в длинные цепи. Эти цепи не дают молекулам воды, присутствующим в белках, с легкостью перемещаться вокруг друг друга, при этом молекулы растягиваются, а жидкость сгущается.

Кулинарный закон:

♦ Белки разрушаются при различных температурах, знание диапазона температур, при которых разрушаются и денатурируют белки, дает ключ к получению наилучших результатов в процессе приготовления пищи.

Коагуляция белков

Если продукт, содержащий белок, нагревают после его денатурации дальше, то добавленное тепло заставляет денатурированные белки передвигаться гораздо быстрее. Развернутые белковые цепи при контакте будут притягиваться друг к другу и формировать белковые сети. Этот процесс известен в науке под названием «коагуляция».

Коагуляция в кулинарии «ответственна» в том числе и за потерю прозрачности сырого яйца в процессе нагрева.

Смыкающиеся цепи белка не позволяют свету проникать внутрь, и прозрачность продукта утрачивается.

Сети белков в процессе коагуляции выступают некой «ловушкой» для воды. Попадая внутрь и связываясь с белками, она превращает жидкость в гель, снижая его текучесть.

Коагуляция может быть как полезна для кулинара, так и доставлять реальные неудобства на кухне. Пельмени, вареники, клецки, макароны и другие изделия из пшеничной муки сохраняют свою форму только благодаря коагуляции белковых сетей, а заварной крем становится комковатым потому, что яичные белки были нагреты до слишком высокой температуры и в денатурированных белках начался процесс коагуляции.

Кулинарный закон:

♦ Кислоты способствуют и ускоряют коагуляцию белков, крахмалы – замедляют коагуляцию.

Говоря о белках и их роли в кулинарных процессах нельзя не сказать о таком явлении, как синерезис, которое уже упоминалось выше. Синерезис – процесс вытеснения воды или жидкости из белковых сетей в продукте. Это происходит из-за наличия электростатических напряжений между положительными и отрицательными заряженными атомами серы в белковых продуктах.

Процесс синерезиса всегда нежелателен в приготовлении пищи, поскольку ведет к тому, что пища высыхает.

Ферменты и пигменты

Ферменты представляют собой особую группу белков, управляющих химической трансформацией белоксодержащих продуктов и контролирующих химические реакции, происходящие с ними. Для того чтобы началась нужная химическая реакция и в результате появились иные продукты, необходимы ферменты, которые эту реакцию ускорят. Ферменты сами по себе остаются неизменными, но их присутствие необходимо для того, чтобы проходили изменения в реагирующих молекулах. Ферменты содержат активный центр, в который перемещаются реагирующие молекулы. Возникает тесный контакт, что способствует течению реакции между ними.

Ферменты ответственны как за необходимые, так и за нежелательные реакции при хранении продуктов в процессах приготовления пищи. Ферменты обусловливают прогорклость пищи или потемнение продуктов (овощей или фруктов, мяса и рыбы), но без них невозможно выпечь хлеб, приготовить квас или пиво.

Поскольку ферменты тоже являются белками, их структура так же подвержена влиянию тепла и кислотности (pH). Об этих процессах и самом процессе ферментирования пойдет речь в последующих главах.

Пигменты – это самые удивительные белки, которые участвуют в восприятии (именно в восприятии, а не формировании) цвета пищевых продуктов и кулинарных блюд. Пигменты буквально не «красят» продукты в разные цвета. Они лишь обеспечивают определенные оптические явления, реагируя на преломление волн света. Пигменты – это «экраны», они отражают только волны видимого света определенной длины и, в свою очередь, поглощают волны всех других длин, что влияет на зрительное восприятие того или другого цвета продуктов.

Например, хлорофилл – пигмент, который содержится в зеленых овощах, поглощает все волны видимого света, за исключением волн зеленого. Пигменты в мясе поглощают все, кроме красного, «давая» мясу его красный цвет. Поглощающие свойства этих пигментов сильно зависят от их структуры. Даже очень малые изменения в структуре могут привести к изменению того, какие волны будут отражаемы, а какие нет. Так как ферменты являются белками, и, следовательно, тоже зависимы от изменений температуры и pH, цвет многих продуктов будет меняться при воздействии этих экстремальных условий. Понимание возможных изменений «работы» пигментов может быть очень полезным для повара, чтобы контролировать цвет приготовляемых блюд.

Важно!

Белки – не просто часть мясных и рыбных продуктов, но и вещества, обеспечивающие:

♦ стабилизацию (как водно-жировой смеси, так и водно-воздушной смеси);

♦ влияние на текстуру – методом как задержки воды (гелеобразование), так и водоотведением (синерезис);

♦ влияние на вкус и качество протекания главной реакции в кулинарии реакции Майяра.

Процесс коагуляции белка – главный процесс в кулинарии, которым нужно учиться управлять.

Белки могут не только впитывать воду, но и вытеснять ее. Это объясняет, почему после жарки мяса еще спустя 5–7 минут из него вытекает сок в тарелку.

Ферменты и пигменты в содержащих белок продуктах – важнейшие типы белка, «управление» поведением которых в процессе готовки также является залогом успешного освоения «научной кулинарии».

Жиры

Жиры представляют собой различные типы молекул. Один из важных жиров – триглицерид. Триглицериды состоят из молекулы глицерина и трех прикрепленных к ней молекул жирных кислот.

Жиры бывают двух видов – насыщенные и ненасыщенные жиры.

Насыщенные жиры

Жиры, которые не содержат двойных связей в любой из своих цепей, называются насыщенными жирами. Они называется «насыщенными», поскольку содержат столько атомов водорода, сколько могут к себе присоединить. Эти жиры, как правило, остаются твердыми при комнатной температуре и имеют животное происхождение (например, жир животных или масло).

Ненасыщенные жиры

Ненасыщенные жиры, наоборот, не содержат двойных связей в своей молекулярной структуре. Они являются ненасыщенными, потому что не содержат столько атомов водорода, сколько могли бы иметь. Они, как правило, находятся в жидком состоянии при комнатной температуре и имеют либо растительное происхождение, либо добываются из рыб. В кулинарии их называют «растительные масла». Ненасыщенные жиры могут быть далее классифицированы в соответствии с количеством двойных связей в них как:

– мононенасыщенные (могут прикрепить еще хотя бы один атом водорода), например оливковое и арахисовое масла;

– полиненасыщенные (могут прикрепить намного больше атомов водорода), например подсолнечное и кукурузное масла.

Важно знать, что полиненасыщенные масла прогоркают при комнатной температуре, поэтому их лучше всегда хранить в холодильнике.

Вспомните, как оливковое масло становится мутным и густеет в холодильнике, хотя всегда остается жидким при комнатной температуре. Почему?

Это связано именно с тем, что области ненасыщенных жиров охлаждаются и создается оптический эффект, как будто масло мутное полностью.

Из кулинарной практики мы знаем, что жиры крайне неохотно смешиваются с водой. Это создает ряд неудобств при приготовлении соусов. Объясняется данное обстоятельство очень просто: жиры – нейтральные субстанции и не могут притягиваться к молекулам воды. Если смешать масло и воду, масло будет всплывать на поверхность воды, потому что его плотность меньше, чем у воды. Для того чтобы сделать стабильной эмульсию воды и жира, необходимы поверхностно-активные молекулы (напомним: молекулы, которые содержат как гидрофобные, так и гидрофильные части). Примером поверхностно-активных молекул могут быть молекулы моющего средства для грязной посуды. Нерастворимые в воде части моющего средства соединяются с жирами в пятнах и загрязнениях и смываются водой.

Для кулинарных изысканий также крайне полезно принять во внимание, что жиры в отличие от воды очень чувствительны к малейшим изменениям температуры окружающей среды. Например, вода существенно не меняется при нагреве в диапазоне от 0 до 100 °C. С жирами происходит обратное явление – нагрев до точки кипения повышает текучесть источника жира, в то время как охлаждение до точки замерзания приводит к постепенному увеличению вязкости.

Давайте вспомним, как утром выглядят пожаренные накануне котлеты, которые вы положили с вечера в холодильник прямо в сковороде. Наутро мы можем наблюдать жировое «поседение» на продукте и вокруг него, котлеты в сковороде напоминают седые вершины гор и укутанные снегами ущелья.

Это связано с тем, что молекулы в различных частях жира плавятся при различных температурах в отличие от воды, где каждая молекула будет кипеть ровно при той же температуре, что и другие.

Данный пример объясняет, почему наши удивительные кулинарные творения, пожаренные в масле, часто выглядят крайне неаппетитно после непродолжительного хранения в холодильнике.

Все мы помним, что жиры в кулинарии чаще всего используются при жарении. Важно знать, какие физические и химические процессы при этом происходят.

Итак, температура кипения жиров значительно выше, чем температура кипения воды, и находится в диапазоне между 260 и 400 °C (в зависимости от видажиров). Например, температура кипения оливкового масла составляет около 300 °C. Поэтому в ресторанах никому не приходит в голову заливать оливковое масло в промышленный фритюр, для того чтобы пожарить картофель «фри». Оказывается, дело не только в его дороговизне, но и в его физико-химических особенностях.

Однако, жиры начинают разлагаться при температуре ниже их температуры кипения. Этот процесс начинается при достижении жирами температуры, называемой в физике температурой вспышки. Например, температура вспышки того же оливкового масла составляет 180–200 °C. Температура вспышки может быть обнаружена «на глаз» по появлению легкого дымка и обесцвечиванию жиров. В этот момент жиры начинают разлагаться.

В процессе их распада образуются несколько новых химических соединений – в основном оксиды триглицеридов (например, акролеин) и окрашенные соединения. Чем выше количество ненасыщенных жиров, тем ниже температура вспышки и больше токсичных соединений.

Кулинарный закон:

♦ Жиры, которые используются для жарки, должны нагреваться по крайней мере до температуры 180 °C.

Жарить при более низких температурах строго не рекомендуется.

В домашних условиях для жарки на сковороде лучше всего применять рафинированные и растительные масла, так как их температура вспышки выше 200 °C. В ресторанах чаще используют пальмовое масло, его температура вспышки колеблется в пределах 210–225 °C.

Неочищенные масла никогда не должны использоваться для жарки, потому что их температура вспышки часто находится ниже отметки 180 °C.

Равным образом, масло для жарки в домашних условиях не должно быть повторно применяться более трех раз, потому что температура вспышки такого масла будет снижаться по мере возрастания чистоты его использования. В ресторанах масло может употребляться до 30–50 раз после тщательной фильтрации. Важно понимать, там используются специальные термостабилизированные масла, температура вспышки которых стабильна.

Работая дома, также не стоит экспериментировать с нагревом жиров до слишком высоких температур, так как при высоких температурах жир может стать источником горючих паров, которые могут спонтанно воспламениться.

В ресторанах паназиатской кухни можно увидеть как у повара, подбрасывающего ингредиенты блюда в воке (wok – сковорода с параболической формой дна), под сковородой вздымаются в воздух снопы высокого пламени. Это происходит из-за того, что сильно перегретое масло мгновенно воспламеняется. Не стоит повторять такие эксперименты дома. Помните, в ресторанах работают со специальными конструкциями пожарозащищенных вытяжных зонтов, оснащенных пламегасителями.

И наконец, о самом главном. Жиры играют очень важную роль в образовании вкуса. Многие молекулы различных продуктов, ответственные за их вкус, являются гидрофобными. Это означает, что они не «дружат» с молекулами воды – «переносчиками» вкуса. Таким образом, вкус доносится именно через молекулы жиров. Жиры в пище также улучшают текстуру и «вкусовые» качества пищевых продуктов. (Об этом мы подробно поговорим в последующих главах.) Жиры также используются для приготовления пищи вместо воды. Преимуществом использования жира в качестве средства приготовления блюда является то, что жиры обеспечивают более высокие температуры тепловой обработки, чем вода.

Реакция Майяра, которая отвечает за цвет и вкус большинства видов жареных или приготовленных на гриле продуктов, может проходить гораздо быстрее «при посредничестве» жиров. Это означает, что их использование позволит сократить время приготовления пищевых продуктов, тем самым сохраняя их состав и питательные свойства.

Советы кулинарам:

♦ масло при жарке нельзя недогреть и нельзя перегреть;

♦ всегда храните растительные масла в холодильнике, а

оливковое – при комнатной температуре;

♦ никогда не жарьте на оливковом масле;

♦ используйте кисточку для нанесения масла на продукты перед жаркой, обмазывая их поверхность, не наливайте масло прямо в сковороду или сотейник.

Это позволит вам не допустить излишков масла в сковороде и обеспечить равномерную прожарку продуктов.

Вода

Воду можно по праву назвать «главным кулинарным природным веществом». Без воды сложно представить приготовление какого-либо блюда. Вода содержится в любой органической материи, которую мы используем в пищу. Вода – источник почти всех микроэлементов, необходимых для поддержания работоспособности человеческого организма.

Какие же процессы происходят в кулинарии при непосредственном участии воды?

В чистой воде ее молекулы находятся в непрерывном движении. Каждая молекула воды состоит из двух атомов водорода и одного атома кислорода, «скрепленных» в V-образной форме. Молекулы воды могут образовывать цепочки.

Когда вода нагревается, молекулы начинают двигаться с большей энергией и скоростью – так быстро, что связи между ними начинают разрушаться, «отпуская» некоторые отдельные молекулы воды из цепочки. Эти молекулы отрываются от поверхности, превращаясь в водяной пар. При 100 °C все взаимосвязи молекул разрушаются и вода переходит из жидкого состояния в газообразное.

В противоположность этому, когда вода очень сильно охлаждается, молекулы воды постепенно утрачивают энергию, необходимую для движения, создают новые связи и постепенно, со снижением температуры, переходят из жидкого агрегатного состояния в состояние твердое. Так образуется лед.

Молекулы всех видов часто классифицируются по принципу активности во взаимодействии с водой. Молекулы, которые активно взаимодействуют с водой, называются «гидрофильные», или «влаголюбивые». Эти молекулы активно взаимодействуют с водой, потому что точно так же, как и вода, являются электрически заряженными. Вступая в контакт с водой, такие молекулы образуют связи с ее молекулами. Такие связи по сути и являются отражением процесса растворимости.

Процессы растворения

Рассмотрим пример того, как происходит процесс растворения одной материи в другой. Как известно, если соль добавить в воду, она растворится. Соль состоит из ионов натрия Na+ и хлора Сl-, соединенных между собой. Оказавшись в воде, эти элементы образуют связи с молекулами воды. Поскольку соль уже разделилась на ионы Na+ и Сl-, она уже будет не видна невооруженным глазом, так как в разделенном виде частички соли слишком малы. Однако, если нагревать смесь, вся вода постепенно испарится и останутся только ионы Na+ и Сl-, которые вновь соединятся и снова образуют соль.

Как можно изменить температуру кипения

Для кулинара важно знать, что температуру кипения воды можно изменять, если добавить в нее какие-либо вещества. Например, если добавить в воду соль, то температура кипения воды изменится, потому как температура кипения раствора соли значительно выше, чем воды. Чем больше соли содержится в воде, тем выше температура кипения раствора.

Этот факт несложно доказать, используя для кипячения соленую морскую воду или вскипятив на плите сильный раствор соли, приготовленный собственноручно.

Если в воду добавить алкоголь, который имеет температуру кипения значительно ниже, чем у воды, то температура кипения этой смеси понизится.

Точка замерзания воды так же может быть изменена в зависимости от того, какие вещества добавлены в воду. Вне зависимости от того, что будет добавлено, температура замерзания будет ниже, так как инородные вещества в воде будут препятствовать образованию льда и таким образом снижать температуру замерзания.

Этим объясняется то, что дороги зимой часто посыпают именно солью, чтобы лед таял при достаточно низкой температуре.

Что такое «эмульсия»?

Многие молекулы, содержащиеся в пищевых продуктах, все же не взаимодействуют с водой. Они называются «гидрофобные», или «не любящие воду».

Эти молекулы нейтральны, они не взаимодействуют с водой, потому что не могут притягиваться к ее молекулам и смешиваться с ними. Например, растительное масло не смешивается с водой. Масло, которое гораздо плотнее воды, вероятнее всего будет плавать на ее поверхности «лохмотьями». Если смесь энергично потрясти, то обе жидкости распадутся на более мелкие капли, и крошечные капельки масла временно растворятся в воде. Однако как только «тряска» прекратится и капли масла смогут свободно передвигаться, вода и масло вновь разделятся на 2 слоя.

В современной кулинарии используются блендеры с высоким количеством оборотов в минуту (до 35 000 об./мин), они позволяют создавать эмульсии, стабильные до 12–14 часов. Этого времени достаточно, для приготовления блюд и подачи их к столу.

В профессиональной кулинарии, для того чтобы получилась подлинно стабильная смесь масла и воды, необходимо добавление специального вещества, содержащего поверхностно-активные молекулы. Поверхностно-активные молекулы имеют гидрофильную «голову» и гидрофобный «хвост», или, проще говоря, один конец молекулы растворяется в воде, а второй растворяется в масле.

Особенность химического процесса в смеси масла и воды заключается в том, что добавленные поверхностно-активные молекулы окружают капельки масла своими гидрофобными частями, а с водой контактируют гидрофильными частями, причем таким образом, что молекулы масла равномерно распределяются в воде. Многие промышленные пищевые продукты содержат подобные поверхностно-активные молекулы для стабилизации смесей из воды и масла. Вещества с большим количеством активных молекул называют эмульгаторами.

В заключение короткого знакомства со свойствами воды отмечу, что вода является наиболее распространенным веществом в природе. Неудивительно, что большинство продуктов содержит в себе главным образом воду. Вследствие этого многие из этих продуктов существенно теряют свой вес (массу), если они приготовлены при высоких температурах, так как вода, содержащаяся в них, активно испаряется.

В пище вода формирует химическое свойство продукта, которое кулинарным языком можно описать как «нежность». Твердый сыр содержит гораздо меньше воды, чем мягкий сыр, и поэтому он не такой нежный. Слабо прожаренный стейк (в нем незначительное количество жидкости испарилось за короткое время приготовления) гораздо нежнее, чем хорошо прожаренный стейк, в котором испарилось значительное количество воды.

Советы кулинарам:

♦ всегда готовьте, используя только очищенную, не минерализованную воду;

♦ не солите пищу в процессе варки и тушения в воде;

♦ чем больше содержание поваренной соли в организме – тем хуже гомеостаз и обмен веществ;

♦ в сутки человеческий организм теряет около 12 стаканов воды (2400 мл). Желательно чтобы это количество компенсировалось через пищу и питье в пропорции 50/50.

Глава 2 Хлеб, выпечка и макаронные изделия

Многие блюда, в том числе и хлебобулочные изделия, готовятся из стандартной смеси муки и воды, известной в кулинарии как тесто. Часто при приготовлении теста в него добавляют и другие ингредиенты, такие как разрыхлители, яйца, сахар, молоко, сбраживающие агенты. Ассортимент нашего стола включает множество блюд с содержанием муки – выпечка, запеканки, пассеровки, соусы, панировочные смеси, кляры, кондитерские изделия. Каждый из этих продуктов имеет различное соотношение муки, воды, всевозможных добавок согласно рецептам их изготовления.

Приготовление теста – это целая наука, и чем лучше кулинар понимает физико-химические процессы, происходящие во время приготовления хлебобулочных изделий, тем лучше результат.

Рассмотрим тему подробнее. В процессе приготовления теста гранулы крахмала в муке увеличиваются, белки муки свертываются, в результате тесто постепенно становится плотным и тягучим за счет уменьшения количества свободных молекул воды внутри его. В современной хлебопекарной практике зачастую используют специальные добавки-улучшители, они придают изделиям некоторые дополнительные свойства.

Что такое дрожжи?

Хлеб, как известно, состоит из муки, воды, дрожжей и некоторого количества соли.

Дрожжи – это живые микроорганизмы, состоящие из одной клетки. Они находятся в состоянии анабиоза, как бы в спячке, пока не вступают в контакт с теплой водой. Как только дрожжи «просыпаются», то начинают питаться любыми доступными сахарами, выделяя углекислый газ (СO2). В процессе поглощения сахара дрожжи получают энергию, которая позволяет им расти.

Дрожжи растут путем равномерного деления их клеточных мембран, а затем и всего содержимого клетки, образуя две новые клетки из одной.

Рассмотрим последовательно этапы изготовления хлеба.

Этапы изготовления хлеба

Замес теста

Для приготовления хлеба, как известно, замешивают тесто (ингредиенты приведены выше). Замешивание теста происходит до тех пор, пока оно не станет гладким и эластичным благодаря клейковинным белкам, присутствующим в муке.

Первый шаг замешивания теста в миске помогает разбить белки клейковины и глютенина, нарушая их водородные связи и дисульфидные мосты, которые затем выстраиваются для формирования и развития сильного клейковинного каркаса.

Часть внутримолекулярных петель, сохранившихся в белках, и придают тесту особую эластичность. Крутое и эластичное тесто благодаря своей прочной структуре, словно ловушка, держит внутри себя пузырьки воздуха, не разрушая их, и в то же время позволяет им расширяться при выпекании. Благодаря заряженным ионам соль способствует притягиванию белков друг к другу и приводит к образованию каркаса по типу белок + белок.

Помимо белков клейковины мука также содержит и другие белки, которые играют важную роль на стадии замешивания теста. К ним относятся ферменты, в частности амилазы, которые играют ключевую роль в выпечке хлеба. Эти ферменты, в прямом смысле слова, используют воду в тесте для агрессивного воздействия на молекулы амилопектина, находящиеся в гранулах мучного крахмала в случайных точках их структуры, чтобы разложить их на молекулы мальтозы (простая молекула сахара, состоящая из химического соединения двух молекул глюкозы). Эти молекулы в дальнейшем будут использоваться дрожжами для придания «воздушности» тесту в ходе процесса брожения.

Именно по этой причине муку всегда следует хранить в сухом месте, иначе ферменты начнут реагировать с крахмалом в муке еще при хранении, используя пары воды из воздуха и ухудшая свойства крахмала.

Амилазы работают быстрее при теплых температурах, поэтому для приготовления хорошего теста в него добавляют, как правило, теплую воду, а не холодную.

Добавление соли способствует активности фермента муки – амилазы, но снижает протеазную активность в муке, то есть препятствует разжижению теста.

Брожение теста

После тщательного замешивания тесто помещают в чашу, накрывают и оставляют на несколько часов. Находясь в таких условиях, тесто начинает набухать, так как дрожжи начинают расти, активно выделяя углекислый газ. Пузырьки воздуха при этом не выходят наружу, а удерживаются внутри теста с помощью крепкой белковой сетки.

Дрожжи отвечают не только за выделение пузырьков газа, но также за аромат, который можно уловить во время расстойки дрожжевого теста.

Во время брожения дрожжи используют собственный фермент – мальтазу, чтобы разложить мальтозу, произведенную амилазами муки, в молекулы глюкозы. Именно эти молекулы глюкозы впоследствии преобразуются в углекислый газ (который помогает хлебу подниматься), в этанол (придающий хлебу его особый вкус) и другие спирты – незаменимые помощники в придании аромата хлебу.

Кстати, по такому же принципу алкоголь образуется в пиве и некоторых других алкогольных напитках.

Наиболее эффективно брожение происходит при температуре 27 °C. И хотя повышение температуры способствует более быстрому росту дрожжей и выделению большего количества газа, что увеличивает объем теста и скорость его приготовления, все же не рекомендуется работать с более высокими температурами. Идеальный хлеб с оптимальным вкусом и ароматом должен бродить именно при 27 °C.

Повторный замес

После брожения наступает второй этап замешивания путем постоянного «складывания» или «вбивания» теста, он необходим не только для укрепления клейковины, но и для попадания воздуха в тесто, обеспечивает равномерное распределение воздуха внутри теста.

Второй этап замешивания также способствует однородному распределению дрожжевых клеток в тесте.

После повторного замешивания тесто снова оставляют в покое для дальнейшей расстойки – процесса роста дрожжей.

Теперь дрожжевые клетки распределены равномерно, и, соответственно, выделение СO2 будет таким же равномерным по всей толще теста.

Такой пошаговый процесс замешивания и брожения делает тесто легким и воздушным, благодаря равномерному распределению газов конечный продукт хорошо поднимается в печи, а после выпечки получается однородным.

Выпекание

Как только тесто достаточно поднялось, его помещают в горячую духовку.

На начальных этапах выпекания (первые 10 минут) тесто значительно увеличивается в объеме. Это явление называется «подъем в печи» и связано с рядом факторов:

– по мере повышения температуры теста до 60 °C возрастает как дрожжевая, так и амилолитическая активность (то есть насыщение крахмала сахарами). Увеличение амилолитической активности приводит к более быстрому осахариванию крахмала, крахмал обращается в мальтозу, что, в свою очередь, увеличивает питательную среду для дрожжей. Рост дрожжевой активности означает большее выделение CO2, дальнейшее увеличение количества газа в тесте. При температурах свыше 60 °C ферменты становятся неактивными, дрожжевые клетки погибают. Дрожжи перестают выделять CO2;

– при повышении температуры все газы, в том числе и CO2, и воздух, попавший при замешивании в тесто, расширяются;

– часть незадействованной воды в тесте, а также этанол – продукт брожения дрожжей, будут испаряться, продолжая расширять тесто.

Итак, первые десять минут выпечки сопровождаются высоким уровнем выделения и расширения газов.

Благодаря относительной упругости белковых связей в тесте, газы будут расширяться без нарушения белковой сети. Однако непосредственно перед выпечкой на верхней поверхности теста лучше сделать несколько разрезов (насечек) ножом. Это увеличит способность теста к «правильному» расширению – без образования трещин на конечном продукте.

Высокая температура укрепляет белковые сети, которые образовались во время замешивания, и они становятся все более и более твердыми. Одновременно крахмал, содержащийся в крахмальных гранулах муки, высвобождается и приобретает консистенцию желатина, взаимодействуя с водой. Именно этот эффект в сочетании с уровнем испарения воды придает тесту твердость. Температура на поверхности хлеба растет быстрее, чем внутри. Это формирует сухую и жесткую корочку, которая предотвращает испарение любых газов, способствуя максимальному набуханию теста.

Поэтому хлеб всегда стоит выпекать в очень горячей духовке (при максимально возможной температуре) первые 10 минут для формирования твердой корочки, снижающей испарение газов и препятствующей уменьшению объема хлеба. Дрожжевые пироги тоже выпекаются при высоких температурах для обеспечения непроницаемой корки на поверхности, чтобы предотвратить испарение значительного количества водяного пара из теста. Это важно, так как водяные пары, которые остаются в продукте в конце приготовления, конденсируются. Выпекание пирогов при повышенной температуре в первые 10 минут позволят им оставаться нежными после остывания.

Так как газы, которые не могут испариться, продолжают расширяться, давление внутри теста увеличивается. Это увеличение давления вызывает разрушения некоторых белковых связей, что позволяет пузырькам газа соединяться друг с другом. Из-за этого внутри хлеба иногда видны воздушные раковины на срезе.

Как придать вкус и аромат хлебу?

Как только температура на поверхности хлеба превысит 100 °C, между редуцирующими сахарами и аминокислотами в корочке начинает происходить реакция Майяра, заметно меняя цвет и придавая вкус хлебу. Наличие молока только благоприятствует этой реакции. Молоко содержит сахара лактозы, которая в отличие от мальтозы не может быть разрушена и используется как питательная среда для дрожжей. Таким образом, включение молока в тесто обеспечивает увеличение общей концентрации сахара, необходимой для реакции Майяра, улучшает вкуса хлеба и придает ему насыщенный коричневый цвет.

Внимание!

Следите за тем, чтобы хлеб не подгорал при выпекании!

Приготовление хлеба (спустя первые 10 минут) при слишком высокой температуре делает белковую сеть слишком жесткой. Она быстро укрепляется, прежде чем газы успели в полной мере расшириться. Расширяющиеся газы уже не могут растянуть белковую сеть, которая слишком жесткая, и хлеб получится слишком плоским. К подобной проблеме может также привести слишком долгий или неправильный замес теста. Тогда хлеб получится меньшего объема, из-за нехватки воздуха в тесте и малого расширения газа во время выпекания.

Однако, если температура в печи будет слишком низкая, газы начнут расширяться до того, как на хлебе образуется жесткая корочка, и хлеб снова получится плоским.

Что же происходит с хлебом после его выпекания?

Остывая, крахмал высвобождается из крахмального зерна, начинает связываться друг с другом, поглощая свободные молекулы воды. Консистенция мякиша хлеба густеет, слишком мягкий мякиш в центре хлеба становится более жестким (сухим), что, кстати, облегчает его нарезку после остывания.

Спустя несколько дней, после того как хлеб был выпечен, соединения крахмала находятся на пике, вода почти полностью вытесняется из белковой сети, а хлеб становится настолько черствым, что больше несъедобен.

Как же «реанимировать» черствый хлеб?

Черствый хлеб можно смягчить путем его нагревания: высокая температура делает молекулы крахмала снова подвижными, высвобождая остатки поглощенных молекул воды, и тем самым смягчает хлеб.

Теперь перейдем к особенностям приготовления теста для тортов и некоторых кондитерских изделий.

Особенности приготовления тортов, песочного, слоеного теста и эклеров

Торты пекут из совершенно иного, чем у хлеба, вида теста. Оно состоит из муки, смешиваемой с яйцами, сахаром и сливочным маслом. Эта смесь впоследствии запекается до получения легкого и пушистого изделия, насыщенного газом. Строго говоря, в кулинарии существует два способа насыщения теста газом: химический и механический. Пузырьки газа, содержащиеся в торте или пироге, выделяют не дрожжи, как в хлебе, а включенные в торт смеси либо химические газообразующие ферменты (например, пекарская смесь, заменяющая дрожжи).

Ввести воздух в тесто можно и механическим способом: путем взбивания воздуха в тесто с помощью планетарного миксера.

Химические и механические методы насыщения теста газом

Химический метод

Химические разрыхлители (например пекарский порошок, заменяющий дрожжи, или пищевая сода) являются соединениями, которые активно выделяют углекислый газ при контакте с горячей водой. Источником CO2 является бикарбонат натрия, который либо уже смешан с кислотой (как в пекарской смеси), либо требует добавки кислоты для начала реакции (как пищевая сода).

При взаимодействии с водой одна из двух кислот, содержащихся в пекарской смеси в сухом виде, реагирует с присутствующим натрием бикарбоната для выделения CO2. Поэтому в пекарскую смесь нередко добавляют крахмал для предотвращения ранней реакции между бикарбонатом натрия и молекулами кислоты, он поглощает влагу и сохраняет порошок сухим во время хранения. Вторая кислота в составе пекарской смеси реагирует с бикарбонатом натрия уже при более высоких температурах для выделения большего количества пузырьков CO2 в начале выпечки.

При использовании соды для выпечки бикарбонат натрия для производства CO2 вступает в реакцию с кислотой, которая содержится в смеси для выпечки торта. Пекарская смесь и сода для печения являются более эффективными разрыхлителями, чем дрожжи, и производят CO2 гораздо быстрее, однако они не улучшают вкуса и аромата теста так, как это удается дрожжам.

Механический метод

Смесь для выпечки коржей торта может быть насыщена газом механическим взбиванием. Взбивание предполагает насыщение масла воздухом с помощью электрического планетарного или ручного миксера. При этом сахар (сахар-песок, но не пудра) медленно всыпают в масло. По мере того как острые кристаллы сахара врезаются в масло, в его структуре образуются крошечные «карманы». Эти карманы заполняются воздухом, и в то время, как лезвия миксера поднимают все больше и больше масла наверх, они остаются нетронутыми.

Кроме того, механическое насыщение воздухом может происходить путем добавки в тесто ранее насыщенной воздухом смеси, например взбитых сливок или яиц, аккуратно вводимых в смесь.

Внимание!

Замес теста для тортов не должен быть длительным – это приведет к потере CO2 или воздуха.

Выпекание и охлаждение коржей

Выпекание

В процессе выпекания CO2 или воздух, которым насыщена смесь для выпечки, будет расширяться, вода, содержащаяся в смеси, начнет испаряться, и это позволит тесту подниматься. Пузырьки газа удерживаются в смеси с помощью белковой сети, которая формируется вокруг пузырьков, объединяя денатурированные белки муки. Эта сеть не так сильна, как у хлеба, так как для приготовления последнего используют муку с высоким содержанием белка, и тесто хорошо замешивают для укрепления клейковинного каркаса перед выпеканием. Мука, применяемая для кондитерской выпечки, это, как правило, мука с низким содержанием белков (для уменьшения количества образующейся клейковины и предотвращения формирования жесткой текстуры конечного продукта).

Во время приготовления коржей крахмальное зерно муки начинает впитывать воду и набухать, увеличивая вязкость смеси для кондитерской выпечки. Естественно густые смеси лучше удерживают воздух, чем жидкие. При дальнейшем повышении температуры значительное испарение воды с поверхности коржа сделает его тверже и будет способствовать возникновению реакции Майяра, влияющей на вкус и цвет кондитерского изделия. Как правило, чем быстрее нагревается корж (то есть, чем выше температура в печи), тем больше у молекул газа возможностей для расширения до тех пор, пока корж не осядет, поэтому корж получается гораздо более легкий и нежный.

Охлаждение

Когда лист вынимают из печи, он охлаждается, пузырьки газа сжимаются, а пары конденсируются. Упомянутые явления уменьшают внутреннее давление в выпеченном корже.

Это может привести к проваливанию коржа, если удерживающий его белковый каркас еще не достаточно окреп (то есть если корж не допекли).

Очерствение

Торт будет черстветь медленнее, чем хлеб. Почему?

Дело в том, что в хлебе вода утрачивается по мере того, как белковые сети, укрепляясь, начинают ее выталкивать. В торте же вода сохраняется в структуре благодаря молекулам сахара, к которым она притягивается.

Приготовление теста: для песочного печенья, слоеного, для эклеров

Песочное тесто

Выпечка из песочного теста изначально делается из муки и воды, но тесто для выпечки отличается от других видов теста высоким содержанием жира (около 30 %) и низким содержанием воды (около 15 %). Из-за низкого содержания воды клейстеризация крахмала не завершается и это придает тесту слоеную текстуру. После того как в тесто добавляется сахар, содержание воды в тесте еще больше снижается. Это означает, что еще меньше влаги будет доступно для клейстеризации крахмала во время выпекания. В результате гранулы крахмала лишь незначительно клейстеризуются, находятся в значительном отдалении друг от друга, из-за чего печенье приобретает рассыпчатую структуру.

Тесто для печенья должно вымешиваться как можно быстрее, в отличие от других видов теста, например, для хлеба или булочек. Это позволит предотвратить разрастание клейкой сети, из-за которой выпечка получится жесткой. Кроме того, тесто для печенья делается из более мягкой муки, в которой содержится меньше белков.

В песочное тесто масло добавляется равномерно. Функция масла заключается в том, чтобы разделять гранулы крахмала друг от друга, не давая им слипнуться и сформировать спрессованную массу, как в слоеном тесте.

Песочному тесту обычно дают выстояться перед приготовлением, чтобы вода лучше распределилась внутри замеса и легче проникла в гранулы крахмала. Слабая сеть свернувшихся белков муки, образовавшаяся в процессе приготовления теста, удерживает набухшие гранулы крахмала вместе, создавая структуру будущего печенья.

После того как печенье уже выпечено и остывает, масло твердеет, и именно оно помогает гранулам крахмала удерживаться вместе, несмотря на то что белковая сеть достаточно слаба. Холодное печенье менее слоисто, чем горячее, потому что масло застывает. Печенье, как правило, достают из формочек после того, как оно остынет и его структура укрепится.

Слоеное тесто

При приготовлении слоеного теста масло добавляют в тесто одним куском и затем равномерно распределяют его по всему тесту, многократно складывая и скручивая пласт из теста с маслом. Неоднократное складывание теста необходимо для того, чтобы равномерно распределить масло между слоями и одновременно ввести в тесто как можно больше воздуха, чтобы выпечка получилась легче и воздушнее. Готовую массу теста помещают в холодильник. Если процедура замеса выполняется тщательно, то в результате тесто должно состоять примерно из 240 отдельных слоев, разделенных друг от друга тонким слоем сливочного масла. Слоеное тесто целесообразно готовить на мраморной поверхности и выдерживать в холодильнике как можно дольше, для того чтобы масло стало как можно тверже.

В процессе приготовления слоеного теста белки, содержащиеся в муке, будут перерабатываться в клейковину, из-за которой тесто может стать жестким. Поэтому для приготовления слоеного теста используют муку с низким содержанием протеинов. В слоеном тесте содержится гораздо больше воды, чем в песочном.

В процессе выпекания слоеного теста масло в нем будет таять, вода испаряться, а газы, содержащиеся в тесте, будут расширяться. Поэтому увеличение объема теста в процессе выпекания слоеных изделий более чем в 8 раз считается нормой.

Тесто для эклеров

В тесто для эклеров нужно добавлять еще большее количество воды, чем в слоеное тесто. В процессе выпекания вода интенсивно испаряется из нижней части эклера, которая находится в контакте с раскаленной духовкой, и это вызывает значительный подъем теста и увеличение объема эклера в целом с образованием соответствующей, как бы «вздутой» структуры.

Как правило, для выпекания хлеба и кулинарных тестовых изделий используют муку высшего сорта. Мягкая пшеница предназначена для получения хлебопекарной муки, а твердая – макаронной муки, крупы.

Мягкая и твердая пшеница отличаются друг от друга. Зерно мягкой пшеницы овально-округлой формы, с хорошо заметной бороздкой, белого цвета или с красным оттенком. Зерно твердой пшеницы узкое, ребристое, плотное, янтарно-желтого цвета, бороздка почти не заметна. Клейковина, получаемая из муки твердых пшениц, упругая, сильная.

Макаронные изделия

Тесто для макарон

Макаронные изделия, как и хлеб, в основном состоят из смеси муки и воды (теста). При этом тесто для макарон намного тверже, чем другие виды теста из-за значительно более низкого содержания воды (около 25 % от общего объема теста, тогда как тесто для хлеба содержит 40 % воды). Довольно часто в тесто добавляют яйца или яичные желтки, что также позволяет снизить количество воды в тесте.

После замеса тесту придают нужную форму (лист или ленты), и либо готовят и съедают его сразу (в виде лапши), либо высушивают (снижают содержание воды до 10 %). В сыром виде макароны не съедобны и нуждаются в варке, для того чтобы клейстеризовать мучной крахмал и сделать его перевариваемым для организма.

Во время варки гранулы крахмала муки набухают, насыщаясь водой, и макароны увеличиваются в размере.

При увеличении температуры белки муки подвергаются денатурации и коагуляции, образуя нерастворимую сеть, окружающую гранулы крахмала, что позволяет сохранить форму макарон и предотвратить попадание крахмала в бульон при варке. Если в тесто добавлены яйца, яичные белки также коагулируют при нагревании и способствуют укреплению сети.

Чтобы сделать макароны без добавления яиц, необходимо использовать муку с высоким содержанием клейковины (например, из твердых сортов пшеницы) и хорошо замешивать тесто, чтобы обеспечить успешное образование клейковинной сети.

Во время варки, если белковая сеть успеет сформироваться прежде, чем крахмал клейстеризуется, макароны сохранят свою форму и не слипнутся, поскольку молекулы крахмала не успеют просочиться наружу. Однако, если клейстеризация произойдет до образования белковой сети, некоторые молекулы крахмала, «сбежавшие» из своих гранул с поверхности одной макаронной трубочки, могут смешаться с молекулами крахмала на поверхности другой трубочки, в результате две макаронных трубочки слипнутся. Полностью освободившиеся молекулы крахмала поднимаются на поверхность, образуя пену, которую часто можно наблюдать при варке макаронных изделий.

Для макаронных изделий, в состав которых входят яйца, опасность слипания снижается. При содержании большого количества яиц в тесте, пропорционально увеличивается количество белков по отношению к количеству гранул крахмала. Благодаря этому формируется усиленная белковая сеть, которая не дает крахмалу освободиться и оторваться с поверхности макарон.

Предотвращение слипания макарон при их приготовлении

Как же гарантированно предотвратить слипание макарон в процессе приготовления?

Риск слипания макарон без добавления яиц можно снизить с помощью большого количества воды при варке для предотвращения контакта между соседними трубочками макарон и уменьшения концентрации крахмала, выходящего в бульон. Макароны надо бросать в кипящую воду и поддерживать кипение.

Предотвратить слипание могут:

1. Сильная конвекция при энергичном кипении.

2. Произвольное помешивание также не позволит макаронам слипаться (но соблюдайте меру, чрезмерное помешивание может привести к повреждению структуры макарон, что повлечет за собой утечку большего количества крахмала).

3. Если в воду во время варки добавить немного растительного масла, оно не смешается с ней, оставаясь на поверхности воды. Когда макароны будете сливать через дуршлаг, масло равномерно распределится по их поверхности, предотвращая слипание.

4. Варка в слегка подкисленной воде (например, с добавлением уксуса или лимонного сока) сохраняет целостность макарон. Положительные ионы способствуют образованию белковой сети, крахмал захватывается быстрее и имеет меньше шансов на утечку в воду.

5. Водопроводная вода лучше, чем минеральная, подходит для варки макаронных изделий, так как ионы водопроводной воды способствуют стабилизации белковой сети. Макароны, приготовленные в минеральной воде, не могут быстро сформировать белковую сеть, и возможность утечки крахмала увеличивается.

6. Если макароны готовятся в белковом растворе, например, в бульоне, меньшее количество белков выйдет в бульон за счет диффузии. Образовавшаяся белковая сеть будет прочнее, макароны потеряют меньше амилозы, их структура станет крепче и они меньше разварятся.

Нужно ли добавлять соль при варке макарон?

Широко распространено мнение, что добавление соли при варке повышает температуру кипения воды, и таким образом макароны готовятся быстрее. К сожалению, это утверждение далеко от истины, поскольку содержание соли в воде слишком мало, чтобы хоть как-то существенно повлиять на изменение температуры кипения. То есть в данном конкретном случае соль вообще никак не влияет на время приготовления макарон. Однако добавлять соль все же рекомендуется, поскольку она тоже помогает сформироваться белковой сети в макаронах, а также придает макаронам пикантный вкус.

При охлаждении приготовленные макароны становятся жесткими и трудно усваиваются, так как крахмал твердеет, а влага вытесняется.

Пельмени, вареники и клецки

Приготовление теста

Вареники, пельмени, равно как и клецки, – это изделия из теста, в состав которых входят мука и вода с добавлением яиц. Раскатывая тесто, мы режем его на различные формы, добавляем заранее приготовленную начинку и защипываем изделие.

Тесто тщательного замешивается, для того чтобы денатурировать белковые молекулы муки и с их помощью связать гранулы крахмала и клетки начинки. После того как клейковина соединила все компоненты, и тесто стало достаточно упругим, нужно сформировать заготовку, добавить начинку и варить изделия в кипящей воде.

Во время приготовления гранулы крахмала насыщаются водой и набухают, в то же самое время желатинизируются, их объем увеличивается. Однако при варке пельмени или вареники не так сильно увеличиваются в объеме, как сухие макароны или рис. Пельмени сохраняют свою форму благодаря яичному белку на их поверхности, он быстро нагревается и свертывается при контакте с кипящей водой, что позволяет сохранить целостность пельменя.

Пельмени всплыли при варке, но готовы ли они?

Попав в горячую воду, пельмени или вареники опускаются на дно емкости, это происходит из-за того, что они состоят в основном из муки, а мука имеет большую, чем у воды, плотность (она тонет в воде). Когда мучной крахмал начинает желатинизироваться, в тесто изделий попадает все большее количество воды, что уменьшает их плотность, приближая ее к плотности чистой воды. Однако их плотность всегда больше плотности бульона.

Так почему же изделия всплывают на поверхность. Пельмени и вареники всплывают потому, что крошечные пузырьки испаряющейся воды проникают в мелкие щели изделия. Когда щели заполняются этими крошечными пузырьками, пельмени или вареники выталкиваются на поверхность и в те же щели вместо пара попадает воздух. Если вынуть из кастрюли те пельмени, которые уже поднялись на поверхность, и медленно надавить на них ложкой, чтобы удалить из них пузырьки, а затем снова погрузить в бульон, эти пельмени снова пойдут ко дну. (То же самое можно наблюдать при варке цветной капусты, когда она всплывает на поверхность. Цветная капуста имеет очень неоднородную структуру, в которую легко проникают пузырьки воздуха. Если вынуть из бульона цветную капусту и, постукивая, удалить из нее пузырьки воздуха, в бульоне она снова утонет.)

Таким образом, всплытие пельменей или вареников на поверхность не обязательно означает их готовность. Это, скорее, показатель того, что в щели попало достаточное количество водяного пара, что не имеет ничего общего со степенью готовности.

Пельмени будут готовы тогда, когда внутренняя температура достигнет того уровня, при котором свертывается яичный белок и желатинизируется мучной крахмал, что происходит при температуре около 70 °C. Далее при такой температуре пельменям нужно повариться еще 7-10 минут, чтобы замороженная начинка тщательно проварилась.

Глава 3 Мясо, рыба, яйца

Состав и структура мяса животных

Мясо на 75 % состоит из воды, на 20 % из белков и на 3–5 % – из жиров. В куске сырого мяса эти вещества значительно более высоко организованы, чем, например, в сыром яичном белке (который содержит только простую неструктурированную смесь молекул белков и воды).

В составе мяса имеются в основном четыре различных по структуре вида тканей:

1. Мышечная ткань – основная ткань, состоит из большого количества мышечных клеток, или волокон, содержащих мышечный белок (актин и миозин). Эти мышечные белки и волокна обеспечивают за движение животного при жизни, и от их состояния зависит жесткость мяса после его убоя. По мере роста животного происходит укрепление и рост мышечной ткани: мясо взрослого животного жестче, чем мясо молодого.

2. Кровь. Мышечная ткань насыщена кровеносными сосудами, содержащими пигменты, отвечающие за цвет мяса.

Основной пигмент (составляющий 75 % от общего количества пигментов) называется миоглобином. Он содержит центральный атом железа, примыкающий к белку. В присутствии кислорода атом железа «захватывает» молекулы кислорода и становится ярко-красным.

Чем больше мышц участвуют в работе, тем больше этого пигмента необходимо организму животного и тем краснее будут мышцы. Поэтому мясо частей тела животных, которые постоянно испытывают нагрузки (например, конечностей), будут темнее и более жесткими.

Не все мясо имеет красный цвет. Мясо некоторых животных и птиц – белое. Это связано с тем, что их мышцы задействованы иным способом в отличие от животных с «красным мясом», и уровень миоглобина в них ниже, что придает им более светлый цвет. Птицы, которые по обыкновению двигаются с помощью коротких и резких перебежек и прыжков, имеют другое строение мышц, в отличие от коровы, – та должна удерживать вес тела весь день. Именно поэтому говядина – мясо красного цвета.

3. Соединительные ткани. Мышцы оплетены соединительной тканью, она действует как клей, удерживая мышцы у костей, а также ограничивая количество белков, ответственных за мышечные сокращения. Соединительная ткань состоит из крепких волокон, в основу которых входят белки коллагена и эластина. Коллаген – жесткий белок, состоящий из трех длинных цепей, перевитых друг вокруг друга как веревки. Присутствие большого количества коллагена в тканях делает мясо жестким.

Со временем соединительные ткани утолщаются и становятся более жесткими по мере того, как животное становится старше, соответственно, повышается жесткость мяса.

К счастью, основной белок соединительной ткани – коллаген, может быть частично растворен при приготовлении пищи при температуре выше 55 °C с образованием желатина, тот делает мясо более нежным. Однако эластин во время приготовления сжимается и твердеет. Поэтому он должен быть удален еще до начала приготовления мяса (как правило, острым ножом).

4. Жировая ткань. Между мышечной тканью пролегает жировая ткань. Она похожа на рассеянные белые пятна в мышечной ткани. Молодые животные, как правило, менее жирные, чем взрослые особи. Жировая ткань будет уменьшаться или, образно выражаясь, «таять» при приготовлении пищи, «смазывая» тем самым мышечные волокна. Такое мясо легче жевать. Кроме того, жировая ткань играет важную роль в формировании вкуса – так как большинство ароматов в мясе является гидрофобными и они легко растворяются в жире.

Сырое мясо в отличие от сырой рыбы никак нельзя назвать нежным (особенно когда взято мясо старых животных или мясо мышечных частей туши) из-за прочных мышечных волокон и жестких волокон коллагена в соединительной ткани.

Особенности мышечных тканей у рыб

Так как рыбы плавают в воде, им не нужно так много мышц, как животным. Их мышцы короче и тоньше, чем у наземных млекопитающих. У них короткие мышечные волокна, а соединительная ткань тонкая. Устройство соединительной ткани у рыб таково, что ткань поддерживает мышечные волокна, но в то же время является гораздо более нежной, чем коллаген в мясе. Поэтому рыба гораздо менее жесткая, чем мясо, и ее иногда едят даже сырой (например, японские суши, сашими и роллы).

Когда рыба подвергается тепловой обработке, белки внутри мышечных волокон начинают сворачиваться, и мякоть рыбы становится непрозрачной. Тонкая соединительная ткань, поддерживающая мышечные волокна, быстро распадается, следовательно, рыбу не нужно готовить так долго, как мясо.

С увеличением времени приготовления в рыбе распадется весь коллаген, а в мышечных волокнах не остается связывающих звеньев, соответственно, мышечная ткань начнет расслаиваться. Вот почему приготовленная рыба легко разваливается.

Рыбу нужно готовить при максимальной температуре, чтобы быстро довести ее до готовности и сократить время приготовления. Это предотвращает высыхание рыбы, так как белки быстро свернутся, и не вся сеть коллагена успеет разрушиться. Рыба, приготовленная таким способом, гораздо меньше расслаивается.

Время приготовления рыбы можно уменьшить еще больше, если добавить кислоту, которая ускоряет свертываемость белков. Поэтому кислоту часто добавляют в бульон, если варят рыбу кусками или цельными тушками, так как совокупное воздействие тепла и кислоты ускоряет свертываемость белков.

Яйца

Состав содержимого в скорлупе

Масса куриных яиц может различаться, но, как правило, она составляет около 60 граммов. Из них на скорлупу приходится всего-то несколько граммов.

Внутри яйцо состоит из двух основных частей, практически равных по весу:

– яичный белок, или альбумин;

– желток.

Яичный белок состоит из белков (простите за тавтологию!), растворяемых в воде. 10 % его объема – это белки и 90 % – вода. Белок яйца содержит около 40 разновидностей видов белков. Количественно преобладают белки-глобулины (в основном, овальбумин и кональбумин – небольшие свернутые в клубок молекулы).

Яичный желток также состоит в основном из белков и воды (до 50 %), но еще он содержит жиры и холестерин.

Если быть точным, то желток имеет следующий состав: 49 % воды; 18 % белков; 33 % жира. А яичный белок: 88 % воды; 12 % белков.

В сыром яйце яичный белок прозрачен, так как все содержащиеся в нем белки находятся в свернутом виде. Отдельные белки настолько малы, что не мешают проникновению света.

Изменения в структуре яйца при нагревании

При наличии тепла или, в меньшей степени, кислоты и щелочи, белки «денатурируют» и распускаются. В этом состоянии они могут объединяться или коагулировать и формировать белковую сеть, захватывая молекулы воды и образуя твердый гель. Это химический гель, так как сеть постоянна (разорвать связи между белками можно только с помощью сильных химикатов).

Нагрев яйца до слишком высокой температуры вытянет некоторое количество воды из сети. Но если температура превысит 100 °C и закипит, внутри яйца, в белке, сформируются своеобразные «кратеры».

В кулинарии яйца, как правило, подсаливают. Наряду с улучшением вкуса ионы соли Na+ и Cl- окружают положительно и отрицательно заряженные области белков, нейтрализуя их и тем самым уменьшая отталкивание одинаково заряженных областей от соседствующих с ними белков.

Это приводит к более быстрой коагуляции яичных белков при относительно низких температурах. Кроме того, белки, расположенные в сети, не смогут подобраться ближе друг к другу, как это обычно происходит (благодаря наличию окружающих ионов), в результате белковая сеть будет менее жесткой.

Таким образом, если солить яичницу в процессе приготовления – она будет нежнее.

Если в яичный белок добавить кислоту (кислоты – это соединения, дающие ионы водорода Н+), то постепенно произойдет реакция. В присутствии ионов Н+увеличиваются денатурация и коагуляция белков, так как кислоты усиливают развертывание белков, что позволяет им сформировать сеть. Точнее, части белков получают тот же самый заряд, поэтому они отталкивают сами себя и белки разворачиваются. Разматывание белков приводит к коагуляции.

Коагуляция протеинов яичного белка начинается при температуре 62 °C. При более высоких температурах, по мере того как все больше белков денатурируют и встраиваются в сеть, консистенция приготовленного яичного белка становится тверже.

Как надо правильно варить яйца

Когда яйцо помещают в кипящую воду, тепло от кипящей воды нагревает яйцо. Это приводит к тому, что яичный белок начинает свертываться. Примерно через три минуты температура в центре яйца еще не достаточно высока для начала свертывания белков желтка, потому желток еще жидкий, в то время как белок уже вполне твердый, но при этом гель-белок еще не начал выдавливать воду наружу. Если достать яйцо в этот момент, то оно будет приготовлено всмятку: желток еще жидкий, а белок плотный, но не твердый.

Если яйцо продолжать варить, его температура станет достаточно высокой, чтобы белки желтка тоже свернулись. Такое яйцо будет сварено вкрутую.

Если варить яйцо больше положенных 8 минут, то это приведет к тому, что белок начнет распадаться, и будет выделяться тошнотворный газ – сероводород. Железо, которое содержится в желтке, будет взаимодействовать с газом и образуется сульфид железа (зелено-коричневое плотное вещество).

Этим объясняется, почему от переваренных яиц пахнет сероводородом, а сам желток приобретает легкий зеленоватый оттенок.

Рекомендуется прокалывать скорлупу яйца с тупой стороны перед варкой. В этом конце находится воздушная камера (объем ее зависит от степени свежести яйца). Проколов скорлупу, вы обеспечиваете отвод воздуха из яйца во время его приготовления, когда белки начинают сворачиваться, и содержимое яйца принимает идеально круглый вид.

Если не делать прокола, то воздуху будет некуда деться внутри яйца, и оно сварится приплюснутым с одной стороны. Кроме того, есть мнение, что именно из-за скопления воздуха в этом месте яичная скорлупа трескается, что часто можно увидеть на сваренных яйцах. Чтобы яичный белок не вытекал из отверстия, полученного в результате прокола или через какую-либо трещину в яйце, в кипящую воду надо добавить каплю уксуса. Уксус будет способствовать более быстрому свертыванию белка, который, не успев вытечь, закупорит отверстие.

Возраст яйца также влияет на свертываемость белка и, соответственно, на время его приготовления. С течением времени углекислый газ (он, по сути является слабой кислотой) выходит из яйца сквозь мельчайшие поры в скорлупе, белок становится менее кислым, и свертывание белков занимает больше времени. В таком случае и приготовление яйца занимает больше времени.

Что такое яйцо-пашот и как его готовят?

Яйцо-пашот, как правило, готовится в воде с уксусом. Так как уксус – кислое вещество (раствор в воде уксусной кислоты), он содержит большое количество положительно заряженных ионов Н+. Поместив яйцо в воду, мы увидим, что внешняя часть яйца, которая находится в прямом контакте с ионами Н+, свернется и затвердеет очень быстро. Это позволит внешней части яйца быстро затвердеть, а внутренней части – свариться в мешочек.

Как уже говорилось выше, ионы Н+ помогают не только уменьшить отталкивание денатурированных белков друг от друга, но и способствуют разрушению их связей, удерживающих белки в первоначальном состоянии, что тоже способствует более быстрой денатурации белков.

Жарка яиц

Что происходит с яичницей при жарке в сковороде? Часть яичного белка, которая контактирует с желтком во время жарки, остается жидкой, в то время как оставшаяся часть твердеет. Это не делает яйцо более аппетитным. Чтобы не пережарить яйцо, в ожидании пока часть белка в контакте с желтком затвердеет, рекомендуется посолить белок в этом месте, чтоб ускорить его коагуляцию и сократить время приготовления, а значит, избежать риска пересушки яичницы. Но желток солить не нужно. Тогда он останется достаточно мягким.

Как лучше готовить яичницу «болтунью»? Когда готовят болтунью, к яйцам добавляют сливки или молоко. Это делается для того, чтобы снизить концентрацию белков в яичнице и, следовательно, понизить их способность соединяться друг с другом и молекулами воды.

Жарить «болтунью» нужно на слабом огне, чтобы избежать чрезмерной коагуляции, так как она ведет к вытеснению жидкости и разделению смеси. Наравне с этим необходимо так же тщательно перемешивать содержимое сковороды, чтобы нижний яичный слой не загустел раньше верхнего и не сформировалось двух слоев – нижнего пережаренного и верхнего недожаренного. Яичницу необходимо снять с огня в тот момент, когда она чуть более жидкая, чем хотелось бы, ведь некоторое время она еще будет доходить на горячей сковороде, после того как ее снимут с огня.

При приготовлении омлетов используется несколько иная технология, так как необходимо, чтобы внешний слой был грубее и жестче, чем внутренний – тот должен быть более жидким и нежным. Изначально яичную массу готовят на большом огне не более минуты, а затем томят ее без крышки на маленьком огне до полного застывания массы на поверхности. Иногда пожаренный омлет выдерживают несколько минут в духовке.

Советы кулинарам:

♦ Не стоит готовить яичницу «болтунью» при температуре кипения воды.

Попробуйте приготовить ее при 65 °C и вы получите очень мягкую и нежную яичницу.

Удивительные 65 °C

Как готовить яичницу при температуре 65 °C? Как уже объяснялось ранее, разница в температуре коагуляции яичного белка (62 °C) и яичного желтка (около 68 °C) может быть использована кулинаром для приготовления его «фирменной» яичницы. Если яйца готовятся при температуре от 65 до 66 °C, то яичный белок будет густеть, а желток останется достаточно жидким. Поскольку температура приготовления будет достаточно низкой, яичный белок не станет жестким.

Проще всего добиться желательного результата, используя духовку, температура которой выставлена на 65 °C. Яйца при такой температуре можно оставить хоть на целый день! Температура будет достаточно низкой для медленной коагуляции белков, при этом яичный белок не станет жестким.

Яйца – стабилизатор смесей жира и воды

Яичные желтки помимо белков и воды содержат особые группы молекул, известных как фосфолипиды или, если быть точным, лецитины.

При высокой концентрации фосфолипидов (в яичном желтке их 15 %) эти молекулы группируются в маленькие сферы, так называемые мицеллы, с тем чтобы укрыть свои гидрофобные части внутри и уберечь их от окружающей воды яичного желтка.

Когда жиры смешивают с желтками, гидрофобные хвосты молекул лецитина соединяются с капельками масла, присутствующими в эмульсии, лишая их возможности объединиться и подняться вверх, что привело бы к разделению эмульсии на две части.

Гидрофильные головы молекул, которые теперь «торчат» из капелек масла, не только отталкиваются от других жиров, но еще и соединяются с молекулами воды, тем самым распределяя капельки жира в смеси и образуя стабильную субстанцию.

Наравне с яичными желтками, яичные белки тоже на время могут стабилизировать смесь жира и воды. Хотя яичные белки и не содержат фосфолипидов, они содержат протеины. Когда яичные белки взбиваются, протеины, содержащиеся в них, разрушаются и наружу выходят как гидрофильные, так и гидрофобные их части. Вы уже знаете, что молекулы, у которых есть гидрофильные и гидрофобные части, называются поверхностно-активными. Они могут стабилизировать смеси жира и воды. Поверхностно-активные молекулы взбитого белка могут также выполнять эту функцию.

Глава 4 Молочные продукты

Состав молока: вода, жиры, белки

Молоко состоит в основном из воды и молекул жира. Водная его часть составляет основу молока, она содержит молочные белки и множество растворенных веществ, включая витамины, минеральные соли, некоторые сахара, – всё это в совокупности обеспечивает питательную ценность молока.

Молоко имеет сладковатый вкус из-за присутствия лактозы – сахара, растворенного в водной среде. Однако во вкусе молока можно распознать и соленые нотки, которые присутствуют там из-за множества минеральных солей, также растворенных в воде.

Жировая составляющая молока играет очень важную функцию в определении его вкуса. Она придает молоку его сливочный вкус и бархатистую текстуру. Жировые клетки также выполняют функцию некоего «резервуара» для хранения многих ароматических соединений молока.

Жировая основа молока представлена в виде мелких капель жира, равномерно рассеянных в водной среде напитка. Эту смесь называют молочной эмульсией.

Почему жировая и водная фазы молока не разделяются?

Жир в молоке существует в виде капель, каждая из которых окружена мембраной, состоящей из фосфолипидов. Как было отмечено выше, фосфолипиды состоят из гидрофобных и гидрофильных элементов.

Таким образом, мембрана помогает образованию взвеси из капель жира в водной фазе, поскольку гидрофобные элементы молекул этой мембраны контактируют с жировыми каплями, которые они окружают и стабилизируют, в то время как гидрофильные элементы контактируют с окружающими молекулами воды, временно сохраняя капли во взвешенном состоянии в водной фазе.

Белки, содержащиеся в молоке, условно можно разделить на две группы: казеины и сывороточные белки.

Казенны находятся в молоке в виде больших пучков белков, «склеенных» вместе ионами кальция и фосфатов. Они образуют развитую структуру, называемую «мицеллой». Эти пучки обладают отрицательными зарядами, что позволяет им отталкиваться друг от друга.

Сывороточные белки, напротив, встречаются гораздо реже и существуют в растворенном виде в жидкой фазе.

Молоко непрозрачно, так как жировые капли и частицы казеина достаточно велики, чтобы отражать свет. Под солнечным светом молоко кажется белым. Если смотреть на молоко при красном или голубом освещении, в силу того что мы видим только отраженный свет, молоко в этих случаях будет казаться красным или голубым.

Кулинарам стоит знать, что разделение водной и жировой фаз молока крайне нежелательно. Молоко, которое мы видим на прилавках магазинов, как правило, подвергают двум видам обработки: пастеризации и гомогенизации. Пастеризация – это нагрев молока до температуры 80 °C, при которой денатурируются молочные белки, что препятствует дестабилизации (сепарации) эмульсии. Кроме того, пастеризация убивает бактерии, которые могут присутствовать в молоке.

Гомогенизация – это пропускание молока через очень мелкие отверстия с целью уменьшения размера капель жира. Чем меньше капли, тем менее вероятно, что они «обнаружат» друг друга и объединятся, поэтому сепарация молока менее вероятна. Имеющихся в молоке фосфолипидов уже недостаточно, чтобы окружить все новые мелкие капли жира. Из-за этого некоторые частицы казеина притягиваются к «обнаженным» каплям жира и окружают их, в дальнейшем уменьшая возможность столкновения жировых капель за счет формирования положительного электрического заряда молекул жира.

Молоко чрезвычайно устойчиво к нагреванию. Его можно греть при температуре кипения достаточно долгое время, без разрушения структуры.

В кулинарии предпочтительно длительное кипячение молока, оно позволяет сахару лактозы и молочным белкам вступать друг с другом в реакцию Майяра, что улучшает вкус и цвет молока.

Уникальность казеиновых белков состоит в том, что они не денатурируются при нагревании. Однако один из сывороточных белков – лактоглобулин, легко разворачивается при нагревании молока. Когда он разворачивается, открываются некоторые из атомов серы, ранее участвовавших в образовании дисульфидного моста; они вступают в реакцию с ионами водорода и образуют сероводород, который обусловливает характерный запах, появляющийся при нагревании молока. Денатурированные белки стремятся придерживаться заряженных пучков казеина, которые держат отдельные денатурированные белки достаточно далеко друг от друга, так, чтобы они не склеивались.

Вспенивание же горячего молока происходит из-за активации денатурированных белков, которые окружают пузырьки воздуха, образующиеся при нагреве молока до высоких температур.

Поскольку вода очень быстро испаряется с поверхности молока, денатурированные белки молока сосредоточиваются как раз на поверхности и имеют значительную концентрацию. При некотором нагреве они коагулируют и образуют пленку.

Образования пенки можно избежать, сократив испарение воды. Проще всего это сделать, накрыв кастрюлю крышкой.

Внимание!

Несмотря на то что молочная пенка кажется неаппетитной, удалив ее, вы удаляете большую часть молочных белков молока, что значительно снижает его питательную ценность.

Важно понимать, что холодное молоко нельзя взбить, как сливки, до образования устойчивой пены. Это происходит из-за того, что в сливках содержание жиров значительно выше, чем в молоке, и пузырьки воздуха больше покрыты капельками жира. Кроме того, сливки содержат воды меньше, чем молоко, поэтому они имеют большую вязкость (густоту), что стабилизирует сливки.

Сливки

Механизм образования

Как оказалось, стабилизирующего эффекта, получаемого за счет «работы» фосфолипидной оболочки жировых шариков, недостаточно для того, чтобы удержать водную и жировую фазы от сепарации на протяжении долгого времени.

Капли жира достаточно велики, чтобы в конечном итоге обнаружить присутствие друг друга и объединиться. Они будут подниматься на поверхность жидкости вследствие своей низкой плотности, вызывая разделение фаз.

Этому процессу способствует небольшая группа растворимых белков, присоединяющихся к большим каплям жира и помогающих их объединению, что вызывает вблизи поверхности молока образование слоя, насыщенного жирами. Это явление наглядно объясняет механизм получения сливок.

Сливки имеют структуру, очень похожую на структуру молока. От последнего они отличаются только повышенной жирностью (натуральное парное молоко содержит около 7 % жира, в то время как сливки содержат от 18 % до 47 % жира, в зависимости от их типа, а тот, в свою очередь, зависит от времени отстаивания молока). Если молоко оставить при комнатной температуре на некоторое время, оно полностью разделится на две фазы. Чтобы предотвратить сепарацию молока во время хранения, тот его объем, который не используется в работе, должен пройти тепловую обработку и быть помещен в холодильник.

Кулинары прекрасно знают, что сливки часто добавляют в соус для его сгущения. Так как сливки содержат значительное количество жировых капель, их можно добавлять к жидким соусам, тогда жиры из сливок образуют взвесь в новом большом объеме воды, снижая способность молекул воды к внутреннему перемещению, тем самым сгущая соус.

Жировые капли будут стабильно включены в водную фазу благодаря окружающим их фосфолипидным мембранам. Молоко, однако, менее эффективно в качестве загустителя в связи с более низким содержанием жира (всего 4–7 %). Так как сливки сами по себе – это эмульсия жировых капель в воде, они содержат довольно значительное количество воды, так что в результате соус, сгущенный сливками, будет более жидким, чем если бы в него добавили чистый жир (например, сливочное масло). Таким образом, сливки, предназначенные для сгущения соуса, часто сначала нагревают, чтобы некоторое количество воды испарилось, и сливки стали более эффективным загустителем для соуса.

Взбитые сливки

Когда при взбивании в сливки попадает воздух, получается легкий и воздушный мусс, такой же, как и при взбивании яичных белков. Однако, в отличие от большинства муссов, взбитые сливки – это не денатурированные белки, которые действуют как ловушка для пузырьков воздуха, это жир, стабилизирующий сливочный мусс. Когда сливки взбивают, воздушные пузырьки на некоторое время попадают внутрь мусса.

Дальнейшее взбивание повлияет на жировые капли, вызывая удаление фосфолипидных мембран с поверхности некоторых капель. Незащищенные жировые молекулы, которые избегают взаимодействия с водой, будут стремиться к контакту с воздушными пузырьками, и постепенно это вызовет образование шарообразных жировых оболочек вокруг пузырьков воздуха, что помешает им покинуть мусс.

Ингредиенты для взбивания следует хранить в холодном месте: холодные капли жира будут легче объединяться, охлаждаясь, густея и стабилизируя пузырьки воздуха, более эффективно задерживая их в сети. Если сливки слишком теплые, жировые капли не будут прилипать друг к другу, так что мусс, скорее всего, не будет стабильным. Кроме того, вязкость холодных сливок выше, чем теплых (вязкость увеличивается при охлаждении по мере застывания жиров). Увеличение вязкости способствует стабилизации мусса: если сливки вязкие, поднятие пузырьков воздуха на поверхность замедляется, следовательно, они имеют меньше шансов «сбежать». По этой причине кулинарам целесообразно использовать в работе густые сливки.

Но если взбить сливки слишком сильно, жировые капли могут объединиться и образовать комки. Воздушные пузырьки будут хуже задерживаться жиром, и сливки потеряют объем.

Сгущение соусов при помощи сливок

Как сказано выше, сливки часто добавляют в соусы для их сгущения. Но эти соусы часто содержат соли и кислоты, которые обычно вызывают коагуляцию казеиновых белков, поэтому сливки, как правило, добавляют к соусам в последнюю минуту, чтобы предотвратить свертывание.

Однако сливки с большим содержанием жира можно добавлять в соус, не опасаясь свертывания. Так происходит из-за того, что когда крем нагревается, жировые капли (имеющие относительно высокую концентрацию) стремятся присоединиться к казеиновым белкам (с относительно низкой концентрацией), а так как содержание жира достаточно высоко, большая часть белков присоединится к частицам жира «охотнее», чем друг к другу (что могло бы привести соус к створаживанию). Кроме того, вероятность образования пленки в этом случае гораздо меньше, так как содержание белков в связях молекул относительно невелико.

Йогурты и сыры

При понижении кислотности (pH) молока до 5, мицеллы казеина теряют отрицательный заряд и стремятся к объединению, образуя непрерывную сеть. В результате молоко затвердевает или «створаживается». Вы можете провести небольшой эксперимент, добавив в молоко немного лимонной кислоты или уксуса. На поверхности появятся маленькие белые частицы. Их появление вызвано свертыванием казеиновых белков. Если эту смесь нагреть, лактоглобулин тоже свернется, и белые частицы станут крупнее и заметнее, поскольку объединятся.

Приготовление йогуртов и сыров

Когда полезные бифидобактерии попадают в молоко, они разрушают молочный сахар, лактозу и вызывают образование кислоты, которая называется молочной кислотой. Увеличение кислотности в молоке вызывает свертывание казеиновых белков. В зависимости от вида бактерий это явление может быть желательным либо нежелательным. Когда вредные бактерии попадают в молоко, оно портится. Когда другие «полезные» бактерии добавляют в молоко для коагуляции белков, получают йогурт и сыр. Молочная кислота, производимая специальными бактериями, вызывает денатурацию и свертывание молочных белков. Благодаря этому сеть из коагулировавших казеиновых белков задерживает воду и жиры – таким образом сыр приобретает твердую форму.

Содержание воды в мягких сортах сыра достаточно высоко (от 50–75 %), тогда как в твердых сырах оно значительно ниже. Когда сыр нагревают, белковая сеть становится сильнее и крепче, постепенно «захваченная» жидкость вытесняется, и сыр становится жестким.

Взбитый сыр – «коттедж»

Сыр, как и сливки, содержит большое количество жиров (а именно, большое количество жирных кислот), так что теоретически он должен стабилизировать мусс точно так же, как и сливки. Содержание жиров в сыре гораздо выше, чем в масле, поэтому для получения мусса, такого же, как при помощи сливок, в сырную смесь нужно добавить немного жидкости.

Если добавить небольшое количество вина в кастрюлю с небольшим количеством сыра (например, рокфором или козьим сыром) и медленно нагревать эту смесь, можно получить гладкую, густую кремообразную эмульсию, по консистенции напоминающую сливки. Жиры удерживаются в эмульсии своими фосфолипидными мембранами. Если эту эмульсию поместить в ванночку со льдом и взбить смесь так же, как взбивают сливки, то можно получить легкий и воздушный мусс из сыра, в котором пузырьки воздуха стабилизированы сетью молекул жира. Такой «вспененный сыр» был впервые представлен под названием «сыр Шанти», а впоследствии во многих странах мира он получил название «коттедж».

Сливочное масло

Сливочное масло, так же как молоко и сливки, состоит в основном из воды и жира. В сливочном масле содержание жиров намного выше, чем содержание воды (содержание жира, как правило, не менее 82 %).

Так, в отличие от молока и сливок, где жировая фаза взвешена в водной фазе, в масле – наоборот, капли воды (а их меньшинство), рассредоточены в жировой фазе. Однако масло – это не просто эмульсия, поскольку при большом разбросе температур (от 10 °C и до 50 °C) часть сливочного масла находится в твердом состоянии и образует сеть, удерживающую обращенную эмульсию. Обращенная: масло – вода превращается в вода – масло и, наоборот, или в масло – молоко и т. д. То есть переход эмульсии из одного типа (химического состава) в другой.

Способ изготовления

На кухне мы можем получить масло путем механического взбивания сливок. Зачастую сливки сначала охлаждают в течение относительно долгого времени, чтобы преобразовать некоторые из жиров в жировых шариках в твердые кристаллы. Образования из этих жировых кристаллов стремятся слипнуться и ослабить мембраны, что приводит к их более легкому разрушению при последующем взбивании масла.

Чем обусловлена устойчивость структуры сливочного масла

Когда сливки перемешивают, ослабленные жировые капли разбиваются и освобождают некоторое количество содержащегося жира. Эти поврежденные капли стремятся объединиться в результате взаимодействия между их незащищенными (находящимися теперь снаружи) частицами жира. Когда сгустки жира достигают желаемого размера, они удаляются из оставшейся воды, и таким образом получается сливочное масло.

Масло имеет гораздо более сложный порядок распределения молекул воды и жира, чем молоко или сливки. Поврежденные жировые клетки и жировые кристаллы образуют сеть, которая задерживает капли воды и свободные молекулы жиров, просочившиеся из поврежденных молекул. Благодаря этому масло имеет относительно устойчивую структуру. Кроме большого количества жира и воды масло содержит в небольших количествах белки, углеводы и минералы, равномерно распределенные по всей структуре материи.

Масло является довольно нестабильным к воздействиям света и воздуха. От яркого света и от воздуха молекулы жира разрушаются и распадаются на мелкие фрагменты. Кроме того, в связи с повышенной жирностью масло имеет тенденцию поглощать сильные гидрофобные запахи из окружающей среды. Поэтому в холодильнике его следует хранить в закрытом контейнере.

Приготовление пищи с маслом

Масло содержит более 500 различных типов жирных кислот. Каждая из этих кислот (триглицеридов) плавится при конкретной температуре, в зависимости от особенностей своей структуры.

Триглицериды масла плавятся в диапазоне от -10 °C до 40 °C. При комнатной температуре большинство жиров находятся в твердой или кристаллической форме, благодаря чему масло остается твердым. Когда масло нагревается, жиры, находящиеся в кристаллической форме, тают и превращаются в жидкость. Уже при нагреве до 40 °C, ни один из жиров не останется в кристаллической форме, жидкость больше не будет удерживаться сетью жировых кристаллов, и масло станет полностью жидким.

Для того чтобы увеличить текучесть масла, следует максимально повысить содержание триглицеридов, которые плавятся при низких температурах. На практике этого можно добиться путем плавления некоторого количества масла, последующего удаления его из теплой среды и охлаждения до затвердевания. Если удалить затвердевшую часть, останется масло с высокой текучестью. Удаленная твердая часть, напротив, будет иметь высокое содержание триглицеридов, плавящихся при более высоких температурах. Такое масло идеально подходит для приготовления слоеного теста, в котором масло должно оставаться максимально твердым в процессе замеса теста.

Как уже упоминалось выше, при нагреве масла до 40 °C оно начинает таять. Нагревание до более высоких температур может вызвать разрушение равномерного порядка распределения всех компонентов, присутствующих в масле (жиры, белки, углеводы, вода). Белая пена, образующаяся на поверхности, – это воздух, заключенный в оболочку из денатурированных молочных белков. Ниже находится слой жира. Наконец на дне – слой воды с некоторыми растворенными в ней веществами.

При температурах около 100 °C масло начинает как бы кипеть и разбрызгиваться, поскольку вода испаряется. После того как вся вода испарится и будет достигнута достаточно высокая температура нагрева, молочный сахар и молекулы белков вступят в реакцию Майяра, образуя новые ароматы и коричневые пигменты. Эти изменения происходят при температуре около 120 °C. Дальнейшее нагревание вызывает сгорание масла: белки разлагаются и чернеют, придавая маслу угольный вкус. Следовательно, масло не используют для жарки, где его нужно нагревать до такой высокой температуры, при которой оно полностью сгорит.

Топленое масло

Однако масло можно нагреть до высоких температур без сгорания, если сначала его вытопить. Цель вытапливания масла состоит в том, чтобы удалить все компоненты масла (особенно молочные белки, казенны), которые отвечают за сгорание, оставляя только жировую часть для получения чистого жира. Это позволяет нагревать сливочное масло до высоких температур без почернения и подгорания с сохранением практически всех вкусовых и ароматических качеств.

Топленое масло можно получить, растапливая его в кастрюле на медленном огне и снимая ложкой пену (она содержит денатурированные белки) по мере ее образования. Затем верхний слой оставшегося масла (смеси) снимают ложкой и используют в дальнейшей готовке. Для того чтобы получить твердое топленое масло, сливочное масло можно нагреть в микроволновой печи, снять образовавшуюся пену, а затем охладить в холодильнике в течение нескольких дней, пока жир не застынет (обычно около 54 часов). Затем его можно легко отделить от воды.

Глава 5 Фрукты и овощи

Состав фруктов и овощей

Как и мясо, овощи в основном состоят из воды, белков и углеводов, а также многих питательных компонентов – минералов и витаминов. Как и в мясе, все эти компоненты распределены в клетках всего плода. Клетки овощей, как и животные клетки, содержат дополнительные ячейки, или «субклетки», которые включают в себя различные биологические компоненты и имеют различные функции в жизни самих клеток.

Клетка любого растения окружена плотной клеточной стенкой и содержит несколько ячеек.

В отличие от животных клеток растительные клетки имеют плотную, толстую клеточную стенку, сформированную из углеводов пектина, гемицеллюлозы и целлюлозы. Эти углеводы в клеточной стенке и определяют текстуру (внешнюю форму) растения.

Растительные клетки также содержат крахмал, он расположен преимущественно в крахмальных зернах, наиболее часто встречающихся в органах накопления питательных веществ растения (например, в специальных клеткообразованиях-трубочках).

Вода распределена по всей структуре растения, межклеточные перегородки контролируют движения воды в клетках. Когда растение живет, растительные клетки содержат много воды, что придает клеткам жесткость и в значительной мере определяет текстуру растения.

После сбора (срезания) фруктов или овощей вода уходит из растительных клеток, растение слабеет и вянет.

Именно поэтому овощи и фрукты должны быть употреблены в пищу довольно скоро после их сбора.

Наиболее важные белки в растениях, представляющие для нас особый интерес, это пигменты, которые определяют цвет.

Растительный мир фруктов и овощей чрезвычайно разнообразен и богат. Здесь же мы рассмотрим лишь некоторые, наиболее важные примеры кулинарного использования овощей.

Почему темнеют на срезе овощи и фрукты

Если свеженарезанный ломтик яблока или авокадо оставить на тарелке, он станет коричневым. Когда мы очищаем или нарезаем овощи, при механической обработке разрушаем тонкую структуру клеток продукта, и ячейки клеток выпускают свое содержимое, в том числе и ферменты. Выпущенные энзимы высвобождаются, чтобы найти свою цель – субстраты.

Так, например, ферменты полифенолоксидаза, выпущенные из ячейки, ищут свой субстрат – бесцветные фруктовые молекулы (они называются полифенолы) и значительно ускоряют реакцию между этими бесцветными молекулами и кислородом воздуха с образованием молекул хинина. Молекулы хинина, полученные таким путем, вступают в реакции друг с другом и, изменяясь, образовывают коричневые меланоидины, то есть молекулы того же типа, как и те, что позволяют нам загорать на солнце!

Есть несколько способов предотвратить нежелательное потемнение овощей и фруктов.

Во-первых, надо исключить из реакции фермент. Его можно удалить путем изменения температуры. Это означает, что и бланширование, и замораживание могут предотвратить обесцвечивание.

Фактически бланширование разрушает ферменты, в то время как замораживание замедляет их деятельность.

Однако следует соблюдать осторожность и не доводить бланшированием фрукты или овощи до полной готовности. В противном случае произойдет стимуляция активности ферментов, что произведет к еще более выраженному эффекту потемнения.

Во-вторых, можно исключить из реакции субстрат. Проще всего это сделать путем устранения кислородной среды (сами ферменты или субстраты очень трудно удалить), заменив воздух на чистый азот или CO2. Этот метод называется хранением в газомодифицированной среде, или в «защитной атмосфере». Нет смысла подробно рассматривать этот метод, так как мы не можем реализовать его на нашей домашней кухне и даже в кухне ресторана.

Важно отметить, что цитрусовые плоды почти никогда не темнеют. Часто лимонный сок добавляется в свеженарезанные фрукты, чтобы предотвратить их потемнение. Это не связано с кислотностью в данном случае лимонного сока. Дело не в кислотности. Применение, например, уксуса не приводит к такому эффекту, который дает лимонный сок.

Лимонный сок содержит большое количество аскорбиновой кислоты (также известной как витамин С). Эта молекула выступает в качестве антиоксиданта (то есть обращает процесс окисления) и, следовательно, преобразует молекулы хинина обратно в первоначальные бесцветные молекулы полифенолов, прежде чем они успеют сформировать меланоидины.

Чтобы увидеть этот эффект самостоятельно, нарежьте три ломтика яблока и оставьте их на тарелке на воздухе.

Один ломтик полейте лимонным соком, второй – уксусом, а третий посыпьте небольшим количеством порошка аскорбиновой кислоты.

Лучше всего потемнение предотвратит аскорбиновая кислота (витамин С в чистом виде), чуть хуже – лимонный сок (менее чистая форма витамина С), наименее эффективным средством окажется уксус.

Особенности обработки чеснока, лука и баклажанов

Какие процессы происходят при обработке чеснока?

Сырой чеснок содержит соединение серы аллицин, а также фермент, который действует на аллицин – алли-иназу. В сыром чесноке эти два соединения распределяются по отдельным ячейкам, поэтому неразрезанный зубчик чеснока имеет слабый запах и аромат. При резке чеснока эти ячейки разрушаются, что позволяет ферменту вступить в реакцию с его субстратом аллицином и преобразовать его в аллицин, а тот имеет очень сильный запах.

Способ приготовления чеснока значительно влияет на выраженность его запаха. При нарезке чеснока разрушается малое количество ячеек, так что возможно образование небольшого количества аллицина. При раздавливании зубчиков чеснока разрушается огромное число ячеек, что приводит к обильным реакциям аллицина и фермента и в результате к более интенсивному запаху. Тепло преобразует аллицин в другую группу соединений – в дисульфиды аллицина, они-то и придают чесноку более мягкий вкус и даже легкую сладость. Таким образом, обжарка чеснока устраняет сильный острый запах сырого чеснока, делая его сладким и мягким.

Почему мы плачем, очищая репчатый лук?

Аналогичным образом, когда режется лук, фермент, сульфоксид лизасы, находящийся в разделенных ячейках, освобождается и вступает в реакцию с высвобожденными соединениями серы. В итоге образуются новые соединения, называемые изопропанол-сульфоксидами. Когда при испарении эти молекулы попадают на слизистую оболочку глаза, то вызывают ее раздражение и защитную реакцию – слезовыделение.

Этот эффект можно предотвратить физическим методом: надеть очки, или чистить лук под струей воды, или химически – зажечь огонь плиты рядом с рабочим местом. Пламя завершит окисление изопропанол-сульфоксида и предотвратит раздражающее воздействие лука.

Приготовление баклажанов

Перед приготовлением ломтики баклажанов часто посыпают солью, чтобы удалить чрезмерное количество воды внутри их путем осмоса. Обычно потеря воды у срезанных овощей является нежелательным фактором хранения и приводит к увяданию. В данном случае мы не только удаляем излишнюю влагу из баклажанов, но и существенно улучшаем их вкус, так как вместе с водой удаляются и те молекулы, которые придают овощу горький вкус.

Сохранение овощей: замораживание, консервирование, сушка, заквашивание, засолка и маринование

Замораживание

Замораживание овощей и фруктов включает в себя замораживание воды, содержащейся в клетках растений. При замерзании воды образуются кристаллы льда, которые могут повредить клеточные стенки, в результате чего овощи потеряют часть воды. Поэтому текстура талого продукта будет мягче, чем текстура сырого овоща или фрукта.

Рекомендуется съедать сырые замороженные фрукты, пока они не полностью растаяли.

Овощи следует замораживать быстро. При быстрой заморозке в растительных продуктах образуется большое количество мелких кристаллов льда, что влечет за собой меньшее разрушение клеточных стенок и улучшает текстуру овоща и фрукта после размораживания.

Замораживание только замедляет деятельность фермента, который приводит к гниению овощей. Важно сознавать, что потеря цвета и питательных веществ может произойти даже в замороженном состоянии. Овощи перед замораживанием следует быстро бланшировать в кипящей воде, чтобы уничтожить эти ферменты.

Консервирование

Другой способ сохранения овощей – их консервирование, при котором используется термическая обработка для уничтожения ферментов гниения. Такой способ обработки овощей гораздо более эффективен.

Сушка

Овощи и фрукты могут быть сохранены их сушкой, она уменьшает содержание воды в клетках растений и не дает бактериям развиваться.

При приготовлении еды из сушеных овощей они не перевариваются, их нужно медленно варить или тушить в воде, чтобы вновь ввести утраченную овощами воду (процесс регидрации).

Воду, в которой готовятся сушеные овощи, никогда не следует подсаливать: соль предотвращает поступление воды в сушеные овощи посредством осмоса.

Медленная варка необходима, чтобы обеспечить равномерное приготовление продукта. При быстрой готовке внешние участки продукта станут слишком мягкими до готовности его внутренней части.

Приготовление в щелочной среде свежих овощей делает их излишне мягкими, однако добавление пищевой соды в воду при приготовлении сушеных овощей улучшает их размягчение, в меру ускоряя распад пектина.

Кислоты (уксус, лимонный сок или сок помидоров) не следует добавлять до окончания приготовления продуктов, так как они значительно замедлят процесс приготовления. Приготовленные в очень кислой воде сушеные овощи сохранят хрустящую, плотную кожуру даже при длительном приготовлении. Очевидно, что это крайне нежелательно.

Водопроводная вода, используемая в приготовлении сушеных овощей, усложняет их смягчение, потому что содержит значительное количество ионов кальция. Два положительных заряда ионов кальция соединяются с двумя молекулами пектина, усиливая их молекулярное сцепление и, тем самым, уменьшая способность к размягчению сушеных овощей.

Заквашивание, засолка и маринование

Еще овощи можно сохранять путем заквашивания и соления. Хотя при этом заквашивание и соление существенно меняет их вкус. Помещение рубленой капусты, огурцов или болгарского перца в солевой раствор для квашения предотвращает развитие некоторых патогенных микроорганизмов. Однако некоторые бактерии (Leuconostoc mesenteroides, а на более позднем сроке Leuconostoc Plantarum) не подвергаются превентивному воздействию и потребляют содержащийся в растениях сахар, выделяя молочную кислоту. Именно она придает свой характерный вкус соленым овощам и квашеной капусте.

Маринование – это процесс увеличения срока хранения пищевых продуктов за счет добавления специальных агентов – бактериостатиков. К ним относятся соль, кислоты, белоксодержащие жидкости (типа кефира или айрана). Маринование смягчает продукты и придает им кислый, соленый, острый, пикантный вкус. После маринования и вымачивания в рассолах продукт герметично укупоривают в емкостях. Маринование и сушка – первые способы кулинарной обработки, известные человечеству.

Приготовление овощей

Сырые овощи, в отличие от мяса, можно употреблять в пищу в сыром виде (хотя народы севера едят «строганину» – тонко нарезанные ломтиками сырое замороженное мясо). Овощи подвергают тепловой обработке, как правило, для смягчения их структуры, а значит, улучшения их усвояемости, а также для активизации их вкуса (сравните вкус сырой и приготовленной на пару брокколи!).

Однако тепловое приготовление имеет свои нежелательные последствия: теряется естественный цвет, снижается питательная ценность овощей.

Структурные изменения в овощах при тепловой обработке

Изменения запаха в процессе приготовления

Высокие температуры при тепловой обработке любых продуктов делают ароматические молекулы более летучими, и, следовательно, запах продукта усиливается. Слишком длительное приготовление вызывает испарение или уничтожение этих летучих молекул. Так, овощные супы, приготовленные в течение длительного времени, целесообразно щедро приправлять в конце готовки, чтобы компенсировать потери запахов. Подогрев овощей может инициировать появление аромата у молекул без запаха. Капуста и лук-порей отличаются тем, что начинают особенно сильно пахнуть при их приготовлении.

Есть овощи, обладающие особенно жесткой межклеточной структурой. Чаще всего их подвергают тепловой обработке для того, чтобы ослабить межклеточные стенки, что улучшает усвояемость овоща (к примеру, морковь и свекла). А вот овощи с мягкими межклеточными стенками (например, листья салата) вообще не нужно подвергать обработке – они и так прекрасно усваиваются сырыми.

Клеточные стенки растения состоят из молекул сложных углеводов целлюлозы, пектина и гемицеллюлозы. Каждая из этих молекул по-разному реагирует на тепло. Поскольку у растений структура клеточных стенок варьируется в зависимости от типа растения, то у овощей происходят разные изменения текстуры под воздействием одной и той же температуры при одинаковой длительности нагревания. Например, различие в текстуре свежего салата до и после кипячения в течение одной минуты гораздо более выраженное, чем изменения текстуры моркови после такой же термической обработки.

Целлюлоза – это полимер глюкозы, расположенный в длинных прямых молекулярных цепях. Отсутствие боковых цепей позволяет молекулам целлюлозы располагаться плотно друг к другу и формировать жесткие структуры: целлюлоза отвечает за прочность клеточной стенки растения. При нагреве клеток целлюлоза размягчается (без изменения ее химического состава) и ослабляет клеточную стенку. Это снижает способность клетки держать в себе воду. Вода уходит из растения, в результате растение вянет.

Овощи с высоким содержанием целлюлозы остаются более упругими, хрустящими после приготовления, но требуют более длительного времени приготовления, для того чтобы достичь их желаемой мягкости. Овощи с низким содержанием целлюлозы не сохраняют упругости после приготовления.

Изменения пектина

Пектин действует как клей, соединяя клетки растений. Во время приготовления пектиновые полимеры химически разлагаются и ослабляют клеточную стенку. Этот процесс особенно усиливается в щелочной среде. А вот кислота укрепляет пектин.

Все выше упоминаемые изменения структуры растений в процессе их приготовления приводят к ослаблению клеточной стенки и изменению текстуры овощей и фруктов.

Стенка продукта становится пористой, растение теряет воду, как будто бы «вянет».

Кулинары должны быть очень внимательны и следить за тем, чтобы не переварить и не пережарить овощи. В противном случае они станут слишком мягкими и бесформенными. Иногда овощи подсаливают во время приготовления, чтобы усилить их вкус, который появляется при проникновении в них соли. Однако соль вытягивает из овощей жидкость путем осмоса, и это их еще больше размягчает.

Почему теряются питательные вещества при тепловой обработке овощей

Овощи содержат много питательных веществ и являются важным источником витаминов в нашем рационе – в особенности витаминов групп А, В и С. Многие питательные вещества разрушаются при приготовлении овощей: они либо растворяются в воде, либо уничтожаются теплом. Например, витамин А и молекулы, которые его образуют, не растворяются в воде, а вот витамины В и С, а также минералы легко утекают в жидкость, используемую для приготовления овощей. Обширная поверхность мелко нарезанных овощей является особенно склонной к потере витамина С. Кроме того, мелко нарезанные овощи выпускают достаточное количество фермента, который вносит дополнительный вклад в расщепление витамина С. Этот фермент является наиболее активным при высоких температурах, хотя он и разлагается в кипящей воде. Наиболее выраженное воздействие данный фермент оказывает на овощи, добавляемые в кипящую воду, так как температура воды временно падает ниже температуры кипения.

Другие теряемые овощами питательные вещества – это сахара и крахмал. Потери питательных веществ возрастают с увеличением времени приготовления и объема жидкости для варки.

Предупредить потерю питательных веществ можно, если готовить овощи в небольшом количестве воды, либо использовать воду, в которой овощи кипели ранее, например для приготовления соуса, супа и т. д.

Влияние тепловой обработки на цвет зеленых овощей

Зеленые овощи имеют выраженный зеленый цвет, так как их клетки содержат большое количество пигментов хлорофиллов, то есть больших молекул, содержащих в своем центре ион магния.

Благодаря своей структуре эта молекула поглощает свет и позволяет проникать волнам света определенной длины, оставаясь зеленой. Как и большинство пигментов, хлорофилл очень восприимчив к теплу и изменению кислотности (pH). Зеленые овощи содержат другие цветные пигменты, но в значительно меньшем количестве.

На начальной стадии тепловой обработки зеленый цвет становится ярче. Это происходит потому, что воздух, занимающий пространство в клетках овощей, выходит наружу и зеленый пигмент хлорофилла становится виднее.

Однако, продолжая готовить, мы увидим, как овощи начнут терять свою зеленую окраску. Тепло легко «выталкивает» центральный ион магния из пигментов, а другие присутствующие ионы занимают освободившийся центр молекулы с хлорофиллом, что и приводит к изменению цвета.

Если бобы готовить в очень кислой воде (например, с уксусом), многочисленные ионы водорода заменят магний в центре молекулы с хлорофиллом, изменяя ее структуру и меняя выбор длин световых волн для их отражения или поглощения. Вместо того чтобы поглощать все волны, кроме зеленых, пигмент теперь отражает смесь длин волн, что и вызывает появление коричневого цвета. Кроме того, хлорофилл уже не может скрывать желтый и оранжевый пигменты, присутствующие в зеленой растительной ткани. Эти пигменты тоже уменьшают визуальную «зеленость» овощей.

Таким образом, чтобы сохранить желаемый зеленый цвет, зеленую фасоль никогда не следует готовить в кислой воде.

Зеленые бобы теряют аппетитную окраску даже при варке в воде без добавления кислоты. Это происходит потому, что нагрев разрушает клетки бобов, и их содержимое просачивается вовне. Среди высвободившихся клеточных компонентов есть различные собственные кислоты овощей. Ионы водорода из этих кислот реагируют с молекулами хлорофилла, отвечающими за зеленый цвет, придавая овощу серовато-зеленую окраску.

Как сохранить «зеленые» овощи зелеными?

1. Не нужно закрывать кастрюлю при приготовлении овощей. Кислоты, просачиваясь из клеток, могут затем испариться с водой, увеличивая вероятность удаления магния из молекулы хлорофилла.

2. Можно добавить в воду щелочь, например, соду, чтобы нейтрализовать утечку Н+ ионов. Это предотвращает вытеснение ионов магния, и зеленый цвет хорошо сохраняется. К сожалению, приготовления овощей в щелочной среде быстро разрушает пектин, который соединяет клеточные стенки, как было описано выше. Хотя овощи и будут зеленее, их текстура станет неприглядной.

3. В воду для готовки овощей можно положить чистую медную монету. В медных монетах и кастрюлях из меди без покрытия содержатся свободные ионы меди или цинка, которые не позволяют атому Н+ заменить атом Mg2+, и не влияют на цвет. Хлорофилл, содержащий атом меди или цинка в центре молекулы, будет поглощать те же длины волн света, как если бы в центре молекулы был атом магния. Таким образом, сохраняется ярко-зеленый цвет. В отличие от добавления соды, текстура не меняется. Но потребление излишка сульфата меди может иметь неприятные последствия для здоровья.

4. Зеленые овощи нужно готовить в большом количестве воды. Это имеет два преимущества: во-первых, тепло распространяется гораздо быстрее, поэтому сокращается время приготовления, а значит, у овощей меньше вероятности потерять цвет; во-вторых, в большом количестве воды ионы Н+ сильнее разбавлены, поэтому замещение в центре молекулы хлорофилла ионами Н+ менее вероятно, что сокращает потерю окраски. Однако зеленые листовые овощи готовят быстро (так как тепло легко проникает во все части листа), поэтому их, наоборот, надо готовить в небольшом количестве воды, чтобы предотвратить ненужное вымывание питательных веществ.

5. Крупные овощи нужно порезать на части, чтобы уменьшить время их приготовления и вероятность потери цвета. При этом есть другой негативный аспект – увеличение потери витаминов.

Охлаждение на льду

Охлаждение зеленых овощей на льду не сохраняет зеленый цвет хлорофилла больше, чем если бы они охлаждались естественным способом. Однако это сильно влияет на текстуру зеленых овощей, так как полностью останавливает процесс приготовления продукта. Например, фасоль, вытащенная из воды, перестает «доготавливаться». При охлаждении на льду происходят дальнейшие потери питательных веществ, так что более разумно удалить фасоль из воды прежде, чем она достигнет желаемой текстуры.

Красные овощи

Кроме свеклы, у которой присутствуют особые пигменты, так называемые флавоноиды, большинство растительных тканей красного и синего цветов (красная капуста, пурпурный перец, синий картофель, редис, кожура баклажанов) обязаны своим цветом пигментам антоцианам.

Антоцианы не вытесняются кислотой, как происходит с хлорофиллом, поэтому в отличие от зеленых овощей красные овощи следует готовить в небольшом количестве воды, которая необходима, чтобы предотвратить потери питательных элементов или излишние потери цвета (антоцианы легко растворяются в воде).

Как у большинства пигментов, форма молекул, а потому и цвет антоцианов сильно зависят от кислотности окружающей их среды. Антоцианы могут существовать в разных формах в зависимости от pH. В кислой среде антоцианы принимают форму, которая отражает красный свет, сохраняя приятный красный цвет капусты. В щелочной среде изменяется одна из важных поглощающих свет групп с переменой общей форма пигмента так, что теперь отражается синий свет. Водопроводная вода, используемая для приготовления пищи, как правило, имеет слегка выраженный щелочной состав, что может вызвать изменение естественного красного или синего цвета в процессе готовки.

Поэтому, чтобы сохранить желаемый красный цвет, овощи, содержащие антоцианы (например, красную капусту), следует готовить в небольшом количестве кислоты. Приготовленную красную капусту часто заправляют винным уксусом или сметаной.

Проведите простой эксперимент. Приготовьте красную капусту в небольшом количестве воды. Затем добавьте кислоту по вкусу и продолжайте готовить. Обратите внимание, как неаппетитный сине-фиолетовый цвет быстро сменится ярко-красным.

Белые овощи

Флавон – один из пигментов, содержащихся в белых овощах (например, в цветной капусте). Флавоны растворимы в воде и в масле, поэтому овощи с содержанием этих пигментов не следует долго готовить. Как и у других пигментов, длины волн света, которые они поглощают и отражают, зависят от pH. Пигмент остается белым в кислой среде, становится желтым в щелочной среде.

Чтобы предотвратить нежелательное изменение цвета, нужно добавить небольшое количество лимонного сока, винного камня или уксуса к жидкость, в которой готовятся белые овощи, чтобы создать невыраженную кислую среду и для сохранения белого цвета овощей.

Овощи желтого и оранжевого цвета

Каротиноиды – это пигменты овощей желтого и оранжевого цвета, например моркови и помидоров.

Каротиноиды поддаются незначительному воздействию кислот или щелочей. Овощи, содержащие каротиноиды, можно относительно долго готовить без существенных потерь ими цвета, потому как каротиноиды растворяются в жире, но не в воде, так что цвет этих овощей почти не изменяется в кипящей воде: морковь остается оранжевой, помидоры – красными.

Однако приготовление этих овощей в пароварке может привести к деформации молекул каротиноидов, а также к изменению их структуры – цвет изменится от красновато-оранжевого до желто-оранжевого оттенка.

«Овощной парадокс»

Овощи нужно готовить при высоких температурах. Они обеспечивают более высокую волатильность (иначе говоря, улучшенный вкус) летучих соединений. Высокая температура обеспечивает необходимые изменения текстуры, повышая усвояемость продукта. Высокие температуры означают короткое время приготовления, что снижает потери овощами питательных веществ и снижает риск потери естественной окраски продукта. Но овощи не должны быть переварены или пережарены, в противном случае летучие соединения испарятся, а текстура овоща станет слишком мягкой. Овощи следует вынимать из воды прежде, чем они достигнут желаемой текстуры, потому что они продолжат готовиться после удаления их из воды из-за остаточного содержания тепла внутри продукта.

Приготовление овощей при более низких температурах поможет лучше сохранить цвет овощей и предотвратить повреждение клеток.

Немного о фруктах

Фрукты очень похожи на овощи по своей структуре и составу основных ингредиентов, за исключением того, что в них значительно больше содержится сахара.

Дозревание фруктов

Во время созревания запасы крахмала в плодах превращаются в сахар, а уровень кислотности медленно снижается. Поэтому спелая слива будет гораздо слаще, чем неспелая или кислая.

В процессе созревания фрукты начнут выделять этилен, что еще больше ускорит созревание. Бананы или помидоры стоит помещать в среду с хорошим доступом воздуха, чтобы вырабатываемый этилен не испортил фрукты. Аналогично, чтобы фрукты дозрели, их часто хранят в закрытых, непроветриваемых контейнерах.

Замораживание фруктов

По тем же причинам, что и при замораживании овощей, фрукты теряют первоначальную упругость, и в размороженном состоянии они намного мягче, чем необработанные.

Поэтому рекомендуется съедать замороженные фрукты прежде, чем они полностью оттают.

Как и в случае с овощами, чем быстрее совершается заморозка, тем меньший ущерб наносится текстуре талого продукта. Но в отличие от овощей фрукты перед замораживанием нельзя бланшировать с целью «убить» ферменты, отвечающие за порчу продукта. Сочетание вредного воздействия на вкус и текстуру фрукта при бланшировании и замораживании неприемлемо для продукта, который обычно едят сырым.

Фрукты, склонные к обесцвечиванию, можно заморозить, присыпав их аскорбиновой кислотой, чтобы предотвратить потемнение, возникающее при замораживании.

Приготовление фруктов

Фрукты обычно едят в сыром виде. Иногда их подвергают тепловой обработке для смягчения текстуры или чтобы вызвать необходимые вкусовые реакции.

В отличие от овощей, которые, как правило, готовят в воде, большинство фруктов варят в сиропе (смесь сахара и воды). Если готовить фрукты в чистой воде, то сахар из плодов перейдет в воду посредством диффузии, в результате фрукты потеряют желаемую сладость. Кроме того, некоторые молекулы воды переходят в клетки фрукта путем осмоса. Это еще сильнее «разбавит» их вкус и разрушит форму фруктов. Поэтому фрукты готовят в сиропе, чтобы сохранить их форму и сладкий вкус.

«Фруктовый парадокс»

Если готовить фрукты в сильно концентрированном сахарном сиропе, вода уйдет из фруктовых клеток путем осмоса. Она разбавит воду, используемую для приготовления, а фрукт сморщится.

В идеале фрукты следует готовить в сахарном растворе, где концентрация сахара в сиропе примерно такая же, как концентрация сахара в плодах, чтобы ни вода, ни сахар не перемещались, тогда сохранится форма и вкус фруктов.

Тем не менее процесс нагрева будет вызывать необходимые изменения текстуры и производить реакции, способствующие выделению аромата. Например, чтобы предотвратить нежелательное сморщивание при приготовлении засахаренных каштанов, их готовят в сиропах, последовательно повышая концентрацию сахара, чтобы регулировать количество воды, уходящей из каштанов, и поглощение сахара из сиропа.

Как выработать идеальную концентрацию сахара?

Уже давно было установлено, что когда концентрация сахара в варящихся фруктах равна концентрации сахара в сиропе, то у них одинаковая плотность. В таком случае фрукты не будут тонуть в сиропе. Можно подготовить слегка более концентрированный сироп, в котором фрукты будут плавать, и, медленно добавляя воду, разбавить сироп до того момента, когда фрукты перестанут держаться на поверхности.

Приготовление сухофруктов

Как и сушеные овощи, сухофрукты следует готовить в совершенно чистой воде, чтобы обеспечить полную гидратацию плодов. Если сахар необходим, добавьте его после приготовления, иначе он помешает фруктам напитаться водой.

Варенье

Приготовление варенья – это нагрев смеси сахара, фруктов и небольшого количества воды. При охлаждении эта смесь застынет, так как молекулы пектина, оторванные от клеточных стенок плода во время нагревания, повторно образуют связь в форме трехмерной сети. Эта сетка захватывает жидкости, в результате чего варенье становится плотным при охлаждении и формируется «гель».

Способность варенья застывать (или становиться гелеобразным) зависит от количества пектина в смеси. Кислотность сильно влияет на связывание молекул пектина

и, таким образом, на гелеобразующие свойства. Если фрукты недостаточно кислые, нужно добавить кислоты, чтобы нейтрализовать отрицательные группы кислот в молекулах пектина, предотвратить их отталкивание. Это способствует связям молекул и гелеобразующему свойству смеси.

Чтобы приготовить густое варенье, выделение пектина должно быть максимальным. Этого можно добиться тремя способами:

Во-первых, используйте фрукты с высоким содержанием пектина. В некоторых фруктах недостаточно пектина, чтобы получилось хорошее варенье (ревень, абрикосы, персики, клубника), тогда как в других фруктах пектин содержится в изобилии (апельсины, яблоки, виноград, большинство ягод). Фрукты с низким содержанием пектина часто сочетают с фруктами с высоким содержанием пектина либо добавляют очищенный пектин (очищенный пектин не продается и вырабатывается промышленно. Вместо очищенного пектина на кухне можно использовать процеженное яблочное пюре). Рафинированный пектин используют в качестве гелеобразующего агента, но его использование, как правило, ограничивается джемами и желе, поскольку он образует гель только в кислой среде с очень высоким содержанием сахара.

Во-вторых, среда должна быть достаточно кислой (pH около 3,3), чтобы извлечь пектин во время приготовления и стимулировать его последующие связи.

В-третьих, необходим сахар. Наличие сахара способствует удалению воды из клеток путем осмоса. Удаление и, следовательно, тургор воды из клеток разрушает сами клетки и высвобождает молекулы пектина. Из-за обилия сахара в сиропе раствор может кипеть при температуре выше 130 °C; при такой высокой температуре пектин извлекается быстрее. Варенье готовят в закрытой кастрюле, чтобы предотвратить испарение летучих компонентов, вырабатывающих характерный вкус. Все эти факторы увеличивают интенсивность извлечения пектина. Как только пектин извлечен, он должен образовать гель. Но пектины довольно сложно образуют гель, они более предпочитают связывать молекулы воды, чем друг друга. Добавление сахара в сироп играет еще и другую роль. Молекулы сахара связывают молекулы воды, предотвращая связывание с водой молекул пектина и позволяя им сочетаться друг с другом, образовывая гель.

Варить пи варенье в медной кастрюле?

Очень часто советуют варить варенье в медной посуде. Медь – отличный проводник тепла, поэтому во время приготовления тепло будет передаваться быстро и равномерно, а процесс приготовления будет плавным. Но кислотность смеси будет «атаковать» дно посуды, отсоединяя ионы меди и забирая их в состав варенья.

Но не стоит волноваться по этому поводу: медь легко усваивается организмом и опасна только в высоких концентрациях. На самом деле ионы меди хорошо способствуют загустению варенья. У ионов меди два положительных заряда, тем самым они помогают связать две отрицательные молекулы пектина, укрепляя сеть из них и улучшая плотность варенья. Во-вторых, ионы металлов образуют связи с пигментами фруктов, реорганизуя их структуру за счет перегруппировки электронов и, таким образом, заставляя их поглощать разные длины волн света. Красные фрукты станут приятного красно-рыжего цвета.

Почему не стоит использовать гальванизированную медь (то есть медь, покрытую слоем олова) для варки варенья?

Олово будет препятствовать удалению меди с основания кастрюли, и она не сможет способствовать извлечению пектина и поддержанию ярко-красного цвета фруктов. Ионы олова будут образовывать связи с пигментами, изменяя их конфигурацию и спектр поглощения, и, таким образом, придадут варенью неприятный фиолетовый окрас.

Глава 6 Желеобразователи и загустители

Желатин

Желатин – прозрачное клейкое вещество, смесь белковых веществ животного происхождения.

«Механизм» образования

Если в течение длительного времени готовить мясо или рыбу во влажной горячей среде, большое количество коллагена из соединительной ткани разрушается и растворяется в окружающей жидкости, образуя желатин. Когда окружающая жидкость имеет высокую температуру, у молекул воды и желатина достаточно энергии, чтобы они могли свободно перемещаться относительно друг друга.

Если раствор убрать с огня и охладить, молекулы желатина потеряют энергию, будут двигаться медленнее и начнут принимать изначальную форму, как и в соединительной ткани, оборачиваясь друг вокруг друга и образуя тройную спираль. По мере перекрытия отдельных спиралей постепенно образуется непрерывная сеть. Эта сеть является достаточно сильным препятствием для молекул жидкости. Так образуется желе.

Если жидкость, содержащую желатин, быстро охладить (например, поместив в морозильную камеру), то молекулы потеряют энергию и прекратят стремительно перемещаться относительно друг друга. Как правило, в таком случае образуется довольно слабая структура с произвольным распределением связей, в результате желе становится очень непрочным.

Однако, если желе оставить застывать при комнатной температуре, молекулы теряют энергию постепенно и охотно образуют правильные спирали, соединяясь с другими молекулами желатина. Полученное таким образом желе будет крепче.

Концентрация молекул желатина в растворе должна составлять не менее 1 % от общего веса желатинизируемой жидкости, тогда желе получится упругим и нежным. Однако трудно предугадать, какое количество желатина выйдет из куска мяса, так как каждый кусок мяса содержит различное количество коллагена. Для получения более крепкого желе, например для десерта, нужно увеличить концентрацию до 3 %.

Желатин продается в самых различных формах в зависимости от его чистоты. Листовой желатин типа «золото» имеет наиболее высокую степень очистки и часто используется в желе, в котором застывание затруднено из-за восстановления сахара и жиров.

Листовой желатин типа «серебро» имеет более низкую степень очистки, поэтому при его применении концентрацию нужно увеличивать.

Желе на основе желатина плавится при температуре около 36 °C. Это одна из причин популярности желатина: желе будет таять во рту, освобождая содержащуюся в нем жидкость, что и придает желе на основе желатина его исключительные вкусовые свойства.

Стабильность желатина

Соль и кислота в равной степени влияют на прочность желе на основе желатина, взаимодействуя с молекулами желатина.

Молоко, сахар и алкоголь в умеренном количестве увеличивают прочность желе. Не всегда на основе желатина можно сделать желе из раствора, насыщенного этанолом, так как желатин не растворяется в жидкости с содержанием этанола выше 40 %. Поэтому для приготовления желе из растворов с таким высоким содержанием алкоголя лучше использовать другие желеобразователи.

Некоторые фрукты, например киви, инжир, папайя или ананас, содержат в своих клетках ферменты, расщепляющие белок. Эти ферменты расщепляют желатин, снижая его способность к образованию желе.

Если вы хотите сделать желе с этими фруктами, используйте небелковые желеобразователи или проведите тепловую обработку фруктов или фруктового сока, чтобы «денатурировать» ферменты, то есть сделать их неактивными.

Агар-агар, альгинат, каррагинан

Свойства и особенности применения

Агар-агар – желеобразователь, который получают из красных водорослей. Как он действует?

Агар-агар нагревают в желатинизируемой жидкости до температуры кипения. Когда жидкость убирают с огня, длинные молекулы агар-агара теряют энергию и образуют сеть, которая задерживает молекулы жидкости аналогично действию желатина. Желе из агар-агара застывает около часа.

Агар-агар образует желе, температура плавления которого около 80 °C. На кухне этому можно найти различные способы применения: кубики желе из агар-агара можно подавать с горячей ароматной жидкостью (например, бульоном) или использовать листы желе для сервировки маленьких равиоли – при подаче их.

Его высокая температура плавления имеет как преимущества, так и недостатки: желе на основе агар-агара не тает во рту и его вкусовые свойства отличаются от свойств желе на основе желатина, он имеет специфический привкус.

Желе на основе агар-агара являются термообратимыми: они тают при нагревании, но при охлаждении снова обретают форму.

Рекомендуемая концентрация для приготовления геля на основе агар-агара составляет 1 % агар-агара от общего объема раствора.

Так как желе на основе агар-агара термобратимы, то, если желе не застыло как следует, его можно подогреть, добавив некоторое количество агар-агара. При повторном охлаждении желе снова примет нужную форму.

Из-за этого свойства рекомендуется использовать наименьшее количество агар-агара. Если применять его в избытке, он придает гелю слегка зернистую текстуру. Таким образом, если желе не застыло, ему можно придать форму повторно.

Желе на основе агар-агара могут застывать, даже если в них добавлены соль, сахар и кислоты (если уровень pH не слишком низок), поэтому его можно использовать для различных видов комбинированных сладких и несладких желе. Впрочем, они имеют недостаток: полученное желе легко ломается, оно не такое упругое, как желатиновое. Однако его упругость можно повысить путем добавления сорбитола или глицерола (его чаще называют глицерином) к основе желе. Но имейте в виду, эти вещества оказывают слабительное действие.

Так как раствор нужно кипятить, чтобы растворить агар-агар, для приготовления желе с содержанием сырых продуктов (например, со свежей петрушкой, устрицами, гаспаччо и т. д.) создается ряд трудностей. Однако эту проблему можно решить, растворив нужное количество агар-агара в кипящей воде, затем добавив раствор к жидкости с сырыми продуктами. Это сохранит «свежий» вкус сырых продуктов. Однако нужно принимать во внимание: желе застынет очень быстро, и с ним будет трудно что-то сделать.

Альгинат

Альгинат – желеобразователь, полученный из бурых водорослей. Он состоит из длинных нитей молекул, которые, в свою очередь, состоят из двух основных элементов: глюконовой кислоты и маннуроновой кислоты.

Альгинат, добавленный к жидкости, выступает в качестве загустителя. В присутствии ионов кальция смесь, содержащая альгинат, образует желе. Ионы кальция встраиваются между отдельными нитями альгината и соединяют их. Нити альгината (зигзагообразные линии) образуют сеть (кругов) вокруг имеющихся ионов кальция.

Способность определенных видов альгинатов к желати-низации зависит от относительных пропорций глюконовой и мануроновой кислот в них (например, альгинаты с высоким содержанием глюконовой кислоты более эффективные желеобразователи).

Так как альгинат имеет уникальное свойство желати-низироваться в присутствии кальция, в пищевой промышленности его используют для приготовления поддельной икры. Раствор, содержащий альгинат, медленно капают из пипетки в большую емкость с водой, содержащей высокую концентрацию ионов кальция, – оболочка капли при контакте с кальцием мгновенно образует желе, в то время как содержимое капли-шарика, избежавшее контакта с кальцием, остается жидким.

Если шарик съесть немедленно, то, как только внешний желированный слой разрушится, жидкость, содержащаяся внутри шарика, резко выльется, вызывая удивительное ощущение «взрыва» во рту, что очень похоже на ощущения при раскусывании икринки лосося. Однако шарики не способны сохранять полученную консистенцию в течение долгого времени. Кальций медленно диффундирует в центр шарика (даже после удаления из кальциевого раствора), и шарики полностью желатинизируются.

Концентрация альгината в растворе должна составлять от 0,5 % до 1 % от общего объема раствора. Несмотря на то что более высокая концентрация вызовет быстрое образование шарика, это приведет к существенному сгущению жидкости и снизит «взрывное» воздействие во время еды.

Концентрация кальция в растворе, в который выпускают шарики пипеткой, должна составлять от 1 % до 5 %. Наиболее часто используемые источники кальция: кальция хлорид и кальция лактат, оба они являются растворимыми солями кальция.

Желе на основе альгината обладают удивительной способностью выдерживать нагрев до температуры 150 °C без плавления. Это означает, что шарики можно класть в кипящую жидкость или на горячий кусок рыбы, и они не будут таять. Однако растаявшее желе не может восстановить свою форму в отличие от агар-агара – желе на основе альгината не являются термообратимыми.

Преимущества растворов на основе альгината

Растворы, содержащие альгинат, не нужно нагревать, чтобы растворить его. Это означает, что его можно легко использовать в отличие от агар-агара для приготовления «сырых» желе (желе с включениями сырых продуктов). Однако альгинат не очень хорошо растворяется в холодной воде, поэтому смесь нужно очень хорошо размешать для растворения и полной гидрации альгината.

Работая с альгинатом, рекомендуется использовать миксер, постепенно добавляя альгинат в раствор. Часто рекомендуется добавлять к альгинату сахар. Если альгинат смешать с достаточным количеством сахара, при добавлении в жидкую смесь он будет распускаться более равномерно.

Растворы для приготовления шариков-икринок не должны содержать соли. Альгинаты получают из водорослей в натриевой форме в присутствии соли. Это означает, что альгинат будет стремиться остаться в натриевой форме и не сформирует желатинизированный наружный слой.

Кальций может придавать икринкам слабый вкус, поэтому время их нахождения в растворе нужно ограничить (как только наружный слой станет достаточно крепким, чтобы сохранить форму икры, их нужно удалить из раствора). Икринки перед употреблением нужно промывать в чистой воде.

Как уже отмечалось, свойство раствора альгината образовывать шарики связано с его способностью мгновенно желатинизироваться при контакте с кальцием. Это затрудняет получение твердого желе (как из агар-агара и желатина), потому что желе застывает сразу, а нам необходимо некоторое время, чтобы залить его в соответствующий контейнер. Эту проблему можно решить с помощью секвестрантов (анионообменных смол), добавленных к раствору кальция. Это на время сдержит кальций в растворе, позволяя залить желе в соответствующий контейнер, а затем кальций постепенно высвободится, и желе растечется в форме равномерно.

Кроме того, следует избегать использования водопроводной воды или любого продукта на основе молока, поскольку они содержат значительное количество кальция, который может спровоцировать раннее и неравномерное застывание желе, что приведет к образованию комков. Поэтому лучше всего использовать чистый овощной или ягодный сок, в них почти отсутствуют примеси натрия или кальция, способные помешать шарикам сформироваться.

Как уже говорилось, основные недостатки шариков-икринок из альгината заключаются в том, что они не могут образоваться в присутствии соли. Если нужны соленые шарики, альгинат можно заменить низкометилированным пектином, он также является желеобразователем в присутствии кальция.

Каррагинан

Каррагинан – это желеобразователь, который добывается также из красных морских водорослей. Профессиональные повара называют его «ирландским мхом».

Как и другие желеобразователи, упомянутые выше, он используется в кулинарии для приготовления желе в основном из продуктов на основе молока. Это происходит благодаря тому, что каррагинан очень хорошо образует желе при контакте с белками и ионами кальция в молоке и сливках, поэтому с помощью очень небольшого количества порошка можно получить очень прочное желе. Именно поэтому он так популярен в пищевой промышленности.

Чтобы приготовить молочное желе на основе каррагинана, нужно добавить его в количестве 0,5 % от общего объема жидкости к ароматизированным молочным смесям (например, молоко, приправленное ванилью и перцем чили, или кофе). Каррагинан можно применять с добавлением как соли, так и сахара, без ущерба для последующего образования желе.

Для того чтобы приготовить желе, необходимо нагреть смесь до 70 °C, постоянно помешивая, чтобы растворить и размешать «ирландский мох». Смесь нужно перемешивать, а не взбивать, так как взбивание молока при нагревании вызовет попадание пузырьков воздуха, которые впоследствии могут остаться в желе.

Аналогично агар-агару при снятии с огня молочной смеси с каррагинаном его длинные молекулы прекратят быстрое движение и образуют сетку из белков молока и ионов кальция, захватывая свободную воду и образуя желе.

Интересное свойство

Желе на основе каррагинана являются достаточно упругими и имеют склонность к тиксотропии (возможность произвольно восстанавливать свою структуру после механических воздействий на нее). Это означает, что, если желе размешать, оно восстановит форму после прекращения размешивания.

Кроме того, желе на основе каррагинана можно нагреть примерно до 60 °C, прежде чем оно начнет таять.

Существуют ли в кулинарии заменители желатина?

Несмотря на то что все эти желеобразователи, полученные из водорослей, имеют полезные свойства, их нельзя рассматривать как полноценные заменители желатина. Так как их основой являются углеводы, а не белки, желе, полученное с их помощью, как правило, имеет несколько зернистую структуру. Это происходит из-за того, что молекулы углеводов слипаются, если желеобразователь не достаточно разошелся в жидкости, и желе не будет таять во рту.

Тем не менее их главное преимущество состоит в том, что полученные желе сохраняют форму в теплой среде (например, при приготовлении летом или использовании в жарких странах) и могут использоваться в блюдах, содержащих фрукты, такие как папайя, киви и ананасы, которые содержат протеазы, препятствующие образованию желе на основе желатина.

Загустители

Привычные загустители

Как упоминалось выше, белки и углеводы могут выступать в качестве загустителей. Длинные молекулы крахмала и длинные нити денатурированного белка препятствуют движению молекул воды, понижая их текучесть, поэтому жидкость густеет.

Каким же образом длинные нитеобразные молекулы сгущают жидкость?

Белки, чаще всего использующиеся в качестве загустителей, – это либо белки крови (сгущение кровяной колбасы), либо белки яичных желтков (сгущение сладкого яичного крема).

Однако белки – это очень деликатный загуститель. Если соус нагреть слишком сильно, присутствует риск соединения белков и образования комков, они могут придать сгущаемому соусу комковатую зернистую текстуру.

Пищевым ингредиентом, содержащим углеводы и наиболее часто используемым как загуститель, является мука. Однако использование муки как загустителя имеет некоторые недостатки. В частности, мука не растворяется в холодной воде: это видно, если добавить каплю воды в муку: она скатывается.

Когда муку высыпают в горячую воду, она образует комки, внешний слой комков муки клейстеризуется, что не позволяет воде проникнуть внутрь комков (это, конечно, происходит, но очень медленно). Для того чтобы растворить гранулы мучного крахмала в воде, нужно либо очень медленно засыпать муку в горячую воду, либо нагревать смесь из муки и воды, постепенно добавляя все больше и больше воды. В обоих случаях молекулы амилозы из гранул крахмала растворяются в горячей воде, и молекулы воды встраиваются между молекулами амилопектина в гранулах крахмала, вызывая их набухание. Под микроскопом легко увидеть эти набухшие гранулы. Кроме того, мука содержит значительное количество белков, которые отвечают как за необходимую для вкусовых качеств реакцию Майяра, так и за нежелательное образование пленки и повышенный риск подгорания.

Новые загустители

Тр�

Скачать книгу

ЭТА КНИГА СТАНЕТ НЕ ТОЛЬКО ОТПРАВНОЙ ТОЧКОЙ В ВАШЕМ УВЛЕКАТЕЛЬНОМ ПУТЕШЕСТВИИ В МИР ФИЗИКИ И ХИМИИ ПИЩЕВЫХ ПРОДУКТОВ, но и позволит УСОВЕРШЕНСТВОВАТЬ ПРАКТИЧЕСКИЕ КУЛИНАРНЫЕ НАВЫКИ И МАСТЕРСТВО. ЖЕЛАЕМ ВАМ ПОБОЛЬШЕ НОВЫХ КУЛИНАРНЫХ СВЕРШЕНИЙ И ГАСТРОНОМИЧЕСКИХ ОТКРЫТИЙ.

И ПОМНИТЕ: САМЫЙ КОРОТКИЙ ПУТЬ К КУЛИНАРНОЙ НАУКЕ ЛЕЖИТ ЧЕРЕЗ НАУЧНУЮ КУЛИНАРИЮ!

Предисловие

Вы держите в руках довольно необычную книгу о кулинарии. Вопреки возможным ожиданиям читателя, в ней нет кулинарных рецептов, пошаговых инструкций по приготовлению блюд, списков ингредиентов и красивых фотографий. В отличие от большинства кулинарных изданий, отвечающих на вопрос «Как готовить те или иные блюда?», данная книга отвечает на вопрос «Почему те или иные блюда готовятся тем или иным образом?».

Кулинарная наука открывает удивительный мир химических и физических явлений, происходящих в процессе приготовления пищи. В книге рассказывается о составе и свойствах продуктов питания, особенностях их приготовления, хранения и подачи, о новых способах кулинарной обработки пищевых продуктов с использованием привычной бытовой техники и стандартного кухонного инвентаря.

Научная кулинария – это совершенно новый подход к приготовлению пищи, получивший распространение за рубежом и у нас всего несколько лет назад. Суть его заключается в применении базовых знаний химии и физики для создания новых кулинарных блюд, с учетом сочетаемости исходных продуктов, их вкуса, цвета, аромата, консистенции, плотности, кислотности, растворимости и других свойств. В ресторанном бизнесе это кулинарное течение получило название «молекулярная гастрономия», в книге используется термин «научная кулинария». Научная кулинария – это мир неожиданных открытий о давно известных и любимых нами фруктах и овощах, мясе и рыбе, хлебе и сладостях.

Как известно, любая природная материя состоит из молекул и атомов. Но знаете ли вы, что вкус жареной говядины формируется более чем 600 видами различных молекул? Приходило ли вам в голову, что из одного куриного яйца можно взбить 1 кубический метр пены?! Что из куриного бульона готовится прекрасное фруктовое желе? А за вкус приготовленных продуктов «отвечает» одна химическая реакция – реакция Майяра? Вы хотите знать, почему пельмени всплывают из воды при варке, почему яблоки темнеют при нарезке, почему нельзя снимать накипь с бульона и зачем жарить рис перед отвариванием? Если вас интересуют ответы на эти вопросы – эта книга для вас, а если у вас есть дети-подростки, то и для них.

Прилавки магазинов ломятся от огромных количеств разнообразных «лакомств» промышленного производства в соблазнительных ярких упаковках. Реклама в средствах массовой информации назойливо (на грани агрессии) призывает к их употреблению. Устоять трудно. Напор торговцев и рекламщиков воздействует: у детей и подростков формируется не совсем верная модель пищевого поведения. Газированные напитки, снеки и сладости вытеснили из детского рациона питания традиционные полезные и вкусные продукты. Родителям порой тяжело убедить ребенка есть «правильную» пищу и отказаться от столь притягательных, но вредных продуктов. В отличие от зарубежных стран в наших школах пока еще серьезно не обучают правильному и здоровому питанию. Любой ребенок от природы наделен чувством любопытства и жаждой познания всего нового. Задайтесь вопросом, много ли знают наши дети о еде, продуктах питания и способах их приготовления? К сожалению, почти ничего. Эта книга может стать первым шагом в формировании живого и осознанного интереса к кулинарии и продуктам питания у вашего ребенка.

Мы убеждены, что книга «Кулинарная наука, или Научная кулинария», будет интересна и взрослым, и школьникам, и домохозяйкам, и профессионалам. Она откроет читателю поразительный мир пищевых продуктов и кулинарии в неожиданном аспекте.

Часть I Просто о сложном: состав основных категорий пищевых продуктов и химико-физические изменения продукта в процессах его приготовления, обработки и хранения

Глава 1 Углеводы, белки, жиры, вода – основа продуктов

Простые углеводы

Вся еда, которую мы употребляем в пищу, содержит три основные группы молекул: сахара, белки и жиры. Молекулы сахаров состоят из атомов углерода, водорода и кислорода. Многих из сахаров называются углеводами, поскольку они состоят из перечисленных выше атомов. Строго говоря, сахара включают в себя не только углеводы, но и многие другие соединения – крахмал и даже целлюлозу (главную составляющую деревьев!).

Множество соединенных между собой единиц сахара называются полисахаридами, а в другом физическом состоянии, без контакта с водой и возможностью соединяться с ее молекулами, – моносахаридами. Нам, кулинарам, хорошо известны такие моносахариды, как глюкоза, фруктоза и галактоза. Некоторые из них мы используем в процессе приготовления пищи буквально каждый день.

Глюкоза, фруктоза и галактоза имеют одинаковую химическую формулу (С6Н12O6), но расположение атомов в данных сахарах отличается в каждом конкретном случае, что влияет на главное – вкус этих веществ.

Моносахариды – глюкоза, фруктоза и галактоза

В чем содержатся эти вещества?

Глюкоза и фруктоза присутствуют во многих фруктах и в меде, а также в смеси с другими сахарами. Галактоза же – в неферментированных молочных продуктах.

Сладкие фрукты и овощи (морковь и свекла) содержат довольно много сахаров. Фруктоза – самая сладкая из всех трех видов сахаров, на втором месте по сладости находится глюкоза.

Однако, если нагревать фруктозу до 60 °C, например, при варке вишневого варенья, готовое лакомство окажется кислым. Этот феномен объясняется тем, что при достижении данной температуры, сладость фруктозы снижается ровно в два раза. Именно поэтому знающие хозяйки, употребляя фруктозу с чаем, кладут в чашку всегда на 2–3 ложки больше, нежели обычного сахара рафинада. А вот глюкоза в чистом виде вообще не применяется в качестве подсластителя, так как она еще менее сладкая, чем фруктоза.

Если быть совсем точным, нужно отметить, что ни один из перечисленных сахаров в кулинарии не применяется в чистом виде. Обычно используется дисахарид – их «старший брат», состоящий из более крупных молекул сахара.

Дисахариды – сахароза, лактоза и мальтоза

В кулинарии и пищевой промышленности известны три вида дисахаридов: сахароза, лактоза и мальтоза.

Поговорим о каждом из них в отдельности.

Сахароза состоит из химического соединения двух моносахаридов – глюкозы и фруктозы. Именно этот продукт мы знаем как обычный столовый кусковой сахар-рафинад, или сахарный песок. Этот второй (после фруктозы) по сладости сахар обычно используется для приготовления конфет, поскольку он имеет приятный вкус даже при высоких концентрациях, а также обладает интересными формообразующими (текстурными) свойствами. Концентрация сахара в любом продукте очень важна. Мало кто знает, что при высоких концентрациях всеми любимый коричневый тростниковый сахар становится горьким.

Лактоза состоит из соединенных вместе остатков (остатки – термин органической химии, см. глоссарий) глюкозы и галактозы. Она редко встречается в кулинарии в чистом виде, но содержится в молоке. Лактоза гораздо менее сладкая, чем сахароза, поэтому никогда не используется в качестве подсластителя.

Мальтоза состоит из двух объединенных молекул остатков глюкозы, более всего содержится в ячмене. Аромат пива, кроме зависимости от прочих исходных ингредиентов, определяется наличием мальтозы в этом продукте.

Вместе моносахариды и дисахариды образуют группу углеводов, известную в органической химии как «простые сахара». Их называют «простыми», потому что они легко разрушаются и усваиваются организмом. Кстати, это объясняет и немедленный всплеск энергии, который мы чувствуем после употребления сахаров. Например, чай с сахаром бодрит гораздо больше, чем без него. Присутствие сахаридов, наравне с кофеином, во многих сладких газировках также объясняет их тонизирующие (непродолжительные) свойства.

В разгар напряженного рабочего дня попробуйте съесть кусочек сахара-рафинада. Вы моментально почувствуете большой прилив сил и энергии.

Врачи-диетологи любят повторять: «Гораздо более важно не то, что мы едим, а как мы эту еду перевариваем». В процессе пищеварения молекулы сахара разрушаются под действием пищеварительных ферментов. Организм некоторых людей не вырабатывает фермент лактазы, который отвечает за переваривание лактозы, обычно встречающейся в молоке. Такие люди страдают от особой болезни – лактозной непереносимости или лактозной недостаточности. Их организм не может переваривать лактозу, или молочные продукты, с ее содержанием. Это наследственное заболевание сегодня уже эффективно лечится новейшими медицинскими средствами. Большинство крупных производителей молока выпускают специальные марки молочных продуктов без лактозы, кстати, их можно пить и тем, кто страдает сахарным диабетом.

Кристаллизация сахара

Что такое кристаллизация сахара? Мы видим кусочек сахара только благодаря процессу кристаллизации сахаров. Молекулы сахара в безводном пространстве хорошо притягиваются друг к другу. Стоит только нанести капельку воды из пипетки на кусочек сахара, и мы увидим, как медленно кристаллические цепочки начнут разрушаться, а сахар «таять» на глазах. Когда миллионы молекул дисахаридов присоединяются друг к другу и преобразуются в кристалл – сахар становится видимым.

Кристаллы сахара всегда значительно отличаются по размеру: от малейших (сахарная пудра) до весьма крупных (сахарный песок).

Растворимость сахаров

Присутствие так называемых «ОН-групп» сахаров делает простые сахара легко растворимыми в воде. В воде ОН-группы связываются преимущественно свободными молекулами воды. Сам же кристалл сахара разрушается, и его частички равномерно распределяются в водной среде. Это можно увидеть в прозрачном стакане с водой, опустив в нее кубик сахара и медленно перемешав.

Как же растворяются сахара? Как определить, сколько сахара добавлять в сироп для ягодного морса, а сколько для приготовления карамели? Какие процессы происходят при растворении сахара в холодной или кипящей воде?

Ответим на эти вопросы исчерпывающе.

В науке считается, что сахар «растворяется», то есть крупные кристаллы многократно дробятся на более мелкие и притягиваются к молекулам воды, постепенно становясь невидимыми.

А сколько сахара вообще можно растворить в жидкости? Оказывается, что можно растворить в воде ровно столько сахара, сколько потребуется для того, чтобы не дать возможности молекулам воды двигаться хаотично. Иными словами, в определенном количестве воды всегда можно растворить лишь четко определенное количество сахара.

Фруктоза – самая растворимая из всех простых сахаров. Ее можно растворить в количестве воды, равном четверти ее исходного объема. Сахароза также неплохо растворяется в воде. Она вторая по растворимости и может раствориться в количестве жидкости, равной половине исходного объема сахарозы и образовать густой раствор. А вот глюкоза чуть менее растворима, и поэтому из нее не получится густой сахарный раствор.

К сожалению, фруктоза довольно дорога и редко доступна в продаже, именно поэтому ее редко используют для варки варений и сиропов. Хотя, если вам позволяют средства и все-таки удалось найти этот «чудо-сахар», стоит использовать именно его для приготовления фруктово-ягодных заготовок. Фруктоза чрезвычайно полезна.

Вернемся к растворимости сахаров. Итак, после определенного момента сахар невозможно дальше растворять в уже сладком растворе, потому что в нем попросту «заканчиваются» молекулы воды, доступные для связи с новыми молекулами досыпаемого в емкость сахара. В этот момент сахар остается в кристаллической форме и больше не будет растворяться. Такой раствор сахара называют «насыщенным».

В отличие от сложных углеводов, белков и жиров, сахара состоят из маленьких и стабильных молекул, к тому же чрезвычайно устойчивых к теплу. Смесь сахара и воды может быть нагрета до температуры кипения без ущерба для структуры сахара. Как только сироп закипает, молекулы воды равномерно испаряются из смеси, а раствор становится все более и более концентрированным. При этом молекулы сахара начнут связываться между собой и образовывать твердые кристаллы.

Твердые кристаллы сахара есть не что иное как любимые всеми детьми карамельные леденцы на палочке!

Хозяйка, которая использует сахар при варке сиропов и варенья, должна помнить, что температура кипения раствора сахара всегда будет выше 100 °C. Это объясняется тем, что в процессе связывания молекул сахара и воды, тепло необходимо не только для того, чтобы разорвать связи молекул воды друг с другом, но и для существенного увеличения скорости их движения.

Советы кулинарам:

♦ Сахарный сироп следует нагревать немного выше той температуры, когда вода начинает превращаться в газ (пар).

Есть простой кулинарный закон: «Чем более концентрированный раствор сахара, тем выше температура его кипения».

По мере того как сироп нагревают, вода испаряется все интенсивнее, и раствор становится все более и более концентрированным, соответственно увеличивается температура его кипения. Например, раствор с концентрацией сахара в 90 % закипит при температуре 125 °C.

Если сироп нагревать до достаточно высокой температуры (до момента, когда вся вода испарится из сахарного раствора), сахар постепенно начинает приобретать характерный «карамельный» вкус, из-за того что молекулы сахара начали разрушаться. Моносахариды – химически активные вещества. При их нагревании до относительно высоких температур атомы из молекул начинают интенсивно вырываться наружу. При этом образуются новые молекулы уже с совершенно другой структурой атомов. Вновь образованные молекулы обусловливают как широкий спектр вкусов продукта с содержанием сахара, так и его коричневый цвет.

В кондитерском деле вышеупомянутый процесс известен под названием «карамелизация». Чем больше карамель нагревается, тем более коричневой она становится.

Кулинарный закон:

♦ Чем сильнее нагреть карамель, тем менее сладкой она будет.

Это обстоятельство связано с тем, что молекулы, «отвечающие» за сладкий вкус карамели, в процессе нагрева полностью разрушаются.

Очень важно вовремя убрать карамель с огня, как только она приобретет требуемый нежно-коричневый цвет. В противном случае она станет темной и горькой.

Обычный сахар карамелизируется при температуре 170 °C, а глюкоза – уже при 150 °C.

Если вы хотите приготовить карамель из фруктозы, то сотейник или сковороду нужно нагреть всего до температуры 105 °C.

Советы кулинарам:

♦ Контролируйте температуру нагрева карамели с помощью кондитерского термометра или используйте кастрюли с крышками-термометрами.

♦ Для приготовления карамели, сиропов и варенья используйте сахарозу (сахар-песок).

Добавляйте в сиропы и карамель белки (сливки или молоко). Аминокислоты, содержащиеся в них, позволят вам добиться разнообразных оттенков вкуса и запаха.

Если вы хотите уменьшить кристаллизацию варенья, сиропа или карамели – добавьте каплю лимонного сока. Когда сахароза нагревается с присутствием кислоты, она распадается на монокомпоненты сахара. В кулинарии этот процесс называется «инверсия». Инверсия часто используется профессиональными кондитерами при приготовлении сладостей для уменьшения кристаллизации.

Сахара используются не только как «подсластители». Они также могут уменьшить горечь или кислоту либо подчеркнуть иные вкусовые свойства продукта. Мастера паназиатской кулинарии почти ни одно блюда не готовят без сахара. Сочетайте сахар с кислотой и используйте его в маринадах к мясу и рыбе. При жарке этих продуктов именно сахар позволит вам добиться фантастического вкуса блюд. Помните, сахара выступают основными компонентами в реакции Майяра, только они обеспечивают вкус и аромат горячих блюд. При этом не злоупотребляйте количеством такой «специи».

Сложные углеводы – полисахариды

Сложные углеводы отличаются от простых лишь тем, что в них содержится гораздо больше молекул сахара и они формируют длинные молекулярные цепочки. Эта группа углеводов известна как полисахариды.

Сложные углеводы очень плохо усваиваются человеческим организмом. Существует огромное количество продуктов, насыщенных углеводами, которые просто физически не усваиваются пищеварительной системой млекопитающих и удаляются из организма почти без изменений. К таким углеводам, например, относится целлюлоза.

Сложные углеводы синтезируются растениями и находятся в растительных источниках. Сложные углеводы подразделяются на две основные группы – волокна и крахмал. Волокна – основные составляющие стенок клеток, а крахмал находится внутри клетки. Эти группы имеют различные свойства, и, несмотря на то, что обе они являются сложными углеводами, все же будут рассматриваться нами как отдельные группы.

Волокна – целлюлоза, пектин, гемицеллюлоза

Основные типы волокон, которые находятся в стенках клетки, – это целлюлоза, пектин и гемицеллюлоза. Каждое из них имеет несколько отличное строение, что отражается на том, как они ведут себя при нагреве и изменении pH (кислотности).

Кулинара должно интересовать то, что клеточные стенки растений играют важную роль в определении текстуры (формы поверхности) овощей и фруктов. Понимание того, как реагирует каждый из компонентов клеточных стенок на высокую температуру или pH, очень полезно для того, чтобы контролировать изменения внешнего вида овощей и фруктов в процессе приготовления пищи. Например, пектин действует как клей, удерживая вместе стенки клеток и, таким образом, играет важную роль в определении внешнего вида фруктов и овощей.

В свою очередь целлюлоза состоит из длинных прямых цепочек молекул глюкозы. Отсутствие боковых цепей позволяет молекулам целлюлозы лежать плотно друг к другу и образовывать очень жесткие структуры. Вы, конечно, помните, что целлюлоза – это основа деревьев.

В отличие от других волокон целлюлоза не подвержена химическому распаду под влиянием тепла или pH. Содержание целлюлозы в древесине и других растительных материалах – соломе, шелухе семян, кукурузных кочерыжках и т. п. составляет 13–43 %. Именно поэтому некоторые стеблевые растения крайне тяжелы в размягчении в процессе кулинарной обработки.

Теперь рассмотрим другой вид сложного углевода – крахмал.

Крахмал

Крахмал, в том или ином количестве, содержится почти во всех овощах. Есть два основных вида молекул крахмала, которые содержатся в овощах: амилоза и амилопектин. Они формируются из длинных цепочек молекул глюкозы и отличаются тем, каким образом эти молекулы глюкозы связаны вместе.

Крахмал, который содержится в пище, часто включает в себя смесь этих двух молекул, но обычно амилопектин составляет большую часть крахмала (от 70 до 85 %). Точное соотношение амилозы и амилопектина зависит от источника, из которого добывается крахмал, а так как молекулы амилозы и амилопектина ведут себя по-разному, то и крахмалы, полученные из различных источников, ведут себя иначе.

В кулинарии крахмалы применяются в качестве загустителей. В воде или иной жидкости длинные молекулы крахмала рассеиваются равномерно, и потому молекулы жидкости уже не двигаются интенсивно вокруг друг друга, жидкость будет течь не очень легко и станет гуще.

При соблюдении необходимых условий молекулы крахмала образуют «сеть», которая загустит жидкость до состояния геля. Аналогично этому ведут себя и денатурированные белки (речь о них пойдет ниже), которые могут быть использованы для удержания воды в пище, делая ее сочнее.

С течением времени «сеть» будет становиться крепче и крепче, так как будут образовываться новые связи, в результате гель начнет вытеснять воду (процесс называется «синерезис»). Крахмал – это производное от растительной ткани, где молекулы крахмала собраны в гранулы, очень тесно связанные вместе. Разрушить эти гранулы и высвободить крахмал можно только через нагрев ткани.

Белки

Как и другие основные компоненты продуктов питания, белки – это крупные молекулы, состоящие из повторяющихся меньших частичек остатков аминокислот. Однако, в отличие от составляющих других пищевых групп, они содержат атомы азота, углерода, водорода и кислорода.

Есть около двадцати различных аминокислот, обычно встречающихся в белках. Белки состоят из длинных цепей этих аминокислот, которые удерживаются вместе сильными связями, называемыми «пептидными связями». Их строение похоже на бусы. В этой аналогии «бусинки» представляют собой аминокислоты, а «шнурок» – связи между ними.

Так как существует множество различных аминокислот, каждая из которых может быть составляющей любой из других аминокислот, то и самих белков существует великое множество.

В кулинарии белки представлены в основном в мясных и рыбных продуктах, а также в яйцах, и в меньшей степени – в семенах.

Как известно, мясо животных на 75 % состоит из воды. Белки почти не существуют в природе без связи с водой. Некоторые аминокислоты содержатся внутри белков и как бы спрятаны в их оболочке. Другие аминокислоты находятся на поверхности и связаны с молекулами воды.

При этом белки имеют различные электрические заряды. Некоторые из них сильно связаны друг с другом, а некоторые – нет. Кулинарам очень важно понимать такую особенность белков, для того чтобы понять, почему одни виды продуктов питания более плотные, а другие – рыхлые, почему некоторые продукты прозрачны, а другие – нет.

Например, яичный белок прозрачен, потому что зазоры между цепями его белков пропускают свет.

Гидрофильные и гидрофобные группы белков

Белки делятся на две группы по принципу «особого отношения» с водой. Выделяют гидрофильные и гидрофобные группы белков. Ввиду того что белковые цепочки достаточно плотно свернуты в клубок, внутри него удерживается значительное количество воды. Когда белок разрушается, вода с большим содержанием белка выделяется наружу. Такая «вода» в пище называется ни чем иным, как «соком» блюда или продукта.

Во время приготовления пищи протекают физические и химические процессы, которые приводят к различным метаболическим изменениям белков.

Два наиважнейших процесса в кулинарии, описанные в органической химии, о которых настоящий кулинар должен знать почти все, – это «денатурация» и «коагуляция» белков.

Рассмотрим эти важнейшие кулинарные процессы подробнее.

Денатурация белков

Довольно слабые связи, которые удерживают трехмерную структуру белка, могут быть вполне легко разрушены. Для этого необходимо просто нагреть продукт, содержащий белок, или добавить немного кислоты (лимонной или уксуса), или приложить некоторое механическое усилие (например, прижать к сковороде или перемешать в кастрюле).

По мере того как связи, удерживающие белок в сложенном виде, разрушаются, белки разворачиваются в длинные цепочки, и защищенные ранее внутри белка аминокислоты попросту «вываливаются» наружу. Этот процесс и называется «денатурацией».

Кулинарный закон:

♦ Желудок человека гораздо легче переваривает денатурированные белки, чем любые другие.

Это означает, что сырая рыба (в суши и роллах) переваривается гораздо хуже, чем запеченная. Пища, приготовленная на огне, либо с добавлением соли и кислоты, переваривается гораздо лучше, чем сырая, соленая, вяленая или незначительно термически обработанная!

Быстрее всего белки денатурируются температурой, нежели кислотой, солью или путем механического воздействия, потому приготовить мясо можно гораздо быстрее на огне, нежели замариновав или законсервировав его (сушеное, вяленое мясо).

Денатурированные белки имеют много полезных функций в современном процессе приготовления пищи. В этой книге мы не раз еще вернемся к процессу денатурации белков. Они не только лучше перевариваются, чем сырые белки (их группы более доступны для переваривания ферментами), они – гораздо полезнее.

Как известно, яйца выступают простейшим источником белков, но усваиваются организмом гораздо хуже, чем денатурированные белки мяса или рыбы. Это связано с тем, что мясо, рыба и растительные источники содержат белки в сочетании с большим количеством других молекул (крахмала, жиров и др.).

Белки также выполняют другую, важнейшую в кулинарии, роль – они выступают естественными эмульгаторами.

В обычном блендере невозможно однородно смешать воду и масло (или жир). Подобная смесь будет очень нестабильна, точнее – стабильна в течение очень короткого промежутка времени. Речь идет о приготовлении банальных заправок для салатов. Почему в таких смесях происходит процесс расслоения фаз?

Смесь жиров и воды не будет стабильной до тех пор, пока в ней есть так называемые поверхностно-активные молекулы. В жироводяной смеси они стремятся окружить капли жиров, поместить внутрь себя гидрофобные части и оставить для контакта с водой лишь свои гидрофильные части.

Обычные белки в своем естественном состоянии имеют снаружи лишь гидрофильные части и потому не могут быть поверхностно-активными молекулами. Тем не менее, как говорилось выше, денатурированные белки обнажают как гидрофильные, так и гидрофобные группы, и могут выступать как поверхностно-активные молекулы для стабилизации жироводяной смеси.

Например, смесь уксуса, воды и масла может быть вполне устойчивой, если в смеси присутствуют яичные белки (например, в майонезе). После того как белки взбиты, они денатурированы и готовы к стабилизации масляных капель в смеси. Белки являются натуральными пенообразователями.

Мы знаем, что при приготовлении белкового крема воздух добавляется в жидкость механическим взбиванием его венчиком. Но далеко не все воздушно-жидкостные смеси являются стабильными. Например, когда взбивается чистая вода, воздушные пузырьки в смеси не могут быть стабильными, они быстро поднимаются на поверхность, будучи менее плотными, чем вода, а затем улетучиваются.

Однако, когда взбивается жидкость, содержащая белки (например, яичные белки), то воздух может быть стабильно включен в смесь. Хотя пузырьки воздуха являются гораздо менее плотным, чем сама жидкость (вода или молоко), они уже никуда не исчезнут. Это происходит потому, что в процессе взбивания яичных белков они денатурируются, их гидрофобные и гидрофильные части становятся доступными, гидрофильные взаимодействуют с водой, а гидрофобные – с воздухом.

Белки являются также незаменимыми загустителями, о чем подробно пойдет речь в последующих главах книги.

Кровь животных тоже, как и яичные желтки, наполнена различными белками.

В высокой гастрономии лучшим загустителем считается именно кровь, полученная при первичной обжарке мяса. Хестон Блюменталь – величайший английский шеф-повар, считает этот загуститель самым лучшим для приготовления соусов и подливок.

Яичный желток – это самый распространенный загуститель в кондитерском деле.

Белки обладают свойствами загустителей из-за того, что, разрушаясь даже при слабом нагреве, они разворачиваются в длинные цепи. Эти цепи не дают молекулам воды, присутствующим в белках, с легкостью перемещаться вокруг друг друга, при этом молекулы растягиваются, а жидкость сгущается.

Кулинарный закон:

♦ Белки разрушаются при различных температурах, знание диапазона температур, при которых разрушаются и денатурируют белки, дает ключ к получению наилучших результатов в процессе приготовления пищи.

Коагуляция белков

Если продукт, содержащий белок, нагревают после его денатурации дальше, то добавленное тепло заставляет денатурированные белки передвигаться гораздо быстрее. Развернутые белковые цепи при контакте будут притягиваться друг к другу и формировать белковые сети. Этот процесс известен в науке под названием «коагуляция».

Коагуляция в кулинарии «ответственна» в том числе и за потерю прозрачности сырого яйца в процессе нагрева.

Смыкающиеся цепи белка не позволяют свету проникать внутрь, и прозрачность продукта утрачивается.

Сети белков в процессе коагуляции выступают некой «ловушкой» для воды. Попадая внутрь и связываясь с белками, она превращает жидкость в гель, снижая его текучесть.

Коагуляция может быть как полезна для кулинара, так и доставлять реальные неудобства на кухне. Пельмени, вареники, клецки, макароны и другие изделия из пшеничной муки сохраняют свою форму только благодаря коагуляции белковых сетей, а заварной крем становится комковатым потому, что яичные белки были нагреты до слишком высокой температуры и в денатурированных белках начался процесс коагуляции.

Кулинарный закон:

♦ Кислоты способствуют и ускоряют коагуляцию белков, крахмалы – замедляют коагуляцию.

Говоря о белках и их роли в кулинарных процессах нельзя не сказать о таком явлении, как синерезис, которое уже упоминалось выше. Синерезис – процесс вытеснения воды или жидкости из белковых сетей в продукте. Это происходит из-за наличия электростатических напряжений между положительными и отрицательными заряженными атомами серы в белковых продуктах.

Процесс синерезиса всегда нежелателен в приготовлении пищи, поскольку ведет к тому, что пища высыхает.

Ферменты и пигменты

Ферменты представляют собой особую группу белков, управляющих химической трансформацией белоксодержащих продуктов и контролирующих химические реакции, происходящие с ними. Для того чтобы началась нужная химическая реакция и в результате появились иные продукты, необходимы ферменты, которые эту реакцию ускорят. Ферменты сами по себе остаются неизменными, но их присутствие необходимо для того, чтобы проходили изменения в реагирующих молекулах. Ферменты содержат активный центр, в который перемещаются реагирующие молекулы. Возникает тесный контакт, что способствует течению реакции между ними.

Ферменты ответственны как за необходимые, так и за нежелательные реакции при хранении продуктов в процессах приготовления пищи. Ферменты обусловливают прогорклость пищи или потемнение продуктов (овощей или фруктов, мяса и рыбы), но без них невозможно выпечь хлеб, приготовить квас или пиво.

Поскольку ферменты тоже являются белками, их структура так же подвержена влиянию тепла и кислотности (pH). Об этих процессах и самом процессе ферментирования пойдет речь в последующих главах.

Пигменты – это самые удивительные белки, которые участвуют в восприятии (именно в восприятии, а не формировании) цвета пищевых продуктов и кулинарных блюд. Пигменты буквально не «красят» продукты в разные цвета. Они лишь обеспечивают определенные оптические явления, реагируя на преломление волн света. Пигменты – это «экраны», они отражают только волны видимого света определенной длины и, в свою очередь, поглощают волны всех других длин, что влияет на зрительное восприятие того или другого цвета продуктов.

Например, хлорофилл – пигмент, который содержится в зеленых овощах, поглощает все волны видимого света, за исключением волн зеленого. Пигменты в мясе поглощают все, кроме красного, «давая» мясу его красный цвет. Поглощающие свойства этих пигментов сильно зависят от их структуры. Даже очень малые изменения в структуре могут привести к изменению того, какие волны будут отражаемы, а какие нет. Так как ферменты являются белками, и, следовательно, тоже зависимы от изменений температуры и pH, цвет многих продуктов будет меняться при воздействии этих экстремальных условий. Понимание возможных изменений «работы» пигментов может быть очень полезным для повара, чтобы контролировать цвет приготовляемых блюд.

Важно!

Белки – не просто часть мясных и рыбных продуктов, но и вещества, обеспечивающие:

♦ стабилизацию (как водно-жировой смеси, так и водно-воздушной смеси);

♦ влияние на текстуру – методом как задержки воды (гелеобразование), так и водоотведением (синерезис);

♦ влияние на вкус и качество протекания главной реакции в кулинарии реакции Майяра.

Процесс коагуляции белка – главный процесс в кулинарии, которым нужно учиться управлять.

Белки могут не только впитывать воду, но и вытеснять ее. Это объясняет, почему после жарки мяса еще спустя 5–7 минут из него вытекает сок в тарелку.

Ферменты и пигменты в содержащих белок продуктах – важнейшие типы белка, «управление» поведением которых в процессе готовки также является залогом успешного освоения «научной кулинарии».

Жиры

Жиры представляют собой различные типы молекул. Один из важных жиров – триглицерид. Триглицериды состоят из молекулы глицерина и трех прикрепленных к ней молекул жирных кислот.

Жиры бывают двух видов – насыщенные и ненасыщенные жиры.

Насыщенные жиры

Жиры, которые не содержат двойных связей в любой из своих цепей, называются насыщенными жирами. Они называется «насыщенными», поскольку содержат столько атомов водорода, сколько могут к себе присоединить. Эти жиры, как правило, остаются твердыми при комнатной температуре и имеют животное происхождение (например, жир животных или масло).

Ненасыщенные жиры

Ненасыщенные жиры, наоборот, не содержат двойных связей в своей молекулярной структуре. Они являются ненасыщенными, потому что не содержат столько атомов водорода, сколько могли бы иметь. Они, как правило, находятся в жидком состоянии при комнатной температуре и имеют либо растительное происхождение, либо добываются из рыб. В кулинарии их называют «растительные масла». Ненасыщенные жиры могут быть далее классифицированы в соответствии с количеством двойных связей в них как:

– мононенасыщенные (могут прикрепить еще хотя бы один атом водорода), например оливковое и арахисовое масла;

– полиненасыщенные (могут прикрепить намного больше атомов водорода), например подсолнечное и кукурузное масла.

Важно знать, что полиненасыщенные масла прогоркают при комнатной температуре, поэтому их лучше всегда хранить в холодильнике.

Вспомните, как оливковое масло становится мутным и густеет в холодильнике, хотя всегда остается жидким при комнатной температуре. Почему?

Это связано именно с тем, что области ненасыщенных жиров охлаждаются и создается оптический эффект, как будто масло мутное полностью.

Из кулинарной практики мы знаем, что жиры крайне неохотно смешиваются с водой. Это создает ряд неудобств при приготовлении соусов. Объясняется данное обстоятельство очень просто: жиры – нейтральные субстанции и не могут притягиваться к молекулам воды. Если смешать масло и воду, масло будет всплывать на поверхность воды, потому что его плотность меньше, чем у воды. Для того чтобы сделать стабильной эмульсию воды и жира, необходимы поверхностно-активные молекулы (напомним: молекулы, которые содержат как гидрофобные, так и гидрофильные части). Примером поверхностно-активных молекул могут быть молекулы моющего средства для грязной посуды. Нерастворимые в воде части моющего средства соединяются с жирами в пятнах и загрязнениях и смываются водой.

Для кулинарных изысканий также крайне полезно принять во внимание, что жиры в отличие от воды очень чувствительны к малейшим изменениям температуры окружающей среды. Например, вода существенно не меняется при нагреве в диапазоне от 0 до 100 °C. С жирами происходит обратное явление – нагрев до точки кипения повышает текучесть источника жира, в то время как охлаждение до точки замерзания приводит к постепенному увеличению вязкости.

Давайте вспомним, как утром выглядят пожаренные накануне котлеты, которые вы положили с вечера в холодильник прямо в сковороде. Наутро мы можем наблюдать жировое «поседение» на продукте и вокруг него, котлеты в сковороде напоминают седые вершины гор и укутанные снегами ущелья.

Это связано с тем, что молекулы в различных частях жира плавятся при различных температурах в отличие от воды, где каждая молекула будет кипеть ровно при той же температуре, что и другие.

Данный пример объясняет, почему наши удивительные кулинарные творения, пожаренные в масле, часто выглядят крайне неаппетитно после непродолжительного хранения в холодильнике.

Все мы помним, что жиры в кулинарии чаще всего используются при жарении. Важно знать, какие физические и химические процессы при этом происходят.

Итак, температура кипения жиров значительно выше, чем температура кипения воды, и находится в диапазоне между 260 и 400 °C (в зависимости от видажиров). Например, температура кипения оливкового масла составляет около 300 °C. Поэтому в ресторанах никому не приходит в голову заливать оливковое масло в промышленный фритюр, для того чтобы пожарить картофель «фри». Оказывается, дело не только в его дороговизне, но и в его физико-химических особенностях.

Однако, жиры начинают разлагаться при температуре ниже их температуры кипения. Этот процесс начинается при достижении жирами температуры, называемой в физике температурой вспышки. Например, температура вспышки того же оливкового масла составляет 180–200 °C. Температура вспышки может быть обнаружена «на глаз» по появлению легкого дымка и обесцвечиванию жиров. В этот момент жиры начинают разлагаться.

В процессе их распада образуются несколько новых химических соединений – в основном оксиды триглицеридов (например, акролеин) и окрашенные соединения. Чем выше количество ненасыщенных жиров, тем ниже температура вспышки и больше токсичных соединений.

Кулинарный закон:

♦ Жиры, которые используются для жарки, должны нагреваться по крайней мере до температуры 180 °C.

Жарить при более низких температурах строго не рекомендуется.

В домашних условиях для жарки на сковороде лучше всего применять рафинированные и растительные масла, так как их температура вспышки выше 200 °C. В ресторанах чаще используют пальмовое масло, его температура вспышки колеблется в пределах 210–225 °C.

Неочищенные масла никогда не должны использоваться для жарки, потому что их температура вспышки часто находится ниже отметки 180 °C.

Равным образом, масло для жарки в домашних условиях не должно быть повторно применяться более трех раз, потому что температура вспышки такого масла будет снижаться по мере возрастания чистоты его использования. В ресторанах масло может употребляться до 30–50 раз после тщательной фильтрации. Важно понимать, там используются специальные термостабилизированные масла, температура вспышки которых стабильна.

Работая дома, также не стоит экспериментировать с нагревом жиров до слишком высоких температур, так как при высоких температурах жир может стать источником горючих паров, которые могут спонтанно воспламениться.

В ресторанах паназиатской кухни можно увидеть как у повара, подбрасывающего ингредиенты блюда в воке (wok – сковорода с параболической формой дна), под сковородой вздымаются в воздух снопы высокого пламени. Это происходит из-за того, что сильно перегретое масло мгновенно воспламеняется. Не стоит повторять такие эксперименты дома. Помните, в ресторанах работают со специальными конструкциями пожарозащищенных вытяжных зонтов, оснащенных пламегасителями.

И наконец, о самом главном. Жиры играют очень важную роль в образовании вкуса. Многие молекулы различных продуктов, ответственные за их вкус, являются гидрофобными. Это означает, что они не «дружат» с молекулами воды – «переносчиками» вкуса. Таким образом, вкус доносится именно через молекулы жиров. Жиры в пище также улучшают текстуру и «вкусовые» качества пищевых продуктов. (Об этом мы подробно поговорим в последующих главах.) Жиры также используются для приготовления пищи вместо воды. Преимуществом использования жира в качестве средства приготовления блюда является то, что жиры обеспечивают более высокие температуры тепловой обработки, чем вода.

Скачать книгу